Monotonicity Constraints on Path Delays for Efficient Retiming

with Localized Clock Skew and Variable Register Delay
Tolga Soyata, Eby G. Friedman, and J. H. Mulligan, Jr.”

University of Rochester
Department of Electrical Engineering
Rochester, New York 14627

Abstract

Clock skew and delay characteristics associated with
practical registers are significant factors affecting the re-
timing of synchronous circuits. Although work recently re-
ported using branch and bound techniques offers a means
for effective retiming taking these factors into account, the
computational complexity involved is substantially greater
than that associated with less general retiming algorithms
that use standard linear programming methods. This pa-
per presents sufficient conditions among values of localized
clock skew and register characteristics which permit the re-
timing process to be achieved with a considerable reduction
in computational complexity. The application of these con-
ditions to some practical synchronous circuits is illustrated.

1 Introduction

Retiming is a technique used to increase the clock fre-
quency of a synchronous digital pipelined system [1-8].
The locations of the registers are chosen so as to minimize
the clock period while preserving the system function and
latency. Although retiming can achieve a lower clock pe-
riod, existing retiming algorithms do not incorporate prac-
tical circuit issues, such as variable register delay, clock
skew, and interconnect delay. In an actual integrated cir-
cuit, each register receives a clock signal with a delay. The
differences between the delays of the clock signals at a pair
of sequentially-adjacent registers is the clock skew. These
clock skews may create paths with net negative path delays,
creating race conditions. By incorporating localized clock
skew into retiming, a more accurate and reliable estimation
of the register locations can be determined.

The authors of this paper introduced the concept of
integrating these timing characteristics into the retiming
process [3-5]. In that work, retiming is predicated on
solving a set of nonlinear inequalities consisting of multiple
choices. Although that retiming algorithm [3-5] permits the
synthesis of synchronous circuits that are more accurate
and reliable by including clock distribution, interconnect,
and register delays, the computational requirements can be
substantial when applied to large VLSI circuits.

In this paper, it is shown that by placing certain con-
straints on the path delays in a synchronous circuit, the
multiple choice nonlinear inequalities can be eliminated,
permitting the retiming problem with restricted path delays

This research is based upon work supported by the National Science
Foundation under Grant No. MIP-9208165.

0-7803-2570-2/95 $4.00 ©1995 IEEE

*University of California
Department of Electrical and Computer Engineering
Irvine, California 92717

to be converted into a standard linear programming prob-
lem. Therefore, commonly used techniques for solving the
linear programming problem, such as Bellman-Ford [9], can
be applied to solve this set of inequalities, thereby requiring
significantly less computational time. Furthermore, these
restrictions on the path delays can be satisfied by changing
the clock distribution network rather than the data path and
in a way that minimally affects the overall system.

The paper is organized as follows. The path delay
constraints are provided in Section 2. The feasibility of
these constraints to practical circuits is discussed in Section
3. Experimental results comparing the run time of the
constrained path delay with the unconstrained path delays
are provided in Section 4. Finally, some conclusions are
drawn in Section 5.

2 Path Delay Monotonicity Constraints

As described in [3-5], in order to integrate clock dis-
tribution, interconnect, and register delays into the re-
timing process, Register Electrical Characteristics (RECs)
are attached to the edges of the graph representation
of the synchronous circuit. Each REC takes the form
Tep ZTSet—up/TC-—»Q —_ Tjnﬂ/ijz. Tep is the clock
delay from the global clock source to each register, Tge¢—up
is the time required for the data at the input of a register to
latch, T, is the time required for the data to appear at
the output of the register upon arrival of the clock signal,
and 77,41 and Try¢o are the interconnect delay before and
after the register along an edge.

The algorithm RETSAM [5], based on branch and bound
techniques, is capable of including arbitrary register prop-
erties and arbitrary clock delays. In the event, however,
that the design freedom permits the simultaneous consider-
ation of the REC delay values and localized clock skews
as part of an integrated retiming-clock distribution network
design process, then, assuming certain conditions can be
satisfied, the increased accuracy of the retiming process can
be maintained with a substantial reduction in computational
complexity. In this section, the conditions to be applied to
the REC values and the localized clock skews to achieve a
computationally efficient retiming are introduced.

