LARGE SCALE CLOCK SKEW SCHEDULING TECHNIQUES FOR IMPROVED
RELIABILITY OF DIGITAL SYNCHRONOUS VLSI CIRCUITS

Roy Mader,! Eby G. Friedman,? Ami Litman,® and Ivan S. Kourtev!

1 Department of Electrical Engineering
University of Pittsburgh
Pittsburgh, Pennsylvania 15261
rjmst56@pitt.edu, ivan@ee.pitt.edu

Abstract—This paper compares several methods for determining
an optimal non-zero clock skew schedule for synchronous digi-
tal VLSI circuits. The optimality of a given clock skew schedule
which satisfies the circuit timing constraints is defined from the
perspective of circuit timing reliability. This optimality is charac-
terized by the deviation of the computed clock schedule from an
‘ideal’ objective clock schedule. Both linear and quadratic pro-
gramming (LP and QP) formulations of the clock skew scheduling
problem are analyzed and a novel LP formulation is introduced.
These formulations are compared using the ISCAS’89 suite of
benchmark circuits. Mathematical optimization results are calcu-
lated using the large scale optimization package Lancelot.

1. INTRODUCTION

The work presented in this paper focuses on increasing the
timing reliability of synchronous VLSI circuits by deter-
mining a feasible non-zero clock skew schedule. One such
ideal non-zero clock skew schedule may be chosen by not-
ing that there is an interval of feasible skew values—called
the permissible range—for each data path [1]. The bound-
aries of a permissible range are determined by circuit struc-
ture but are affected because of process parameter variations
and operating conditions such as temperature and supply
voltage. The ideal clock skew schedule for reliability is
considered to be the one in which the clock skew for a lo-
cal data path is at the middle of the permissible range for
this specific data path. Since the circuit timing constraints
depend on the circuit topology, however, this ideal schedule
is unlikely to also be feasible (that is, to satisfy all timing
constraints). Various linear programming (LP) or quadratic
programming (QP) formulations may be used to find a fea-
sible non-zero clock skew schedule which is as close as pos-
sible to the ideal (and likely unfeasible) schedule.

This paper starts by presenting background information
in Section 2 to highlight the relevant timing properties of
synchronous circuits and the graph model used to repre-
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sent these circuits. Following in Section 3 are descriptions
of the mathematical formulations to be compared including
the formal definitions of the LP and QP problems in Sec-
tion 3.1 and Section 3.2, respectively. The C++ software im-
plementation and analytic results from the ISCAS’89 suite
of benchmark circuits are presented in Section 4. This paper
concludes with some final remarks in Section 5.

2. BACKGROUND

Background information is presented in this section by de-
scribing the timing properties of fully synchronous digital
systems and the model used to represent these systems in
Section 2.1 and 2.2, respectively.

2.1. Timing properties of a synchronous system

The properties of fully synchronous systems are well known
and a detailed description can be found in [2,3]. An exam-
ple of a local data path [2, 3] (a sequentially-adjacent pair
of registers) delimited by the registers R; and R¢ is shown in
Figure 1. Such local data paths are characterized by a min-
imum and a maximum signal propagation delay from @; to
Dy. The clock signals C; and C; are delivered to R; and Ry
with delays ¢}, and t,, respectively, whereas the algebraic
difference, s; ; = ti; — tf, is known as the clock skew [2—
4]. Note that the clock skew s; ; as defined above may be
negative, zero, or positive [2—4].

Register R; Register R¢
D; Qi Dy Qy
—>— D > . »>- D
Data In @ Data Logic Data @ Data Out
C C
A
Clock C;t Clock C;t

Fig. 1. A local data path

The exact temporal relationships among the C, D, and
@ signals in a local data path depend on many factors, in-
cluding the particular types of registers employed (an in-
depth treatment may be found in [2,3,5]). In the majority
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of cases, however, these timing relationships may be trans-
lated into an interval of values which the clock skew may
assume [3,4]. A permissible range [1] is associated with
each local data path—a clock skew schedule is feasible if
each local clock skew is within the path specific permissible
range. Note that under certain conditions [2], the permissi-
ble range of each local data path is guaranteed to include the
zero clock skew value. Thus, most synchronous circuits are
designed to satisfy global zero clock skew.

