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Abstract— Memristive memories have received significant in-
terest for application to on-chip storage. A multi-bit memristive
memory circuit architecture based on arithmetic coding is pre-
sented in this paper. Both read and write circuits are presented
which encode information into the memristive data cells. The
proposed circuits provide fine control of the resistance within the
memristor. The continuous resistance characteristic of memristive
devices is exploited to provide additional storage by utilizing
compression techniques. This approach yields an increase in
overall bit density for a memristor based data array as compared
to a standard multi-bit cell array.

I. INTRODUCTION

The discovery of a physical memristive device has prompted
renewed interest in the field of memristive circuits. Memristors
have been considered for a number of possible applications,
ranging from programmable analog circuits to neuromorphic
networks and solid-state memories. A memristive digital mem-
ory architecture is proposed herein utilizing the unique analog
properties of these devices to compress digital information
within a data array.

The proposed circuit leverages a priori knowledge of a bit
sequence for storage. Through use of a compression algorithm
with supporting circuitry, the circuit yields the potential to
store significantly more bits per cell than a standard multi-
bit approach. This approach is realized through a memristor
driven sensing scheme and an adaptive write circuit that assign
a resistance value to a memristive device with fine grain
control.

In Section II, background on memristive devices and the
proposed compression procedure is described. In Section III,
the circuit architecture is reviewed. A description of the data
modeling approach for memristive compression is presented in
Section IV. A discussion of the simulation-based experimental
results is presented in Section V. The paper is concluded in
Section VI.

II. BACKGROUND

The following section provides background information
describing the characteristics of memristive devices as well as
the specific features that enable an encoding based approach.
A brief review of the applied coding scheme is also provided.

This research is supported in part by the National Science Foundation under
Grant No. CCF-0829915, and grants from the New York State Office of
Science, Technology and Academic Research to the Center for Advanced
Technology in Electronic Imaging Systems, and by grants from Cisco Sys-
tems, Qualcomm Corporation and Samsung Electronics

978-1-4673-2658-2/12/$31.00 ©2012 IEEE

1) Overview of memristors: Memristive devices can be de-
scribed as non-volatile resistor-like devices whose conductance
is modulated by an applied bias. Since memristors retain a
written state when the voltage bias is removed, these devices
are useful for low power storage applications. A large segment
of memristive devices operate on the principle of dopant
transport through the crystal lattice of a nanomaterial. In the
well noted TiOy memristor developed by Hewlett Packard in
2008 [1], the dopants are oxygen vacancies introduced into
the material during fabrication.

The key feature of this specific type of memristor stems
from the continuous “resistance” characteristic. The instanta-
neous resistance of a memristor [1] is
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where i(¢) is the applied current, pu, is the drift velocity of
dopants in the lattice, x- D represents the effective distance that
the vacancies migrate within the device, and R,, and R,f
represent, respectively, the minimum and maximum resistance
of a memristor.
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Fig. 1. Encoding process for two symbol alphabet and sequence S. =
ABBA. The initial interval is divided into sections corresponding to each
symbol. The section size is governed by the probability of the symbol.
Encoding S. requires selecting the initial section that corresponds to A,
subdividing this section according to the specified probabilities, selecting the
subsection associated with C, and continuing the process until all symbols in
Se are encoded

2) Overview of arithmetic coding: Arithmetic coding is a
long standing method for compressing data [2]. The procedure
relies on assessing the probability of certain values within a
data stream to create an encoding model that favors more



frequent values. A string of bits is represented by a single
compressed value. The continuum of potential compressed
values can be encoded into a memristor because of the inherent
continuous resistance characteristic of the device, improving
the storage density of a memristor over standard multilevel
approaches. The encoding process relies on mapping an un-
compressed sequence to a fractional value within the interval
[0,1) which is related to a particular resistance within the
resistive range of a memristive device. A probability model of
a sequence informs the coding mechanism which encodes the
data to a target resistance value.

Arithmetic coding uses a finite, non-empty set of elements
A, designated as an alphabet. Each element {ag, a1, ..., ax}
in the set, known as a symbol, represents a possible value
within the data sequence being compressed A sequence is a
series S = s, such that {s, €A, Vs,eS}; this series represents
an uncompressed data stream of symbols from the defined
alphabet. A model P = {p, ...px} associates each a in the
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alphabet with a probability p; where Z p; = 1.
i=0