The path delay Tpp (4, §) of the path e; ~ ¢; is

TPD (l»j) = TC-—»Q(Z.) -+ Tlntz(i) + TLogiC(ixj) +

. . . €]
TIntl(J) + TSet—up(]) + TSkew(Z,J)v

1748

where T ogic (1, j) is the total logic delay between edges e;
and e;, including the interconnect delay of the zero weight
edges along the path e; ~» e;. The clock skew Tisgew
between two sequentially-adjacent e; and e; is defined as

TSkew(irj) - TCDG) —T¢cp (.7) 2

If Tep(j) > Tep(d), the clock skew between registers
¢ and j is defined as being negative. Negative clock skew -
occurs if the initial clock signal leads the final clock signal
of a local data path. If Top(j) < Tep(i), the clock skew
between registers ¢ and j is positive. Positive clock skew
occurs if the initial clock signal lags the final clock signal of
a local data path. In the case that Top(7) equals Tep(2),
the clock skew is zero.

Positive clock skew increases the path delay of a local
data path, potentially making its local data path a critical
path, whereas negative clock skew may improve circuit
speed in critical paths [10-12], however, it may also create
negative path delays, resulting in race conditions. Race
conditions are caused by clocking a register before the
relevant data is successfully latched. A race condition
occurs if the skew is negative and greater in magnitude
than the total local data path delay [10-13]. Those paths
with negative delay are called short paths [13]. Similarly,
a long path designates those paths with a delay greater than
the desired clock period of the circuit.

In practical integrated circuits, variations in clock de-
lay between widely separated registers may create clock
skews which can drastically affect circuit operation. An
observation of (1) is that arbitrary clock skews (i.e., neg-
ative clock skews) and register delays may cause longer
data paths (paths with more edges and vertices) to have
less delay than shorter data paths (paths with less edges
and vertices). Therefore, unless constraints are placed on
the possible clock delays, the data path delays are arbitrary
and can quite possibly be negative. Thus, a sub-path p;
of a longer path p (composed of added edges and vertices)
may have a delay greater than path p. An example graph in
which this occurs is depicted in Figure 1. In this graph, the
sub-path p; has a delay greater than path p. The primary
cause is due to the effect of negative clock skew or to the
delay of the newly placed register being smaller than the
delay of the original register, effectively subtracting delay
from the local data path p. The sub-path p; will therefore
have greater delay (or the longer path p will have less de-
lay). In the specific example shown in Figure 1, sub-path
p1 is 1 time unit (tu) greater than path p. This 1 tu differ-
ence results from the negative clock skew between edges
e and eq, ie., T_gkew(el,(ig) =3-8=-5tu

When a sub-path of a larger path has a greater delay,
there are three choices for removing that path:

v v v v,
! 3:1/4-172 2 8:1/2-1/3 3 20:3/2-2/1

3 } 4 } 3
e1 eZ e}

’ h

6w 2t
Nv/
Siu

Figure 1: An example graph in which the sub-path p; has a delay greater
than its original path p due to negative clock skew between registers.

1. Place a register between the initial and the terminal
edges, since a shorter path may have a smaller delay
(or a short path may have a larger delay).

2. Remove the initial edge so that the path becomes
longer (more edges and vertices). This longer path
may have a smaller delay.

3. Remove the terminal edge so that the path becomes

longer. This longer path may have a smaller delay.

Conditions 2 and 3 are required since the data path delays
are completely arbitrary and any of these conditions may
possibly remove the undesirable path. Due to these three
inequalities that are considered, the retiming problem with
arbitrary clock and variable register delays requires solving
a set of inequalities in the form of

T —xj =aj;orxp — & < bjjor oy — 2y <50 (3)

Since these three conditions are used in RETSAM, standard
linear programming techniques are not possible due to the
boolean or operation [5], thereby resulting in the multiple-
choice inequalities shown in (3).

