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Abstract - Clock distribution networks synchronize the flow of data
signals between data paths, and the design of these networks can
dramatically affect system wide performance and reliability. Signifl-
cant attention to this research area exists within both the mdustrial and
academic communities, and a diverse spectrum of results have been
developed. The fleld of clock distribution design can be grouped into 2
number of sub-topics. Specifically, 1) circuit and layout techniques for
structured custom VLSI systems, 2) the automated synthess of clock
distribution networks with application to automated placement and
routing of gatearrays, standard cells, and larger block-oriented circults,
3) the analysis and modeling of the timing characteristics of clock
distribution networks, and 4) the specification of the optimal timing
characteristics of clock distribution networks based on architectural
and functional performance requirements. Each of these aress are
described and summarized and future trends discussed.

1. INTRODUCTION
Inasynchronous digital system, the global clock signal is used to define
a relative time reference for the movement of data within that system.
Because this function is vital to the operation of a synchronous system, much
attention has been given to the characteristics of these clock signals and the
networks used in their distribution. Most synchronous digital systems consist
of cascaded banks of sequential registers with combinatorial logic between
each set of registers. The functional requirements of the digital system are
satisfied by the Jogic stages, while the global performance and local timing
requirements are satisfied by the careful insertion of pipeline registers into
equally spaced time windows to satisfy critical worst case timing constraints
and by the proper design of the clock distribution network to satisfy critical
timing requirements as well as o ensure that no race conditions exist [1-16].
Each data signal typically is stored in a laiched state within a bistable
register awaiting the incoming clock signal, which defines when the data
should leave the register. Once the enabling clock signal reaches the register,
the data signal leaves the bistable register and propagates through the
combinatorial network, and for a properly working system, enters thenext
register and is fully latched into that register before the next clock signal
appears. The delay components that make up a general synchronous system
are composed of the following three individual subsystems [17, 18]: 1) the
memory storage elements, 2) the logic elements, and 3) the clocking circuitry
and distribution, This paper provides an overview of the research which
describes the interplay among these three subsystems; particularly, how the
timing characteristics of thememory and logic elements constrain thedesign
and synthesis of clock distribution networks.
A schematic of a generalized synchronized data path is presented in
Fig. 1, where C, and C, represent the clock signals driving the initial register
and the final register, respectively, and both originate from the same clock
signal source. The clock delay of the initial clock signal T, and the final clock
signaqudeﬁmﬂ\eﬁ:mmfmwhmdleMsigmkbeginmleaveM
respective registers. These clock signals originate from a clock distribution
network which is designed to generate a specific clock signal waveform
which synchronizes each register. The difference in delay between two
sequentially adjacentclock paths, as shownin(1), is theclock skew T, .
If the clock signals C, and C, are in complete synchronism (i.e., the clock
signals arrive at their respective registers at exactly the same time), the clock
skew is zero.
T =Ty-T, Q)
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It is important to note that the temporal skew between the delay of different
clock signals is only relevant to sequentially adjacent registers makingup a
single data path, as showniin Fig. 1. Thus, system-wide (or chip-wide) clock
skew between non-sequentially cormected registers has no effect on the
performance and reliability of the synchronous system.
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Fig. 1. Timing Diagram of Clocked Data Path
The minimum allowable clock period T, between two registers

in a sequential data path is given by
T (min)>T, +T. @
where c 7 sew
T,=T,+ T +T+ T, » 3)

and the total path delay of adatapath7,, is the sum of the time required
fortl'cdalatobavemeiniﬁalregistamced\eclocksigna]C..urives,T .
the time necessary to propagate ﬂnoughﬂlelogicandinmaanh.‘+
T, and the time required to successfully propagate to and latch within the
ﬁnalregisterofﬂndatapaﬂl.TM.'l'hem of the delay components in (3)
mustsatisfy thetiming constramt of (2) in order to attain the clock period
T, (min). Note that in (1), the clock skew T, can be positive or negative
depending on whether C, leads or lags C, respectively. The waveforms in
Fig. 1 show the timing requirement of (2) being barely satisfied.

Il. TIMING CONSTRAINTS DUE TO CLOCK SKEW
The magnitude and polarity of the clock skew can have a significant
effect on system performance and reliability. Depending upon whether C,
leadsmlagsC,mduponﬂwmagnimdeofT“_wiﬂnspealoTn,system
performance and reliability can either be degraded or enhanced. cases
are discussed below:

A. Maximum Data Path/Clock Skew Constraint Relationship

For a design to meet its specified timing requirements, the greatest
collective propagation delay of any datapath between a pair of dataregisters,
R,and R, being synchronized by a clock distribution network mustbe less
than the minimum clock period (the inverse of the maximum clock fre-
quency) of the circuitas shownin (2) [5-7,10,12,13,15,16,19]. If the time
of arrival of the clock signal atﬂleﬁna]registerofadalapalth leads that
of the time of arrival of the clock signal at the initial register of the same
sequential datapath T, (see Fig. 2A), the clock skew is referred 1o as posltive
clock skew and, under this condition, the maximum attainable operating
frequency is decreased. Positive clock skew is the additional amount of time
which must be added to the minimum clock period to reliably apply a new
clock signal at the final register, where reliable operation implies that the
system will function correctly at low as well as at high frequencies.