For example, consider the arbitrary sequence S, = ABBA
for A. = {A, B}, and the probability model P, = {3, 3}.
This probabilistic model is defined according to the frequency
of symbols within the sequence. The interval [0, 1) is divided
into subintervals, each corresponding to a symbol in A.. The
length of each interval is equal to the probability associated
with the corresponding symbol, as shown in Figure 1. The
first detected symbol is A; the interval [0, i) represents the
first symbol in the sequence. Any value within the interval is
sufficient to encode the first bit of the sequence. To encode the
second symbol, the interval [0, i) is again divided according
to the probability model (see Figure 1). For the next symbol
in the sequence (B), the interval [{-, 1) is selected which
represents the top i of the previous interval. A value within
this interval encodes the first two symbols of the sequence.
The process continues until all symbols in the sequence are
encoded into a single value. The final interval for this example
sequence is |2, 27). Intuitively, the final interval is unique
to the sequence S, as other symbols would lead to different
intermediate intervals. Selecting the value 325 §s, therefore,

sufficient to encode the entire sequence.
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The decoding process begins with the selected value (%)
and the starting interval [0,1). In a manner similar to the
encoding process, the interval is partitioned according to the
probability model. The selected value lies in the region of the
interval corresponding to the symbol A. From this information,
the first symbol in the sequence is decoded as A. Continuing
to the second symbol, the interval [0, i) is selected and
partitioned. The selected value occurs in the top % of the
interval [0, %) and corresponds to the symbol B, permitting
the second symbol to be decoded. The process continues until
the full sequence is retrieved. Through this process, a full data
sequence can be reduced to a single fractional value without

any loss of information.
These fractional values and the corresponding intervals are

mapped to either a voltage or current by biasing a memristive
device. The precise mapping mechanism is described in the
following sections.

III. MEMRISTIVE MULTI-BIT ENCODING

The goal of memristive compression storage is to map a
binary sequence to a fractional value using two symbol arith-
metic encoding and store the value within a memristive data
cell. A continuous set of encoded fractional values is mapped
to the continuous resistance characteristic of a memristive
device. The design of these circuits is predicated on two basic
memristive building blocks, a resistive divider with adjustable
memristors, and a memristor data cell containing the stored
data. Circuits to both write and read a memristive data cell
within the proposed encoding scheme are described in the
following section.

A. Decoding and read circuitry
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Fig. 2. Circuitry for reading an encoded value from a memristive data cell.
Each read operation begins by selecting the cell in the data array which is
compared against a reference voltage. The comparison is stored in a shift
register at the end of each interim read operation. Depending upon the result
of the comparison, either Viop o Vioriom is set to Vi

The process of reading and decoding a data cell proceeds
in a manner consistent with the compression process, as
illustrated by the circuit shown in Figure 2. Viouom and
Viop begin with, respectively, the initial interval of V,,,;, and
Vinaz; these voltages correspond to the arithmetic coding
interval [0,1). Electrically, these levels are the maximum
and minimum voltage biases that correspond, respectively, to
the memristor states, R,fy and R,,. The memristor values
correspond to a probability model P = {py, 1 — po} for a two
symbol alphabet A = {0, 1}, where each memristor assumes
the resistance value pyR,ry for the two encoded symbols.
When a read occurs, the voltage bias applied to the memristive
data cell is set below the memristor threshold voltage. The
current generated by this circuit is mirrored to a comparator.
Within the first interval, a voltage divider generates the initial
comparison voltage V,.,,, where n represents the symbol being
decoded (see Figure 2). The result of the comparison operation
is stored in a shift register. Following this operation, if the
result is logic 1, Viottom is set to Vi, otherwise Vi, is
set to V,,. Setting Vi,, and Vpoiom in this manner is the
same procedure through which an arithmetic coding interval
is selected for a given sequence. The voltage divider, with



resistances set according to the probability of each symbol,
generates the appropriate comparison threshold. This process
continues until a maximum number of bits has been decoded.
The initial voltage of the biased cell is stored within the sample
and hold circuit, shown in Figure 2, to prevent writing to
the memristor during an on-going read operation. The total
number of bits stored per memristor is limited by the minimum
distinguishable voltage on the output comparator. This limit is
specified at design time and assumes that external decoding
mechanisms detect when a specific output vector generates
more bits than the noise level allows, and truncates the bit
vector to the width.

Voltage divider switchbox: To properly modulate V;,, and
Vbottom, @ circuit is required to both generate V.., and to
store intermediate values during the decoding process. This
objective is accomplished by the voltage switchbox shown in
Figure 3(a). Each sample and hold circuit drives a single pair
of resistors. The resistance values of each pair correspond to
the probabilities associated with a particular bitstream (e.g.,
po = 0.1,0.2...). During the decoding process, V4, and
Vimin are applied, respectively, to Viop Or Viottom. The pair
of resistors that correspond to the selected branch is switched
on; the voltage division across the resistors gives rise to the
threshold voltage V,.,,. If the readout voltage is greater than
the threshold voltage, the bottom sample and hold circuit
is switched, otherwise the top sample and hold circuit is
triggered. The sample and hold circuit stores the current value
of V,.,,. Switching the sample and hold circuit generates a new
value for either V;,;, or Vioitom, producing the next threshold
voltage V.. This process continues until the stored sequence
is decoded.