A strategy to improve the time efficiency of the retiming
algorithm is to place certain temporal constraints on the
clock delays to guarantee that a sub-path p; of a larger
path p will always have a larger delay, thereby removing
the aforementioned conditions 2 and 3. By removing these
conditions, the remaining inequalities are linear in the form
of z; — z; < a,;, since no boolean or operation is being
performed, permitting the use of the standard Bellman-Ford
method.

In Figure 2, a path with three registers and two vertices
with delays d(v,) and d(v;) is depicted. For this path con-
sisting of three registers, 7, j, and k, necessary conditions
for monotonically increasing path delays (smaller delays for
sub-paths of larger paths) are

Figure 2: A path p with 3 registers and 2 vertices.

Tep(i, k) 2 Tep (4, §),
Tpp(i, k) > Tpp (4, k).

To provide insight into how these inequalities are created,
consider the graph of Figure 1. In this figure, (4) can be

(4)

1749

used to ensure that the sub-paths p; and p, each have a
delay less than the longer path p. More generally, (4)
ensures that paths e; ~» e; and e; ~ e; each have a delay
less than the longer path e; ~ eg.

Defining Tree(a) and Tree(b) as the total set-up and
clock-to-Q delays of edges a and b, respectively,

Trec(a) = Tset—up(a) + Tc-q(a),

)
TREG(b) = TSet~up(b) + TC—»Q(b)7
the following inequalities are obtained from (1) and (5).
Tep(J, k) 2 TrEG(F),
(3:k) 2 Trwa (i) ©

Tpp(i,j) > TreG(j)-

Assume a path with two edges a and b, and a vertex
between these edges. The following condition is required to
ensure monotonically increasing path delays with increasing
path length,

Tpp(a,b) > max {Trec(a), Trec (D)} @)

Equation (7) sets a lower limit on the delay of a local
data path to ensure that only one inequality is required.
There is also an upper limit that can be defined as

TPD (a) b) S C> (8)

where C' is the maximum permitted clock period of the
circuit. This upper limit is used to guarantee that each local
data path has a delay smaller than the maximum permitted
clock period of the synchronous circuit.

Since Tpp(a,b) depends on the clock delays driving
the initial and final registers of the local data path between
edges e, and e, (7) is a constraint which is imposed on the
clock distribution network. Equation (7) can be expanded
‘into (9), which describes the specific constraint on the
individual clock delays.

TCD(G,)—TCD(b) 2 ;r(a,b), (9)

7(a, b) denotes a constant depending only on the REC pa-
rameters attached to edges a and b. 7(a, b) can be calculated
from (10) and 1s the “negative clock skew tolerance of the
local data path from edge a to edge b.”

7(a,b) = To—q(a) + Trnez2(a) + d(va)+ (10)
Tset—up(b) + Trne1(b) — max {Trec(a), Trec(b)}.
The clock skew of any local data path cannot be more
negative than the clock skew tolerance of that local data
path. An observation of (7) is that strictly positive local

data path delays are sufficient for computationally inex-
pensive retiming. For computational efficiency, retiming is
best performed on a properly designed clock distribution
network in which the negative clock skew of a local data
path does not exceed the maximum tolerance of that path,
as determined by (10). This strategy therefore does not
verify the existence of race conditions but instead assumes
that all race conditions have been eliminated a priori.

If (9) is satisfied, a clock distribution network which per-
mits computationally efficient retiming is possible. Equa-
tions (8) and (9) can be rewritten as

Tep(b) —Tep(a) < 7(a,b), (n

TCD(a) — TCD(b) < T(a, b)
where T(a, b) is the “positive clock skew tolerance of the
local data path e; ~+ ¢;” and can be calculated as