In the positive clock skew case, the clock signal arrives at R, before it
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reachesR,. From (2) and (3), the maximum permissible positive clock skew
can be expressed as (5-7,10,12,13,15,16,19]

TMSTG-(TW+TM*+T.'+TS‘_I') forTa>Tq. )

This situation is the typical critical path timing analysis requirement

commonly seen in most high performance synchronous digital systems. In

circuits where positive clock skew is significant and (4) is not satisfied, the

clock and data signals should be run in the same direction, thereby forcing C,

1o lag C, and making the clock skew negative.
| I

A: Posltive Clock Skew

B: Negative Clock Skew
Fig. 2. Clock Timing Diagrams

B. Minimum Data Path/Clock Skew Constraint Relationship

If theclock signal arrives at R, before it reaches R (see Fig. 2B),
the clock skew is defined as being negative clock skew. Negative clock
skew can be used to improve the maximum performance of a synchronous
system by decreasing the delay of a critical path; however, a potential
minimurn constraint can occur, creating a race condition [12,15,16,20-23].
In this case, when C, lags C, the clock skew must be less than the time
required for the data 1o leave the initial register, propagate through the
intercormect and combinatorial logic, and set-up in the final register (see Fig.
1). If this condition is not met before the data stored in register R, can be
shified out of R, it is overwritten by the data that had been stored in register
R, and has propagated through the combinatorial Jogic. Correct operation
requires that R, latches data which correspond to the data R, latched during
the previous clock period. This constraint on clock skew is

Mot STy =T gt Ty ¥ T+ Ty JrTy>Ty. ()

An important example in which this minimum constraint can
occur is in those designs which use cascaded registers, suchas a serial shift
register or ak-bit counter. In cascaded register circuits, Tb‘,‘ iszero and T,
approaches zero (since cascaded registers are typically designed, at the
geometric level, to abut). If Tq> T, (ie., negative clock skew), then the
minimum constraint becomes

[I'M/STCQ+TM,

and all that is necessary for the system to malfunction is a poor relative
placement of the flip flops or a highly resistive connection between C, and
C, In a circuit configuration such as a shift register or counter, where
negative clock skew is a more serious problem than positive clock skew,
provision should be made to force C, tolead C..

As higher levels of integration are achieved, on-chip testability
becomes necessary. Dataregisters, configured in the form of serial set/scan
chains when operating in the test mode, are a common example of a built-in
test design technique. The placement of these circuits is typically optimized
around the functional flow of the data. When the system is reconfigured to
use the registers in the role of the set/scan function, different path delays are
possible. Inparticular, the clock skew of the local datapath can be negative
and greater in magnitude than the local register delays. Therefore, with

for Ty >T,, 6)

increased negative clock skew, (6)may not be satisfied and the incorrect
data will larch into the final register of the reconfigured local data path.

Also, in ideal scaling of MOS devices, all linear
dimensions and voltages are multiplied by the factor 1/S, where S > 1.
Device dependent delays, such as T, T, ., and T scale as 1/S
while interconnect dominated delays such as T, remain constant to
first order, and if fringing capacitance is considered, actually increase
with decreasing dimensions. Therefore, when examining dimensional
scaling, (5) and (6) should be considered carefully.

C. Enhancing Synchronous Performance ing Negative
Enhar Skefvm T by Applying Neg

Negative clock skew can be used to improve synchronous
performance by minimizing the delay of the critical worst case data paths
[16-18,21,23]. By forcing C, to lead C, ateachcritical local datapath, excess
time is shifted from the neighboring less critical local datapaths to the critical
Jocaldata paths. This negative clock skew represents the additional amount
of time that the data signal at R, has to propagate through the logic stages and
interconmect sections and into the final register. Negative clock skew
subtracts from the logic path delay, thereby decreasing the minimum clock
period. This, in effect, increases the total time that a given critical data path
has to accomplish its functional requirements by giving the data signal
released from R, more time to propagate through the logic and interconnect
stages andlarch intoR . Thus, the differences in delay between eachlocal data
path is minimized, thereby compensating for any nefficient partitioning of
the global data path into local data paths, which often occurs in many
practical systems.