Operation of the circuit is illustrated in Figure 3(b). This
graph depicts the voltage divider switchbox for an input
bitstream containing only ones. A larger probability (pg)
indicates that ones are more prevalent in the input bitstream
then zeros. Storing this specific sequence as a voltage level is
more effective when the circuit is configured to a probability
of 0.9 than the other two cases, resulting in a larger detectable
difference between voltage levels. A larger detectable voltage
level illustrates the process in which arithmetic encoding can
be used to improve the storage density of a memristive device
as compared to a traditional multi-bit approach.

B. Encoding and write circuitry

A variable-length data sequence is encoded into a single
memristor by the circuity shown in Figure 4. The write
operation occurs in three steps. First, the data being written,
transmitted to the array in a pre-encoded state, creates a ref-
erence voltage using the switchbox. Afterwards, the wordline
of the selected cell is biased high. Once Eng and En, are
switched on, the reference voltage is compared to a voltage
generated at the output of the array. Given the bidirectional
nature of memristive devices, this initial comparison, carried
out by the write direction comparator shown in Figure 4,
determines which direction to apply the bias for the write
operation. This process establishes whether an increase or
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Fig. 3.  Voltage divider switchbox. (a) Circuitry for generating threshold

voltages for both encoding and decoding circuitry. Viottom and Vigp are
initially set to, respectively, Vipipn and Vinaz. If Enabletop is set high, the
sample and hold corresponding to Viop is set to the threshold voltage Vin;
the same is true for Enabletop. (b) Switchbox output for a bitstream of ones
across different disparity levels.

decrease of the initial device resistance achieves the target
value.

After this initial read, the second stage applies a voltage
to the selected cell by raising the voltage on Ens. Applying a
voltage to the memristor device for a prolonged period changes
the device resistance. The write termination comparator con-
tinuously compares the two voltages indicated in Figure 4.
The End signal is pulled low once the memristive device
has been correctly written to the target resistance. Drift in
the resistance, which occurs at the termination of a write
operation, is a source of noise in the circuit. Note that the
linear memristor model utilized in this analysis is known to
be inaccurate [3]; however, the write procedure adaptively
adjusts the target resistance to any write based on the electrical
resistance of the device.

I'V. IMPROVEMENTS IN BIT DENSITY

Encoding a fraction to a continuous memristor is only
limited by the granularity at which the resistance can be
changed, and the ability to distinguish values during read and
write operations. For these operations, noise in the circuit as
well as resistive drift governs the maximum number of bits



BL BT
WL
i _Data cell :

Write termination }
y WL
comparator —|
“End < ’:— Vs

P>

Crossbar

Direction select

Menmristor
switchbox

En,

|—En,, En2—|

;l: Voud

Sense node

P_ En,

v,

write

P
dd

Write
direction
comparator

1

v,

Fig. 4. The adaptive write circuit. An initial read of the selected data cell
determines the direction required to write the device (Emn1). This signal is
relayed to the crossbar which selects the direction of the device. A fixed
current is applied to both the reference switchbox and the data array (En2).
The write termination comparator indicates whether the state has been written.
This event occurs when the voltage across the current mirror transistors is the
same, fixing the equal currents and memristor resistance.

that can be stored within a memristor.

Equation (3) describes the minimum distinguishable voltage
Vinin within a memristive sensing operation. Vy,.;r; specifies
the maximum voltage caused by resistive drift from the write
operation, and Vgp represents the cumulative error from each
of the sample and hold circuits. Vy,;5; is due to the delayed
termination of the write operation. For example, assume a
change in resistance between 10 K2 to 100 K2 corresponds
to an output voltage swing between 0 to 1 volts. If 25 mV
of circuit noise is seen at the sensing circuitry and a 1 K
drift gives rise to a 25 mV error, the minimum distinguishable
voltage would be 100 mV. Resistive drift and circuit noise
are dependent on the circuit topology and resistive state of
the device. The low resistance states drift more than the
high resistance states due to the higher currents during the
write procedure [4]. The sample and hold circuitry contribute
three sources of error: the pedestal error associated with the
sampling of a voltage level, the resistive drift caused by
sampling during a read, and the droop rate of the hold state [5].
All three sources of error have a direct effect on the minimum
distinguishable voltage.