2.2. Circuit model

The work described in this paper is based upon a connected
undirected graph [2] model of a synchronous circuit. A
graph is constructed from a circuit in a natural way by adding
a vertex for each register and a properly labeled edge for
each local data path. Multiple edges between vertices are
easily eliminated by using the graph transformations de-
scribed in [2,3]. A simple example of the graph G of a
circuit with r = § registers and p = 6 local data paths is
shown in Figure 2—note the permissible range [/, u] labeled
on each edge. Each edge is also labeled with an arrow indi-
cating the direction of signal propagation from the initial to
the final register of the corresponding local data path [6].

[l1, )

ey —
o [l3,u3] o) [l4, uq) - (ls, us) -
ez — e —

Fig. 2. A circuit graph—edges from the spanning tree are
thicker.

3. THE CLOCK SKEW SCHEDULING PROBLEM

Two distinct approaches to the mathematical problem of
clock skew scheduling are presented in this section. The
clock period T, of the circuit is not minimized in either
approach. Rather, a feasible clock skew schedule is com-
puted that maximizes the circuit timing reliability accord-
ing to a previously specified reliability criteria. Linear and
quadratic programming formulations are described in Sec-
tions 3.1 and 3.2, respectively.

3.1. Linear Programming Models

The LP formulation of the clock skew scheduling algorithm
addresses the problem of determining a clock skew schedule
that maximizes the circuits reliability for a specified target

clock period Tp. Recall that for each local data path 4, the
lower and upper bounds of the permissible range are I; and
u;, respectively, and the clock skew s;, ; must satisfy [2] the
inequality:

l; <855 S uy. 4y

Fishburn first demonstrated in [4] how to define an op-
timization problem to determine a clock skew schedule that
improves the circuit timing reliability. In [4], a minimum
safety factor M—the closest distance between a clock skew
and the ends of the corresponding permissible range—is
maximized. In other words, the minimum amount of slack
(that is, the amount by which an inequality exceeds the limit),
is maximized over all local data paths in a circuit. Formally,
this problem is defined as Problem LP1:

Problem LP1

max M

8ij S;Tkua-ligAl-ﬂl
§ij 2> —D‘,&m +M

M >0.

subject to:

2

Note that in Eq. (2) above D', and D, are the mini-
mum and maximum signal propagation delays along the lo-
cal data path from R; to R;, respectively, while D3 + M
and Tep — f)'jé v — M are the lower and upper bounds of
the permissible range for the clock skew s; ; between R; and
R;.

An alternative linear programming formulation is pro-
posed in this paper. In the following Problem LPZ2a, rather
than maximizing the slack of the inequality (1) the objec-
tive is to minimize the maximum ‘deviation’ from the ideal
clock skew over all local data paths:

Problem LP2a

min M
subject to: 8i; <Tcp — ﬁ;’iM
si; > —DY,
|8i,5 — 94,51 < M,

€)

Note that g;; in Eq. (3) is the ‘ideal’ objective value of the
clock skew for the local data path between R; and R;. Also,
note that g;; may have any desired value (within the permis-
sible range) which satisfies certain design criteria. For the
purpose of this work, however, the value of g;; is chosen
to be the middle of the permissible range (I + u)/2. Fur-
thermore, the absolute value function in Eq. (3) cannot be
easily handled by the LP solver and is replaced with two
inequalities as follows:
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Problem LP2b

min M
subjectto: 8;; < Tcp — ﬁ;g‘M

ey
8ij > ~Dg,,

@
8ii <giji+M

8> 9ij—M

M>0

Finally, an alternative to problems LP1 and LP2b is in-
troduced in this paper by redefining the safety factor M as
a relative rather than absolute value. Specifically, the value
of M is taken to represent a percentage of the permissible
range of a local data path. Formally, the lower bound and
upper bound clock skew constraints in Eq. (2) become

