
AC-DIMM: Associative Computing with STT-MRAM ∗

Qing Guo1 Xiaochen Guo2 Ravi Patel2 Engin İpek1,2 Eby G. Friedman2

2Department of Electrical and Computer Engineering
1Department of Computer Science

University of Rochester
Rochester, NY 14627 USA

1{qguo, ipek}@cs.rochester.edu 2{xiguo, rapatel, friedman}@ece.rochester.edu

ABSTRACT
With technology scaling, on-chip power dissipation and off-
chip memory bandwidth have become significant performance
bottlenecks in virtually all computer systems, from mobile
devices to supercomputers. An effective way of improving
performance in the face of bandwidth and power limitations
is to rely on associative memory systems. Recent work on
a PCM-based, associative TCAM accelerator shows that as-
sociative search capability can reduce both off-chip band-
width demand and overall system energy. Unfortunately,
previously proposed resistive TCAM accelerators have lim-
ited flexibility: only a restricted (albeit important) class of
applications can benefit from a TCAM accelerator, and the
implementation is confined to resistive memory technologies

with a high dynamic range (
RHigh

RLow
), such as PCM.

This work proposes AC-DIMM, a flexible, high-performance
associative compute engine built on a DDR3-compatible mem-
ory module. AC-DIMM addresses the limited flexibility
of previous resistive TCAM accelerators by combining two
powerful capabilities—associative search and processing in
memory. Generality is improved by augmenting a TCAM
system with a set of integrated, user programmable micro-
controllers that operate directly on search results, and by
architecting the system such that key-value pairs can be co-
located in the same TCAM row. A new, bit-serial TCAM ar-
ray is proposed, which enables the system to be implemented
using STT-MRAM. AC-DIMM achieves a 4.2× speedup and
a 6.5× energy reduction over a conventional RAM-based sys-
tem on a set of 13 evaluated applications.

Categories and Subject Descriptors
B.3.2 [Memory Structures]: Associative memories; B.7.1
[Integrated circuits]: Memory technologies

∗This work was supported in part by NSF CAREER award
CCF-1054179, New York State Office of Science and Tech-
nology, and by grants from IBM, Qualcomm, Cisco Systems,
and Samsung.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA ’13 Tel-Aviv, Israel
Copyright 2013 ACM 978-1-4503-2079-5/13/06 ...$15.00.

General Terms
Design, Performance

Keywords
Associative computing, TCAM, STT-MRAM

1. INTRODUCTION
Data-intensive workloads play an important role in virtu-

ally all computing systems. These workloads often generate
significant data movement between the off-chip memory sys-
tem and the CPU, resulting in considerable power dissipa-
tion and a high demand on off-chip memory bandwidth. As
CMOS technology scales, both the chip power budget and
the available pin bandwidth lag behind significantly, creat-
ing a performance bottleneck on data-intensive workloads.

Associative computing using ternary content-addressable
memories (TCAMs) has emerged as a promising solution to
improve power efficiency and reduce the bandwidth demand
of an important class of applications. A TCAM organizes
data in key-value pairs, and retrieves data by conducting
an associative search on the stored keys. This capability has
been applied to applications such as data mining [4], network
routing [36], text processing [40], search engines [21], and
image processing [30].

Conventional TCAM designs using CMOS suffer from low
density and high power consumption compared to SRAM
and DRAM. Recent work proposes a TCAM DIMM using
phase change memory (PCM) [12], which has the poten-
tial to scale TCAM capacity to gigabytes; however, the lim-
ited functionality constrains the use of the TCAM DIMM
to highly search intensive applications.

This paper proposes AC-DIMM, an associative memory
system and compute engine that can be readily included
in a DDR3 socket. Using spin-torque-transfer magnetore-
sistive RAM (STT-MRAM), AC-DIMM implements a two-
transistor, one-resistor (2T1R) cell, which is 4.4× denser
than an SRAM based TCAM cell [6]. AC-DIMM enables
a new associative programming model, wherein a group of
integrated microcontrollers execute user-defined kernels on
search results. This flexible functionality allows AC-DIMM
to cater to a broad range of applications. On a set of 13 eval-
uated benchmarks, AC-DIMM achieves an average speedup
of 4.2× and an average energy reduction of 6.5× as com-
pared to a conventional RAM based system.