T(a, b) =C - chq(a) - ijz(a)—

12
d(“a) - TSet—up (b) - Tlntl(b)- 12

3 Example of Monotonicity Constraints

An example of the application of these conditions on
the clock delays to a practical circuit is considered in this
section. The digital correlator presented by Leiserson-Saxe
{1] is used as an example circuit. The logic elements on
the vertices vi, vy, v3, and v4 are comparators and are
modeled as XNOR gates with a nominal delay vatue of
3.5 ns. The logic elements on vertices vs, vg, and v; are
full adders with a nominal delay value of 4.0 ns. Typical
register set-up and clock-to-Q times of 4.0 ns and 3.0 ns are
used. Interconnect delays, Tyn:1 and T,¢0, are assumed to
each be 1.4 ns, approximately 20% of the register delays.
Zero clock skew is initially assumed to predict the negative
clock skew tolerance of a path.

For edges eg and ey, the register delays are

Trec(eo) = Treg(e1) = 4.0+ 3.0 = 7.0 ns,
= max {Treg(eo), Trec(e1)} = 7.0 ns.

Assuming T'skew (€0, e1) = 0, the path delays are

Tpp(eo,e1) = To.q(e0) + Trnta(eo) + d(v1) + Trarr(e1) + Tset—up(er)

+Tskew(e0 1) =3+ 1.4 + 3.5+ 1.4 + 4 + Tspenleo, e1) = 13.3 ns.

From (7), Tpp(eo,e1) > max {Trec(eo), Trea(e1)},
which is satisfied, since 13.3 ns > 7.0 ns. These con-
ditions are satisfied for all the other paths in the digital
correlator. Therefore, as long as the clock skew is zero, (7)
is satisfied, and the digital correlator has monotonically in-
creasing path delays throughout the entire circuit. Now, let
Tskew(eo,e1) = Tep(eo) — Tep(er) in the correlator be
negative. Positive clock skew is not considered here since

1750

it does not affect the monotonicity constraint. Applying
negative clock skew, the inequalities become

Tskew(€o,€1) +13.3ns > 7ns = Tgpew > —6.3 ns.

Thus, the negative clock skew tolerance of the local data
path is 6.3 ns. A methodology for designing clock distri-
bution networks based on non-zero localized clock skew
is described in [14]. Algorithms and circuit delay models
are provided for implementing the topology and circuit el-
ements within a clock distribution network such that the
specific monotonicity constraints can be satisfied.

4 Comparison of Computational Complexity

Diverse strategies have been used to design clock dis-
tribution networks which in turn effect the localized clock
skews. To accomodate arbitrarily selected values of local-
ized clock skew in the retiming process with real register
characteristics, retiming approaches, such as RETSAM [5],
seem indicated. The foregoing results, however, indicate
that the use of the monotonicity constraints in (11) enables
the retiming process to use standard linear programming
techniques (OPT?2 in [1]) which require much less compu-
tational time. As an illustration of some differences in the
computation times using the two approaches for specifying
the clock delays, several retiming computations were made.
The structures of the synchronous circuits were taken from
the MCNC benchmark circuits [15] with the same REC
characteristics and are compared in Table 1.

The initial four columns describe the properties of the
modified benchmark circuits. These properties are 1) the
name of the benchmark example as it appears in the MCNC
archive, 2) the number of edges and 3) vertices in the
graph of each circuit, and 4) the latency of the circuit.
The fifth and sixth columns contain the minimum clock
period of the retimed circuit with and without restricted
path delays, respectively. As is shown in Table 1, by using
standard linear programming methods rather than branch
and bound algorithms, the run time of the retiming process
is significantly enhanced.

Table 1: Comparison of the CPU times of the retiming
algorithm with constrained and unconstrained path delays

Graph properties
CPU time using CPU time using

Example Edges Vertices Latency oPT2 (1) RETSAM [5]

(sec) (sec)
LGSynth89 - multi-level (netbiif)
c1 26 19 6 1.423 963.1
cm82a 59 37 4 1919 1164
majority 26 17 5 1.142 507.3
LGSynth91 - multi level (blif)

cm85a 70 36 3 1953 3306
cmlSla 38 2 3 1.447 795.2

5 Conclusions

Path delay monotonicity constraints are presented in this
paper to permit the use of standard linear programming
methods for solving the retiming problem with electrical
delay information, such as localized clock skew and vari-
able register delay. The feasibility of these constraints to
practical circuits is discussed. Noteworthy is the degree to
which the design of the clock distribution network and the
retiming process are inextricably intertwined.