The maximum permissible negative clock skew of a data path,
however, is dependent upon the clock period itself as well as the time delay
of the previous data paths. This results from the structure of the serially
cascaded local data paths making up the global data path. Since a particular
clock signal synchronizes a register which functions in a dual role, as the
initial register of the next local data path and as the final register of the
previous data path, the earlier C, is for a given data path, the earlier that same
clock signal, now C,, is for the previous data path. Thus, the use of negative
clock skew in the is path results in a positive clock skew for the preceding
path, which may then establish the new upper limit for the system clock
frequency. It should be emphasized that in[12,15], Hatamian designates the
lead/lag clock skew polarity (positive/negative clock skew) notation as the
oppositeofthatused here. Furthermore, differenttermshave been used in the
literature to describe negative clock skew, such as “double-clocking” [16],
“deskewing data pulses™ [20], “‘cycle stealing™ [22,23], “useful clock skew”
[24), and “‘prescribed skew” [25].

[1. CLOCK DISTRIBUTION DESIGN OF STRUCTURED
CusTOM VLSI CIRCUITS

Many different approaches, from ad hoc to algorithmic, have
been developed for designing clock distribution networks in VLSI circuits.
These approaches range from symmetric H-tree distribution networks [8,24]
1o ensure zero clock skew to compensation techniques which minimize the
variation of interconnect impedances and capacitive loads between clock
signal paths [6,7,20,26-28] by adding passive delay elements, sizing
transistors W/L ratios in the distributed buffers, or by other means. A number
of specificexamplesof clock distribution circuits are discussedin the literature
[1,6,12,28-30]. Ineach of these clock distribution networks, significant effort
has been placed on accurately estimating the magnitude of the resistive and
capacitive intercormect impedances to determine their effect on the shape of
theclock pulse waveform. This information is typically back annotated into
a SPICE-like circuit simulator to adjust the clock delays for minimum clock
skew. Minimal work exists, however, indeveloping physical models which
mergedistributed RC interconnectdelay models with distributed buffer delay
models in order to estimate clock skews. The difficulty is that the accuracy
required in calculating delay differences is much greater than that required
when calculating absolute delay values.

Furthermore, in addition to the design of these networks, these
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circuits must also be tested. Deol [31] describes a functional test system for
specifically evaluating the time differences in clock distribution networks.

IV. AUTOMATED SYNTHESIS AND LAYOUT OF CLOCK
DISTRIBUTION NETWORKS

Different have been taken in the asutomated
synthesis and layout of clock distribution networks, ranging from procedural
behavioral synthesis of pipelined registers [32-34] io the sutomated layoutof
clock distribution nets in gate arrays and standard cells [35-46). In the area
of automated layout, two research paths have been initially taken, though
with time these approaches should converge. One path is oriented to the
support of commercial semiconductor foundries and their design tools [35-
37,40,46), in which a variety of approaches are in use. These are ariented
around increasing the prioritization of clock signal nets over data signal nets
and connectingthese clocknets topreviously placed distributedlocal buffers.
These buffers are used for amplifying the clock signals as these signals
traverse long interconnect sections. Empirical delay models coupled with
back annotation are typically used to model the clock path delays, and either
theclock skews are estimated for inclusion intiming analysis, or the clock peths
arecompensated for, ﬁuebyfum)gﬂncbekhwbmeghgiblenu@mﬂe.

A second research path has been the development of
which carefully control the variations in delay between clock signal net
length so as to minimize clock skew [38,39,41-45). These results tend to use
simplified delay models, such as linear delay, where the delay is linearly
related to the path length, or the Elmore delay, where the delay along a path
is the summation of the individual resistive and capecitive distributed
interconmect impedances. The fundamental difficulty with both of these
delay models, however, is the inability of these models to
consider the effects of active devices, such as distributed buffers, when
estimating delay as well as more subtle considerations such as bias dependent
loading and varying - waveform shapes. Focus has been placed on
minimizing total wirelength, metal-to-metal contacts and crossovers, as well
as system-wide clock skew.

Localized clock distribution [33] has not as yet been considered
in automated layout or physical synthesis. However, early work in applying
loealcbcksbwbbdnviwdsynﬁmnsdeaaibede&%] In these
papers, the delay equations alocal data path, (2) and (3), are
used to incorporate the effects of local clock distribution delays on retiming
by assuming regions of similar clock delay. Thus, as registers are moved
from one region to another during the retiming process, the displaced
registers assume the clock delay of the new physical region. This permits
clock skews to be determined locally at each iteration of the retiming
process.