515 2 =D (1= M) + M(Top - D)

8i; < (1= M)(Tcp — Digy) — MDY, , ©
and Problem LP2b becomes
Problem LP3
max M subject to:
85 < Top — Dy — M{Tcp — (D — DY) ©

sij > =D, + M[Tcp — (Digp — D))
0<M<05.

3.2. Quadratic Programming Models

The formulation of clock skew scheduling as a quadratic
programming (QP) problem is described in this section. The
linear dependencies among the clock skews and the kernel
of cycles are introduced in Section 3.2.1. The QP problem
is formulated and solved in Section 3.2.2.

3.2.1. Linear dependence of clock skews

A kernel of G is a minimal set of cycles such that (a) the
cycles are linearly independent, and (b) every cycle in G is
a linear combination of cycles from the set. The kernel can
be summarized in a compact way by the circuit kernel equa-
tion, Bs = 0, where s is an n, + n,, = p’-element vector
of all but the isolated skews, and, each row of the n. x p
matrix B corresponds to a cycle. B can be derived from
inspection by choosing a traversal direction of each cycle
and including skews along the cycle with a sign depending
upon the edge direction labeling (note the similarity with
Kirchoff’s Voltage Law loop equations for electrical net-
works [7]). Assume that the edges/skews are enumerated

as in Figure 2 such that the chords s are first (indices 1
through n.), followed by the main basis s (indices n, + 1
through p'), and the isolated basis. If the cycles are per-
muted so as to appear in the order of the chords (i.e., the
first row of B corresponds to e; /81, and so on), the kernel
equation is Bs = [I,. Cp, xn..] [:,,] =s°+4+ Cs® =0,
where I,,_ is an identity matrix of dimension n.. The so-
lutions of this equation comprise the kernel or null space
ker(B) of the linear mapping B : R +— R" and s is
called consistent if s € ker(B) [8].

3.2.2. QP clock skew scheduling problem formulation and
solution

Let an objective clock schedule g be chosen according to
certain design criteria (g has p’ elements). From a reliability
perspective, for example, an ideal, although most likely not
consistent, choice of g is g; = (I;+u;)/2. The optimization
goal is to determine a feasible and consistent schedule s
such that the least square error € = (s — g)? is minimized:

Problem QP.

. '
mn e=(s-g)’=) _ (s—g)’
subjectto Bs =0 ™
andly < sp <ugforke {1...p'}.

This problem had previously been solved using an itera-
tive two stage approach [6] that avoids much of the analytic
and numeric difficulty associated with solving a constrained
QP problem with bounded variables. The work described in
this paper include a full implementation of the original al-
gorithm in C++ code using LANCELOT to solve the final
equations. New analytic results have been obtained and are
presented in Section 4. :

4. RESULTS

The algorithm described in Section 3.2.2 has been imple-
mented as a C++ program and applied to both the ISCAS’89
benchmark circuits. We use our own LP and QP solvers
(described in [2]) and the Lancelot package [9] for large
scale optimization problems. The results of running the al-
gorithms on the ISCAS ’89 suite of benchmark circuits is
summarized in Table 1.

