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Abstract – The effects of inductance on repeater insertion in RLC
trees is the focus of this paper. An algorithm is introduced to insert
and size repeaters within an RLC tree to optimize a variety of
possible cost functions such as minimizing the maximum path delay,
the skew between branches, or a combination of area, power, and
delay. The algorithm has a complexity proportional to the square of
the number of possible repeater positions, permitting a repeater
solution to be chosen that is close to the global minimum. The
repeater insertion algorithm is used to insert repeaters within
several copper-based interconnect trees to minimize the maximum
path delay based on both an RC model and an RLC model. The two
buffering solutions are compared using the AS/X dynamic circuit
simulator. It is shown that as inductance effects increase, the area
and power consumed by the inserted repeaters to minimize the path
delays of an RLC tree decreases. By including inductance in the
repeater insertion methodology, the interconnect is modeled more
accurately as compared to an RC model, permitting average savings
in area, power, and delay of 40.8%, 15.6%, and 6.7%, respectively,
for a variety of copper-based interconnect trees from a 0.25 µm
CMOS technology. The average savings in area, power, and delay
increases to 62.2%, 57.2%, and 9.4%, respectively, when using five
times faster devices with the same interconnect trees.

I. Introduction

Repeater insertion has become an increasingly common design
methodology for driving long resistive interconnect [1]-[5]. Since the
propagation delay has a square dependence on the length of an RC
interconnect line, subdividing the line into shorter sections by inserting
repeaters is an effective strategy to reduce the total propagation delay. A
second important advantage of inserting repeaters within interconnect
trees is to decouble a large capacitance from the critical path in order to
minimize the overall delay of the critical path [1], [5].

Currently, inductance is becoming more important with faster on-
chip rise times and longer wire lengths [6]-[11]. Wide wires are
frequently encountered in clock distribution networks and in upper
metal layers. These wires are low resistive lines that can exhibit
significant inductive effects. Furthermore, performance requirements are
pushing the introduction of new materials for low resistance
interconnect [8] and new dielectrics to reduce the interconnect
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capacitance. These technological advances increase the importance of
inductance as has been described in [6] and [7].

The focus of this paper is to characterize the effects of inductance
on the repeater insertion process in tree structured interconnect. The
paper is organized as follows. The results of applying a repeater
insertion tool to insert repeaters into several industrial copper-based
interconnect trees are presented in section II where these results are also
interpreted. Some conclusions are described in section III. The repeater
insertion algorithm is briefly reviewed in Appendix A. The specific
delay models used in this paper for the devices and the interconnect are
described in Appendix B

II. Characterizing the Effects of Inductance on the
Repeater Insertion Methodology

The results of applying a CAD-based repeater insertion tool on
several industrial copper-based interconnect trees are summarized and
discussed in this section. The algorithm used in the CAD tool is briefly
described in Appendix A. The RLC trees used in this paper are copper
interconnect wires based on an IBM 0.25 µm CMOS technology. The
depth of the trees (the maximum path length from the input to the sinks)
is between 0.5 cm to 1.5 cm consistent with a wide range of critical
global signals typically encountered in VLSI chips. Long wires within
the trees are partitioned with a maximum segment length of 0.5 mm to
allow repeater insertion within these long wires for improved
performance [5].

A repeater solution is determined to minimize the maximum path
delay of each tree based on the RLC delay model as discussed in
Appendix B. The total area of the repeaters inserted in each tree is
described in terms of the area of a minimum size repeater. The CAD
tool also generates an AS/X [12] input file which is used to simulate the
maximum path delay and the power consumption of the buffered RLC
tree. The total repeater area, the maximum path delay, and the power
consumption of the buffered trees are depicted in Table 1. The tool is
also used with AS/X to determine the total repeater area, the maximum
path delay, and the power consumption of the buffered RLC trees when
inductance is neglected and repeaters are inserted based on an RC
model. The results based on the RC model are also listed in Table 1.
Finally, AS/X simulations of unbuffered RLC trees are used to
determine the maximum path delay when repeater insertion is not
employed. These results are listed in Table 1 as well.