189

2. BACKGROUND AND MOTIVATION
AC-DIMM leverages existing work on associative comput-

ing, processing in memory, and resistive memory technolo-
gies.

2.1 Associative Memory Systems
Data movement between the processor and main memory

is a significant energy and performance bottleneck in mod-
ern computers. Associative memory systems, which orga-
nize and search data based on explicit key-value pairs, have
been recognized as an attractive solution to reduce both the
power dissipation and the bandwidth demand as compared
to conventional RAM-based systems [12]. An associative
memory system can be built in either software or hardware.
Software solutions often rely on hash tables, which store and
retrieve data by computing a hash function on a set of keys.
A hash table provides high storage efficiency on sparse data
sets since only useful data are stored; moreover, correlated
data can be co-located and retrieved quickly.

Implementing an associative memory system in hardware
typically requires a content-addressable memory (CAM) that
compares a given search key to a set of stored keys in paral-
lel. Not only does this method avoid the multiple memory
accesses that may be needed in a RAM-based hash table,
but it also eliminates address computation overheads.

A ternary content-addressable memory (TCAM) is a spe-
cial type of CAM, which allows both storing and searching
with a wildcard in addition to a logic 0 or 1. This flexi-
ble pattern matching capability has proven useful in a wide
range of applications, including sorting and searching [43],
similarity search [44], subset and superset queries [10], de-
cision tree training [19], search engines [21], pattern recog-
nition [14], Huffman encoding [24], and image coding [34].
Despite these advantages, TCAMs have seen limited use in
general-purpose computing due to the low density and high
power dissipation of existing CMOS-based TCAMs. Goel et
al. [10] show that a state-of-the-art TCAM device is as fast
as SRAM, but the cost-per-bit is 8× higher than SRAM, and
the power consumption is 200× more than DRAM. These
limitations restrict the commercial use of TCAM to net-
working applications such as packet classification [22] and
IP routing [28].

2.2 STT-MRAM
Resistive memory technologies such as phase change mem-

ory (PCM) and STT-MRAM have emerged as viable alter-
natives to DRAM and SRAM due to their smaller cell area,
near-zero leakage power, and enhanced scalability [18]. Re-
sistive memories are generally characterized by high write
energy and long write latency. STT-MRAM has lower write
energy, shorter write latency, and higher write endurance
(virtually unlimited [49]) than other resistive memory tech-
nologies [18, 16]. STT-MRAM is a promising alternative for
next-generation memory systems: 2Mb [20] and 64Mb [45]
STT-MRAM prototypes have been demonstrated, while in-
dustry has started to sample 64Mb STT-MRAM chips [29],
and has announced that STT-MRAM products will be broadly
available in 2013.

The storage element in an STT-MRAM cell is a magnetic
tunnel junction (MTJ), which can be modeled as a variable
resistor. A typical one-transistor-one-resistor (1T1R) STT-
MRAM cell is shown in Figure 1. The access transistor is in
series with the MTJ. To read the cell, the word line (WL) is

asserted and the resistance of the MTJ is sensed. To write
the cell, the word line is turned on and the cell is driven by a
write current. The direction of the write current determines
the value of the bit written to the cell.

BL: Bitline
WL: Wordline

BL BLWL
MTJ

Figure 1: A 1T1R STT-MRAM cell structure.

Matsunaga et al. propose STT-MRAM TCAMs with two
cell designs: 2T2R [26] and 6T2R [27]. The 2T2R TCAM
does bit-serial search, while the 6T2R TCAM has a search
width of 144 bits due to a pull-up circuit that augments each
cell. An STT-MRAM TCAM with high sensing and search
speed is reported by Xu et al. [46]. Rajendran et al. present
a 2T2R TCAM using PCM [39]. Guo et al. explore the de-
sign of a 3T3R PCM-based TCAM system [12]. Memristor-
based CAM and TCAM designs are proposed respectively
by Eshraghian et al. [8] and Alibart et al. [5].