A branch and bound based algorithm for solving the gen-
eral retiming problem which considers electrical informa-
tion has been demonstrated on MCNC benchmark circuits
and compared with standard linear programming methods
to solve the retiming problem for circuits with constrained
path delays. It is observed that by constraining the path
delays, run times are significantly improved by up to three
orders of magnitude for the tested circuits belonging to the
MCNC benchmark set. The improvement in computational
efficiency increases with increasing circuit size.

References

[1] C. E. Leiserson and J. B. Saxe, “Retiming Synchronous Circuitry,”
Algorithmica, Vol. 6, pp. 5-35, January 1991.

[2] G. De Micheli, “Synchronous Logic Synthesis: Algorithms for Cycle-
Time Minimization,” IEEE Transactions on Computer-Aided Design,
Vol. CAD-10, No. 1, pp. 63-73, January 1991.

[3] T. Soyata, E. G. Friedman, and J. H. Mulligan, Jr., “Integration
of Clock Skew and Register Delays into a Retiming Algorithm,”
Proceedings of the IEEE International Symposium on Circuits and
Systems, pp. 1483-1486, May 1993.

[4] T. Soyata and E. G. Friedman, “Synchronous Performance and
Reliability Improvement in Pipelined ASICs,” Proceedings of the
ASIC Conference, pp. 383-390, September 1994,

[5] T. Soyata and E. G. Friedman, “Retiming with Non-Zero Clock
Skew, Variable Register, and Interconnect Delay,” Proceedings of
the IEEE International Conference on Computer-Aided Design,
November 1994.

[6] B.Lockyear and C. Ebeling, “The Practical Application of Retiming
to the Design of High-Performance Systems,” Proceedings of the
IEEE International Conference on Computer-Aided Design, pp. 288
295, November 1993.

[7]1 B. Lockyear and C. Ebeling, “Optimal Retiming of Level-Clocked
Circuits Using Symmetric Clock Schedules,” IEEE Transactions on
Cogmputer-Aided Design, Vol. 13, No. 9, pp. 1097-1109, September
1994.

[8] S. Simon, E. Bernard, M. Sauer, and J. A. Nossek, “A New Retiming
Algorithm for Circuit Design,” Proceedings of the IEEE International
Symposium on Circuits and Systems, pp. 4.35-4.38, May/June 1994.

[9] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to
Algorithms. McGraw-Hill, 1990.

[10] J. P. Fishburn, “Clock Skew Optimization,” IEEE Transactions on
Computers, Vol. C-39, No. 7, pp. 945-951, July 1990.

[11] E. G. Friedman, “The Application of Localized Clock Distribution
Design to Improving the Performance of Retimed Sequential Cir-
cuits,” Proceedings of the IEEE Asia-Pacific Conference on Circuits
and Systems, pp. 12-17, December 1992.

[12] E. G. Friedman, “Clock Distribution Design in VLSI Circuits — an
Overview,” Proceedings of the IEEE International Symposium on
Circuits and Systems, pp. 1475-1478, May 1993.

[13] K. A. Sakallah, T. N. Mudge, T. M. Burks, and E. S. Davidson,
“Synchronization of Pipelines,” IEEE Transactions on Computer-
Aided Design, Vol. CAD-12, No. 8, pp. 1132-1146, August 1993.

[14] 1. L. Neves and E. G. Friedman, “Synthesizing Distributed Buffer
Clock Trees for High Performance ASICs,” Proceedings of the IEEE
ASIC Conference, pp. 126-129, September 1994.

[15] S. Yang, “Logic Synthesis and Optimization Benchmarks User Guide:
Version 3.0,” Tech. Rep., Microelectronics Center of North Carolina.
January 1991.

1751