For a simple two symbol alphabet, the disparity, a measure
of the relative probability of symbols within an alphabet, is

disparity = abs((1 —po) — po) = abs(1 — 2pp). (4)

This metric describes the compression characteristics of a
particular input bitstream. The storage capability of an array
of memristive data cells can be characterized by this metric.

V. EXPERIMENTAL EVALUATION

The proposed circuit architecture has been evaluated using a
1.8 volt, 180 nm CMOS technology. The memristor behavior

TABLE I
MEMRISTOR MODEL PARAMETERS [1]

Uy 1x 1014 m2V—lg—1
Rog 38 kQ
Ron 100 kQ

D 10 nm
Vin 1 A%

is modeled by a linear VerilogA model [6]. This model
corresponds to (1) and (2). Device parameters are from [1],
and listed in Table I. For the purposes of this analysis, an
ideal sample and hold circuit is assumed. The effects of non-
idealities is assessed by the parameter V,,;,, as described in
(3). The data stream is modeled as a random binary sequence.
The arithmetic coding algorithm, applied to this sequence to
determine the average improvement in bit density, is a function
of the probability characteristics of the data stream and the
tolerable noise. For simplicity, the probability is determined
from the average occurrence of the symbols (4 = {0,1})
within the sequence.
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Fig. 5. Adaptive write circuitry for target voltage levels (a) 650 mV, and (b)
550 mV. The End signal is pulled to ground when the device resistance has
crossed the target threshold.

A. Circuit simulation

A simulation of the write circuitry is shown in Figure 5,
which illustrates that a memristive device adaptively switches
to the target voltage. As the memristor resistance changes, the
voltage on the Sense node converges to the voltage specified
by the switchbox. The End signal is pulled to ground when
the memristive device surpasses the target voltage. A key
limitation of this adaptive circuit is the wide range over which
the device switching speed can vary. Switching from R, to
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Fig. 6. Improvement in bit density versus disparity for increasing Vi, in

the voltage level shown in Figure 5(a) requires approximately
100 ns; however, switching to the level shown in Figure 5(b)
requires more than 1.3 s. The adaptive scheme has a one-
to-one correspondence between a write bias voltage and a
memristor state. In this adaptive scheme, higher resistance
states correspond to lower write bias voltages. As a result,
switching to a higher resistance state causes the switching
process to require more time than if a full voltage bias is
applied to the circuit.

The maximum voltage range delivered to the memristor
varies between 500 mV (V,,;,) and 980 mV (V,,.z). This
range considers the voltage drop across the access transistors
and the adaptive current mirror (which is utilized during write
operations).

The resistive drift of the device during this process is shown
to be negligibly small. This small drift is due to the slow
switching speed observed in the device, which is on the order
of milliseconds. The total peak Vg,.;r¢ is observed to be 0.3
wV, comparable to the thermal noise generated by a memristor
in the on state. Resistive drift is therefore neglected.

B. Bit density

The minimum noise level determines the storage density as
a function of the data disparity. The bit density is illustrated in
Figure 6 and listed in Table II. The case of no disparity models
a traditional multi-bit approach, where the voltage range is
divided equally by the minimum increment in observable
voltage (V;,n). For this comparison, the voltage drop across
the access devices for a traditional multi-bit approach is
assumed to be the same as the encoded approach.

An improvement in storage density over a traditional ap-
proach is seen for all cases, however, only a marginal im-
provement is noted for those data sets with a disparity less
then 0.5. The average bit storage density can, however, be
improved by a factor of 7.6 for high noise, high disparity data
sets. The overall improvement in storage density is dependent
on the relative frequency of the different sequences.

VI. CONCLUSIONS

A circuit architecture is presented which supports arith-
metic encoding of data within memristive data cells. Novel
read and write circuits are described that support fine grain
control and detection of the memristor device resistance. The

TABLE 11
AVERAGE BIT DENSITY VS Viin
Disparity [ 100 mV [ 50 mV [ 10mV | TmV

0 1 2 4 7
0.1 1 1.7309 | 4.0015 | 7.4546
0.2 1 1.9029 | 4.0855 | 7.6279
0.3 1.344 2.0048 | 4.2803 | 7.7496
0.4 1.4055 2.2359 | 4.6454 | 8.2768
0.5 1.742 2.0182 | 4.8872 | 8.8869
0.6 1.8945 2.4858 | 4.7909 | 9.7958
0.7 2.6363 3.1652 | 6.0143 | 11.483
0.8 3.8793 4.6234 | 8.3456 | 14.622
0.9 7.6021 9.0552 | 11.498 | 19.867

application of the encoding procedure exhibits storage density
improvements of 7.6x for a specific data set. Future studies
will determine the effect of the relative frequency of various
data sets with differing disparity on the storage density.
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