2.3 Processing in Memory
Processing in memory (PIM) aims at reducing data move-

ment overheads by performing computation directly on a
memory chip. Elliott et al. propose a computational RAM,
where the sense amplifiers on a 4Mb DRAM die are aug-
mented with the computational elements of a SIMD pipeline [7].
Gokhale et al. develop a PIM chip that can be configured as
a conventional memory or as a SIMD processor to accelerate
data processing [11]. Oskin et al. propose Active Pages [33],
wherein microprocessors and reconfigurable logic elements
are placed aside DRAM subarrays to process data directly
in memory. Different from prior work which combines con-
ventional RAM arrays with logic, AC-DIMM enables con-
tent addressability in commodity memories. After launch-
ing a search operation, the matched data is automatically
selected and processed by a set of local microcontrollers.
The desired result is propagated through a reduction tree
to a known location and is retrieved by the processor. As
such, AC-DIMM significantly reduces the address computa-
tion overhead involved in every data access.

2.4 Associative Computing
Significant progress has been made in developing program-

ming models that leverage TCAMs to accelerate a broad
range of applications. Potter et al. [38] propose an associa-
tive programming paradigm (ASC), which enables mapping
virtually any RAM-based algorithm to an associative com-
puting framework. Structured data, organized in stacks,
queues, trees, matrices, or graphs, are implemented with
two-dimensional tables; each entry of a table contains a data
item and a descriptor. The data is accessed by launching a
search on the descriptor, selecting a matching entry, and
retrieving the data for further processing. The AC-DIMM
programming model leverages several of the techniques pro-
posed in ASC for general-purpose associative computing.

Guo et al. propose a TCAM DIMM which can be modu-
larly integrated into a commodity DDR3 memory system [12].
The proposed 3T3R TCAM cell uses phase change memory
(PCM), and has an area 20× smaller than its CMOS coun-

190

terpart when implemented on a standalone (rather than em-
bedded) memory process.

AC-DIMM offers important advantages over the previ-
ously proposed TCAM DIMM [12]. First, the cell topol-
ogy and array organization of AC-DIMM permit a key-value
pair to be co-located in the same row, allowing both to be
searchable and readable, while requiring fewer devices per
cell (2T1R). In contrast, the TCAM DIMM (which uses
three transistors and three resistors in each cell) does not
allow key-value pairs to be co-located; instead, the proces-
sor must explicitly read the address of the matching key to
locate the corresponding value in a separate DRAM module.
Second, AC-DIMM employs a small number of on-die micro-
controllers to run user-defined kernels on local search results,
which significantly reduces data movement overheads, and
allows AC-DIMM to cater to the needs of a much broader
range of applications than the TCAM DIMM. Third, the
cell topology and array organization of AC-DIMM are ap-
plicable to any memory technology that can be used as a
RAM, whereas TCAM DIMM requires a high dynamic range
(RHigh/RLow) for its storage elements, which confines the
TCAM DIMM to PCM-based cells. A quantitative compar-
ison between AC-DIMM and the TCAM DIMM is presented
in Section 8.

3. OVERVIEW
AC-DIMM is a high-performance associative compute en-

gine built on a DDR3-compatible DIMM. Figure 2 illus-
trates the organization of an AC-DIMM enabled computer
system. A multicore processor accesses main memory via
an integrated memory controller, which buffers memory re-
quests, schedules memory accesses, and issues DRAM com-
mands over a DDR3 bus. The system supports one or
more AC-DIMMs on the memory bus, each comprising an
on-DIMM controller and eight associative computing chips
(AC-chips). The DIMM controller serves as the interface
to the DDR3 bus and manages the DIMM, translating con-
ventional DRAM commands into search operations, and en-
suring that DDR3 timing constrains are not violated. The
DIMM controller consists of control logic, interface logic,
and RAM-based storage (shaded blocks in Figure 2). The
RAM block contains control registers for device configu-
ration, a key buffer for buffering the search key, a µCode
buffer for buffering microcode, and a result store for buffer-
ing search and computation results. To reduce peak power,
AC-DIMM adopts a bit-serial search scheme; moreover, only
one of the AC-chips can be searched at a time to ensure
that the instantaneous power does not exceed the maximum
power rating of a standard DDR3 DIMM (15W [31]).

An AC-chip is built from STT-MRAM arrays. A set of
specialized microcontrollers, each co-located with a group of
four arrays, perform ALU operations on search results, and
a reduction tree forwards processed results to the DIMM re-
sult store. By mapping part of the physical address space
to AC-DIMM, data is made content-addressable and is pro-
cessed directly by the memory circuit, which significantly
reduces data movement and increases energy efficiency.