Two important trends can be observed from the data listed in Table
1. The first trend is that inserting repeaters significantly reduces the
maximum path delay as compared to the maximum path delay of an
unbuffered tree. This trend illustrates the importance of repeater
insertion as an effective methodology to reduce interconnect delay.
According to Tables 1 and 2, the average saving in the maximum path
delay when inserting repeaters based on an RLC model as compared to
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an unbuffered tree is about 40% where the maximum saving is 76% for
TGL1 which is a large asymmetric tree. The second important trend
apparent in the data listed in Table 1 is that inserting repeaters based on
an RLC model as compared to an RC model consistently introduces
savings in all of the three primary design parameters: area, power, and
delay. This trend demonstrates the importance of including inductance
in a high speed repeater insertion methodology. According to Table 2,
including inductance in the interconnect model saves an average 40.8%
of the repeater area, 15.6% of the power dissipated by the buffered trees,
and 6.7% of the maximum path delay as compared to using an RC
model.

The reduced repeater area when including inductance in the
interconnect model can be explained by the quadratic dependence of the
delay on the length of an RC wire which tends to a linear dependence as
inductance effects increase [11]. The 50% delay of an RC line is

0.35RCl2 [3], [13] and for an LC line is l LC  [11] when the line is
driven by an ideal source and has an open-circuit load. R, L, and C are
the resistance, inductance, and capacitance per unit length of the line
and l is the length of the line. These two cases of an RC line and an LC
line are the limiting cases for inductance effects with the RC case
representing no inductance effects and the LC case representing
maximum inductance effects. In the RC case, the square dependence on
the interconnect length causes the delay to increase rapidly with wire
length. It is therefore necessary to partition the line into multiple shorter
sections by inserting repeaters, thereby reducing the total delay.
However, for an LC line, the dependence is linear and no gain is
achieved by breaking the line into shorter sections. Inserting repeaters in
an LC line only degrades the delay due to the added gate delay. Thus, an
LC line requires zero repeater area for minimum propagation delay.

In the general case of an RLC line, the repeater area for minimum
propagation delay is between the maximum repeater area in the RC case
and the zero repeater area in the LC case. The repeater area for
minimum propagation delay of an RLC line decreases as inductance
effects increase due to the sub-quadratic dependence of the propagation
delay on the length of the interconnect [11]. Hence, inserting repeaters
based on an RC model and neglecting inductance results in larger
repeater area than necessary to achieve a minimum delay. The
magnitude of the excess repeater area when using an RC model depends
upon the relative magnitude of the inductance within the tree. For the
specific copper interconnect RLC trees used here, almost half the
repeater area can be saved by including inductance in the interconnect
model. Note that a single line analysis can be used to interpret the
behavior of a repeater insertion solution in a tree since in both cases
repeaters are inserted to break the RC delay of long wires (paths and
branches in the case of a tree).

Additionally, repeaters are inserted in a tree to decouple
capacitance from the critical path. The effect of capacitance decoupling
on improving the critical path delay is less significant when inductance
effects increase. This trend is due to the LC time constant at node i of a
tree,   ∑

k
ikk LC  [10], which has a square root behavior as compared to

the linear behavior of the RC time constant, ∑
k

ikkRC . Reducing the

capacitance coupling has less effect on the LC time constant as
compared to the RC time constant due to this square root behavior. As
inductance effects increase, the square root behavior of the LC time
constant dominates the behavior of the propagation delay. Thus, as
inductance effects increase, the area of the inserted repeaters for
capacitive decoupling also decreases.

A reduction in the power consumed by the buffered trees when
including inductance in the interconnect model as compared to an RC
model is a direct consequence of the reduced repeater area. The dynamic
power consumption, which is linearly dependent on the total capacitance
of the interconnect and the repeaters, decreases due to the reduced input
and output capacitance of the repeaters. The short-circuit power
consumption is significantly less for a smaller repeater since the short-
circuit power consumed by a CMOS inverter is quadratically dependent
on the width of the repeater [14], [15].

The optimum number of sections kopt that an RLC line should be
partitioned into and the size of each inserted repeater hopt

 to achieve the
minimum total propagation delay have been characterized in [11] as
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R0
 and C0

 are the output resistance and input capacitance of a minimum
size repeater, respectively, and Rt

, Lt
, and Ct

 are the total resistance,
inductance, and capacitance of the line, respectively. Note in (2) that hopt

and kopt
 are the same as the expressions in [2] and [3] for an RC line

where TL/R
 is equal to zero (Lt

 = 0). Both the size and number of the
repeaters decrease as inductance effects increase.