V. ANALYSIS AND MODELING OF THE TIMING
CHARACTERISTICS OF CLOCK DISTRIBUTION NETWORKS

This research area has taken a number of disparate paths, all of
which have in common the attributes of modeling the general characteristics
of clock distribution networks. For example, Shoji [47] describes a method
for minimizing clock skew induced by variances in process parameters. N-
channel and P-channel parameters tend not to track each other as a process
varies. Furthermore, the response times of these devices tend to move in
opposite directions. Shoji quantitatively describes how the delay of the P-
channel and N-charmel transistors within the distributed buffers of the clock
distribution network should be individually matched to ensure that as the
Pprocess varies, the path delay between different clock paths track each other.
Kugelmass and Steiglitz [48,49] describe a statistical approach for estimating
clock skew. They provide upper bounds on clock skew assuming aGuassian
distributed clock delay with a variance proportional to the wire length. This
approach o estimating clock skew is quite different from classical
throughout the literature.

An important research area in VLSI circuits is timing analysis,
where simplified RC models are used to estimate the delay through CMOS
circuits. In these systems, clock characteristics are provided to a timing

analyzer todefine application specific temporal constraints, suchas minimum
clockperiods orhold times, on the functional timing of a specific synchronous
system [50]. In[22,23], Tsay and Lin continue this approach by describing
an innovative timing analyzer which considers negative clock skew, i.e., time
is“stolen” from adjacent data paths to increase system performance. In [51],
Dagenais and Rumin describe a timing analysis system which generates
important clocking parameters fromacircuitdescriptionof the system, suchas
minimum clockperiods and hold times. This approach is useful for top-down
design when performing exploratory estimation of system performance.

VL SPECIFICATION OF THE OPTIMAL TIMING CHARACTERISTICS
OF CLOCK DISTRIBUTION NETWORKS

Before the design of a clock distribution network can commence,
certain timing constraints and goals must be specified. These timing traits are
typically application specific and depend greatly on the architectural and
circuit tradeoffs of a given system implementation. A number of papers exist
whichconsider different aspectsof these architectural tradeoffs. Forexample,
Friedman and Mulligan [17,18] describe the tradeoff between latency and
clock frequency when pipelining a synchronous digital system. They
level of pipelining. Fishbum [16] describes a linear program for choosing
the optimal clock delays, thereby providing information which defines
localized positive and negative clock skew. Fishburn focuses on minimizing
the clock period while avoiding *“clock hazards,” i.e., race conditions. Many
pepers [2,3,5-7,12,15,19,21,33] provide similar kinds of timing constraint
equations as discussed in section II of this paper.

Sakallah ef al. [52] followed by Szymanski [53] analyze the
optimal clocking of synchronous circuits using linear programming tech-
niques. Each group utilizes timing constraint relationships to generate clock
schedules for improving the performance of synchronous systems.

VII. DIRECTIONS FOR FUTURE RESEARCH IN THE DESIGN
OF CLOCK DISTRIBUTION NETWORKS

Significant research still remains in the design of clock
distribution networks. Much of it is currently focused on automating the
synthesis of clock distribution networks t support higher performance
requirements. Thus, the optimal placement of localized distributed buffers,
improved delay models which account for non-linear active transistor
behavior, the use of negative clock skew to increase circuit speed, and
integrated RC interconmect-buffer physical delay models, must be considered
in the automated design and layout of clock distribution networks. The effects
of clock skew, both positive and negative, must also be integrated into
behavioral and RC timing analyzers so as to detect race conditions as well
as satisfy performance constraints. Furthermore, synchronous timing con-
straints must be integrated into high level behavioral synthesis algorithms,
thereby improving their accuracy and generality.

VIII. SUMMARY AND CONCLUSIONS

It is often cited that the design of the clock distribution network
represents the fundamental circuit limitation to performance in high speed
synchronous digital systems. The difficulty in the design of these networks
is one of the primary reasons for the recent emphasis placed on asynchronous
systems. Clearly, however, synchronous systems will be commonplace for
a long time to come, necessitating improved techniques for designing and
implementing high speed and reliable clock distribution networks. Further-
more, as tighter control of the clocking parameters improves, approaches
such as negative clock skew will be applied to the design of clock distribution
networks to further enhance system performance.

A singular commentary on the current immaturity of the
research area of clock distribution design is the complete lack of an agreed
upon terminology and notation defining the primary concepts and terms.
Thisis evidenced by the large variety of terms used to describe such issues
as (using the notation defined in this paper) race conditions, negative clock
skew, and T,

In summary, all electronic systems are fundamentally asynchro-
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nous in nature; by the careful insertion of precise localized timing relationships
and storage elements, an asynchronous system can be adapted to appear o
behave synchronously. This permits the use of clock frequency as ameasure
of how often new data appear at the output of a system, the key
performance metric in synchronous systems. As long as specific local
timing and functional relationships are satisfied, synchronous systems canbe
used, easing the timing constraints on data flow, albeit requiring a clock
distribution network o provide the synchronizing reference signal.
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