5. CONCLUSIONS

The problem of clock skew scheduling for improved tol-
erance to process parameter variations is examined in this
paper. The mathematical problem is formulated as both a
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QP problem and as three LP problems. Two new LP formu-
lations of the optimal scheduling problem from a reliability
perspective are presented. The full source code (and exe-
cutables) related to the work presented here is available at
http://www.sonicl.ee.pitt.edu:8080/GSRC.
The new LP formulations are both shown to give im-
proved results compared to the original LP problem (Eq. (2))
suggested in [4]. LP2b provides the best results (among the
LP formulations) 55% of the time. LP3 gives the optimal
solution 32% of the time, and LP1 gives the best results 13%
of the time. The QP formulation provides the overall best
result in 87% of the circuits. The availability of an efficient
LP solver may make the LP problem formulations more de-
sirable. In conclusion, the QP problem is the overall best
approach while among the LP problems the new formula-
tion presented in this paper (Problem LP2b) is superior.
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Table 1. For each circuit the following data is listed: circuit
name in column 1, number of disjoint subgraphs in column
2, and numbers of vertices, edges and target clock period in
columns 3 through 5 respectively. The remaining columns
list the average value of € in Eq. (7), that is, \/e%z

O 2 » p| Tcp| LP1|LP2b| LP3| QP
1 2] 3 4 5 6 7 8 9
s1196 7] 18] 2071 2087 3.71] 3.44] 369] 3.29
s1238 71 18] 20 20.81 3.71| 3.44] 3.69| 329
s13207 || 49669 | 3068 | 85.6)23.88] 23.72]23.73|13.14
51423 2| 74114717 92.2]28.69 [ 28.01|28.58 [ 20.27
51488 1| 6| 15} 322| 7.85| 4.81| 6.17] 5.10
s1494 1\ 6| 15| 328 7.95| 4.83| 6.15| 5.08
$208.1 1| 8| 28| 124 1.46| 147 1.49] 1.71
s27 1| 3 3] 66| 054 043 044( 043
298 1| 14] 54| 13| 2.16] 1.83] 1.72] 1.56
s344 1] 15| 68] 27| 491 4.59| 490 3.71
$349 1| 15| 68| 27| 483| 4.77| 497] 3.68
$382 1| 21] 113 142 3.15| 3.04| 2.84| 263
386 1| 6] 15] 17.8] 3.87] 2.28] 2.24| 1.99
5400 1] 21] 113 142] 3.14| 3.04| 2.84| 2.63
s420.1 1] 16| 120] 164 2.08] 2.07| 2.09]| 1.86
s444 1| 21| 113] 16.8] 3.53] 3.58| 3.40( 3.10
s510 1] 6] 15] 168 4.49] 3.76| 4.35| 4.03
$526 1] 21] 117 13| 2.03} 246| 2.09] 1.71
$526n 1| 21 117 13] 2.03] 246 2.09( 1.71
$5378 117911147 284 599 5.56| 5.66| 3.77
5641 1] 19 81| 83.6[23.60] 18.48[20.04 | 15.89
s713 1 19 81 89.2125.35] 20.33|22.05]17.13
820 1] s| 10[ 186 6.28] 6.04] 6341 422
$832 1] 5] 10] 19| 636] 6.15| 6.44| 420
$838.1 1| 32| 496| 24.4| 3.48| 3.50| 3.48| 2.90
$9234 3(228(2476| 75.8|18.64] 19.11]18.62|12.27
$9234.1|| 22112342 75.8]18.78] 18.05]18.72| 12.54
953 4] 291 135] 232 3.01] 3.66| 2.87| 246
s1269 1| 37| 251 512[1215] 13.10]11.70| 9.54
s1512 1| 57| 405 39.6| 7.93| 757 7.87| 5.94
3271 1[116] 789| 404| 6.53| 465| 445| 3.69
3330 11132 514 348 529 699| 5.75| 3.69
s3384 || 25|183|1759] 85.2|21.49] 2043|2143 | 1143
$4863 1]104] 620 81.2[22.39] 22.78 {2237 [ 15.25
s6669 | 202392138 |128.634.14] 30.26 {31.73 [ 17.92
$938 1| 321 496| 24.4| 3.48| 3.49[ 3.49| 2.89
$967 4| 29] 135] 20.6| 299 334 291 221
$991 1{ 19| 51| 96.4|18.00] 15.08)|16.89| 9.95
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