Another interesting characteristic in (2) and (3) is that TL/R
 increases

as the time constant R0C0
 decreases, or alternatively, when faster

repeaters are used. An increase in TL/R
 increases the discrepancy between

an RC model and an RLC model as described by (2) even if the same
interconnect trees are buffered to minimize the total path delay. Thus,
the analytical solutions in (2) and (3) anticipate additional savings in the
repeater area by including inductance in the interconnect model as
compared to an RC model when faster devices are used as repeaters. To
verify this trend, five times faster devices than the 0.25 µm transistors
are used as repeaters to minimize the maximum path delays of the RLC
trees listed in Table 1. Note that the savings in area, power, and delay
increases when including inductance in the interconnect model rather
than using an RC model with faster devices as compared to the 0.25 µm
CMOS technology. Referring to the results listed in Tables 2 and 3, the
average savings increases from 40.8% to 62.2% for the repeater area,
from 15.6% to 57.2% for the power consumption, and from 6.7% to
9.4% for the maximum path delay when using five times faster devices
as compared to a 0.25 µm CMOS technology. Thus, with a faster
technology, the penalty of ignoring inductance increases for all three
primary design parameters: area, power, and delay. Therefore, with
technology scaling, including inductance in the repeater insertion
methodology will become of paramount importance.

This trend can be explained intuitively by examining the special
case of a line with large inductance effects. As discussed before, the
minimum total propagation delay can be achieved for such a line by
inserting no repeaters independent of the intrinsic speed of the
technology. If inductance is ignored and an RC model is used for such a
line, the number of repeaters that are inserted will increase as the
repeaters become faster since there is less of a penalty for inserting more
repeaters. Thus, the discrepancy between the repeater solutions based on
an RC and an RLC model (zero repeater area for dominant inductance



effects) increases as faster repeaters are used. In general, the repeater
area required to minimize the total propagation delay based on an RC
model as compared to an RLC model increases more rapidly as the
devices become faster.

Table 1. Simulation results of unbuffered trees, buffered trees based on
an RLC model, and buffered trees based on an RC model. The area,
power, and maximum path delay are compared. Area is determined by
the repeater insertion tool while the power and maximum path delay are
derived from AS/X.

Area
(minimum size

inverters)

Power
(pJ per Cycle)

Maximum Delay
(ps)

Tree
Name Un-

Buffered
Tree

Buffered
Tree RLC

Model

Buffered
Tree RC
Model

Un-
Buffered

Tree

Buffered
Tree RLC

Model

Buffered
Tree RC
Model

Un-
Buffered

Tree

Buffered
Tree RLC

Model

Buffered
Tree RC
Model

TSs1 0 352 380 13.86 23.26 25 488 288 297

L1 0 102 250 8.15 11.19 13.76 342 267 272

TS2 0 0 659 25.67 25.67 37.90 193 193 193.5

L2 0 310 337 11.92 20.85 21.55 700 437 454

L3 0 0 422 22.8 22.8 30.3 213 213 237

TSm1 0 1246 1709 95 125 146 389 268 284

TSm2 0 1630 2751 135 211 221.5 343 278 296

TSL 0 1734 2471 147.5 196 227 431 292 304

TSL1 0 2999 4120 164 237 275 781 360 382

TGs1 0 649 842 38 51.2 57.8 262 231 256

TGs2 0 0 553 40.20 40.20 59.80 212 212 247

TGm1 0 1271 1854 89.1 120 139 460 306 344

TGL1 0 3823 7506 201 295 378 1740 442 495

Table 2. The total repeater area, power, and maximum path delay of all
the trees. Per cent savings represent the average savings in area, power,
and maximum path delay when using an RLC model for repeater
insertion.

Totals
Un-

Buffered
Savings
(RLC to

un-
buffered)

Buffered
RLC

Model

Buffered
RC Model

Savings
(RLC to

RC)

Area (min inverters) 0 - 14116 23854 40.8%
Max delay (ps) 6554 42.2% 3787 4061 6.7%

Power (PJ/Cycle) - - 1379 1632 15.6%

Table 3. The total repeater area, power, and maximum path delay of all
the trees using five times faster devices. Per cent savings represent the
average savings in area, power, and maximum path delay when using an
RLC model for repeater insertion.

Totals
Un-

Buffered
Savings
(RLC to

un-
buffered)

Buffered
RLC

Model

Buffered
RC Model

Savings
(RLC to

RC)

Area (min inverters) 0 - 67960 170227 62.2%
Max delay (ps) 6554 57.17% 2807 3098 9.4%

Power (PJ/Cycle) - - 2007 4691 57.2%

III. Summary

Neglecting inductance in the interconnect model for repeater
insertion is shown to cause significant error. Certain VLSI trends will
make inductance even more significant, such as:

1- Lower resistivity metal alloys for interconnect, copper interconnect
being a primary example [8].
2- Lower permeability dielectrics to insulate the interconnect which
reduces the interconnect capacitance. Reducing the interconnect
capacitance increases the effects of inductance [7].
3- Higher operating frequencies [6], [7].
4- Faster devices with technology scaling and the increasing use of
SOI devices with significantly higher speed. Using faster devices
increases the error caused by neglecting inductance in the repeater
insertion methodology.
5- Tighter timing constraints in VLSI circuits to meet higher
frequency targets which require more accurate delay models.

Appendix A: Algorithm for Repeater Insertion in RLC
Trees

An arbitrary tree is shown in Fig. 1. The tree has n wires with the
input source driving the root wire. Each wire w drives two wires, a left
wire and a right wire. A leaf is a wire that has no children. The tree has r
leaf wires, each of which drives one of the sinks of the tree. A binary
branching factor is used without loss of generality since any tree can be
transformed into a binary tree by inserting zero impedance wires [1],
[5]. At each sink 1 ≤ i ≤ r, the propagation delay tdi is defined as the 50%
delay of the output signal at sink i with respect to the input signal at the
root of the tree. Within a tree, there are m pre-specified repeater
positions where repeaters can be inserted to minimize a given cost
function. The possible repeater positions are represented by the circles
shown in Fig. 1 and are placed at the beginning of each wire to allow for
maximum capacitive decoupling of the critical paths [1], [5]. Each wire
can be subdivided into several shorter wires to insert repeaters within
the long wires [5]. In some cases, no possible repeater positions can be
assigned to some wires due to existing layout constraints. Those wires
are labeled to indicate that no repeaters can be inserted on those wires.

Fig. 1. A tree with n wires. The possible repeater positions are
represented by circles.

It is necessary to determine the set of repeater sizes hj, 1 ≤ j ≤ m,
that minimizes a given cost function C(h1, h2, …, hj, …,hm). The
repeaters are symmetric inverters with widths hj and a minimum sized

Root
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td1

td4

td3

td2
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channel length. The repeater sizes hj are continuous and the buffering
solution is not limited to a given repeater library. The repeater size hj = 0
indicates that no repeater is inserted at node j. The sizes of the repeaters
are in the range 1 ≤ hj ≤ hmax where hmax is the maximum allowable size of
any repeater. A variety of cost functions can be used. Examples are:
minimize(maxi tdi) which aims to minimize the maximum path delay,
minimize(maxi,k(tdi-tdk)) where 1 ≤ i,k ≤ r which is equivalent to
minimizing the skew between branches, minimize(tdk) where k is a
critical output, or minimize (f(tdi) + ∑ =

m

j jh
1

) which considers the area

of the repeaters. Other cost functions can include power dissipation and
transition time.

The algorithm is used to determine the optimum sizes of the
repeaters that minimize the target cost function. Pseudocode describing
this algorithm is shown in Fig. 2. Referring to Fig. 1, the algorithm
begins with the initial condition hj = 0 ∀ j which corresponds to an
unbuffered tree. The cost function C(h1, h2, …, hj, …,hm) is evaluated for
several sizes of the repeater at node 1, h1, with all other repeater sizes h2,
…, hm equal to zero (no repeaters). A binary search is used to determine
the value h1 that minimizes the cost function where in each step a new
value for h1 is chosen and the cost function is evaluated. As is shown in
Appendix B, the method used to calculate the delay has a complexity
O(n). The number of steps B depends on hmax and is typically less than
ten. If the case of no repeater at node 1 (h1 = 0) provides the lowest cost,
h1 remains equal to zero. Thus, the algorithm can only improve the cost
function at each step. The size of the repeater at node 2, h2, that
minimizes the cost is determined in the same manner with h1 set to the
value calculated from the previous step and all other repeater sizes set to
zero. The process is repeated for all m possible repeater positions. At
each possible repeater position, the repeater size that minimizes the cost
function is determined while all of the previous optimum repeater sizes
remain constant. The process of covering all possible m repeater
positions is defined as an iteration. The complexity of a single iteration
is O(m⋅n⋅B). The memory requirement of the algorithm is proportional
to the number of wires, n.

In each step of an iteration, the algorithm improves the cost
function. After completing the first iteration, a second iteration starts by
changing the sizes of the repeaters determined in the previous iteration
at the possible repeater positions to determine the repeater sizes h1, h2,
…, hm that minimize the cost function. The initial condition is used to
calculate the optimum repeater sizes more accurately as compared to a
previous iteration. The iterations are repeated until no change in the size
of any repeater as compared to the previous iteration occurs. The
algorithm typically converges within two or three iterations.

Fig. 2. Algorithm for inserting repeaters in an RLC tree.

The algorithm terminates when no change in the size of a single
repeater can improve the cost function. This behavior can be expressed

as

,         0
),...,,...,,( 21 j

dh

hhhhdC

j

mj ∀= (4)

where the algorithm reaches a minimum in the cost function. However,
there is no guarantee that this minimum is the global minimum. To
improve the final repeater solution, the two repeaters at the left and right
possible repeater positions of each wire are changed simultaneously.
The process of determining two repeater sizes that simultaneously
minimizes the cost requires B2 binary search steps. Since there are m/2
possible repeater position pairs, the complexity of this modified
algorithm is

)
2

(
2B

nmO ⋅⋅ .
(5)

This modified algorithm does not reach a minimum near the initial
point. Rather, the modified algorithm searches for a minimum closer to
the global minimum, requiring increased computational time. In general,
a set of higher order algorithms can be developed by simultaneously
changing more repeaters. The complexities of these algorithms are
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An algorithm that changes m repeaters simultaneously is guaranteed to
reach the global minimum. However, the computational time is
exponential with the number of possible repeater positions and is
prohibitively high even for relatively small trees. These algorithms have
been examined for small trees (seven to eight possible repeater
positions) and compared to the exhaustive algorithm that simultaneously
changes all m repeaters. The results demonstrate that the second order
algorithm consistently reaches the global or a near global minimum. The
higher order algorithms introduce a slight improvement in the final
repeater solution as compared to the second order algorithm. The CPU
run time of the second order algorithm for a large tree that has 250
possible repeater positions is 20 sec on an S/490 IBM machine with one
gigabyte of RAM. For typical trees with less than fifty possible repeater
positions, the CPU time is below one second. Hence, the second order
algorithm is used in the work presented here.

Appendix B: Delay Model

The method [9], [10] used to evaluate the delays at the sinks of a
buffered RLC tree is briefly discussed here. The proposed method
approximates the nonlinear transistor characteristics by combining two
piecewise linear regions describing the linear and saturation regions of
operation [9]. Thus, delays are found for each linear network, denoted
tpdlin and tpdsat for the linear approximation and the saturation
approximation, respectively.

In the general case, neither tpdsat nor tpdlin can solely characterize the
propagation delay of a nonlinear CMOS gate driving an RLC tree since
the NMOS transistor operates partially in the saturation region and
partially in the linear region. However, a combination of both tpdsat and
tpdlin can be used to accurately characterize the propagation delay. The
resulting delay for the general case in terms of tpdsat and tpdlin is [9]

).1.1exp(
pdsat

pdlin
pdsatpdlinpd t

t
ttt −+=

(7)

In general, this method is highly accurate (errors within 3%) for fast
inputs. Additional errors may result from the analysis method used to
determine tpdsat and tpdlin. This piecewise linear approximation has

Iteration– Find best repeater size at node j

– Compare the cost of the best repeater to a no repeater case

– j = j + 1 until all possible repeater positions are exhausted

– Repeat until no buffer change in the whole tree can
improve the cost function



significant accuracy advantages over the commonly used linear
transistor model.

To calculate the delay of the two linear RLC trees resulting from
the two piecewise linear transistor model described above, a second
order transfer function that approximates the transfer function at node i
of an RLC tree as introduced in [10] is
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The variables ζi and ωni that characterize the second order approximation
of the transfer function at node i are
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where Rik (Lik) is the common resistance (inductance) from the input to
nodes i and k. The accuracy characteristics of this solution is similar to
the Elmore [16] (Wyatt [17]) delay model for RC trees [10].

The 50% propagation delay of the signal at node i of an RLC tree
for a step input is [10]

niipdi

i

et ωζ
ζ

/)39.1047.1( 85.0 +=
−

.
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The error of these expressions is less than 3% for balanced trees and can
reach up to 20% for highly unbalanced trees [10].

Referring to (9) and (10), the delay at node i depends upon
evaluating two summations at node i, which are

∑∑ ==
k

ikkLCi
k

ikkRCi LCTRCT    and    . (11)

The first summation is the Elmore delay, which can be calculated
efficiently with linear complexity by building the solution at a node in a
tree based on the solutions at its immediate children, e.g., [1], [18]. The
second summation is calculated in precisely the same manner but with
the branch resistances replaced by the branch inductances. Thus, this
second order approximation [10] preserves the computational properties
of the Elmore delay, permitting highly efficient algorithms to
characterize the signals within an RLC tree. The complexity of
calculating the delays at the sinks of a buffered RLC tree is linear with
the number of wires n in the tree [18].
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