4. FUNDAMENTAL BUILDING BLOCKS
This section describes the cell structure and circuit de-

sign of the AC-DIMM data array. Density is a key factor
in memory cell and array design since it affects memory ca-

Core
1

...

Memory Controller
DDR3 Cmd / Addr BusDDR3 Data Bus

AC-DIMM

Processor

AC-DIMM
Controller

AC-
chip

Core
2

Core
N

(a)

C
on

tr
ol

 to
 A

C
-c

hi
ps

Control from DDR3

Ctrl logic

Data to / from DDR3

REGs

D
at

a
to

 /
fr

om
 A

C
-c

hi
ps

Key
buffer

uCode
buffer

Result
store

(b)

Figure 2: An example computer system with (a) AC-DIMM
and (b) the on-DIMM controller.

WL

ML

BL BL

MML

MBL

(a) Cell circuit

6.6 F

9.
25

 F

(b) Cell layout

Figure 3: Cell topology

pacity, and plays a dominant role on the length—and thus,
the delay and energy—of the wires that are charged and
discharged during each access.

4.1 Cell Topology
An associative memory system requires read, write, and

search functionalities from each memory cell. A two-transistor,
one-resistor (2T1R) cell, shown in Figure 3a, fulfills this re-
quirement with minimal area overhead. Each cell contains
a single MTJ that behaves as a storage element. One tran-
sistor (MBL), controlled by the wordline (WL), serves as a
gating element between two vertical bitlines (BL and BL),
and a second transistor (MML) connects the MTJ to the
horizontal matchline (ML). BL and ML are terminated by
sense amplifier (SA) circuits.

Writing. Programming a cell requires supplying a write
current through the MTJ; the direction of the current deter-
mines the written value. To store a logic 0, BL is connected
to ground and BL is driven to VDD; a write current flows
from BL to BL, and programs the MTJ to the high resis-
tance (RHigh) state (Figure 4a). In the reverse direction,

191

WL

ML MML

MBL

VDD

BL BL

(a) Write RHigh

WL

ML

BL

MML

MBL

BL

VDD

(b) Write RLow

WL

SA

ML

BL BL

MBL

MML

(c) Read

MML

MBL

SA

SL

WL

ML

BL BL

(d) Search

Figure 4: Cell operations

ArrayB

Mread Msearch

mlpre

en Men_read
BL

SA
mlpre

enMen_search
ML

ArrayA WL MLBL BL WL BL

Figure 5: Sense amplifier circuit

both ML and BL are driven to VDD and BL is connected
to ground, which programs the MTJ to the low resistance
(RLow) state (Figure 4b). Note that in the latter case, the
matchline (ML) actively supplies current to assist the bit-
line (BL), alleviating the asymmetric write current problem
in a conventional 1T1R cell [49].

Reading. A read operation is initiated by setting BL
to ground and WL to VDD, connecting the MTJ to both
bitlines and isolating it from the matchline. A bias circuit
then drives BL. The voltage that appears on BL depends on
the resistive state of the MTJ (RHigh or RLow), and is sensed
by the sense amplifier (SA) at the end of BL (Figures 4c
and 5).

Searching. Searching a cell is equivalent to reading the
stored bit and comparing it to the search bit (Figure 4d
and 5). Specifically, both WL and BL are set to ground,
BL is connected to VDD, and ML is biased for sensing. The
stored data is XNORed with the searched bit to produce
the search result.

Layout. The cell layout, depicted in Figure 3b, has an
effective area of 61 F2 and is based on FreePDK45 to prop-
erly model the size of the data array. The cell is made more
compact by sharing the bitline, the polysilicon, and the tran-
sistor implant contacts between vertically adjacent cells.

4.2 Wildcard Functionality
Wildcard functionality can be achieved by storing a bit

and its complement in adjacent columns of a row, as shown
in Figure 6. Searching for a 1 or a 0 requires respectively
biasing D or D. A wildcard (“X”) is stored in the array by
setting both the data bit and its complement to 1. Search-
ing with a wildcard is accomplished by simply skipping the
relevant column. Reconfiguration is controlled by user li-
braries; configuring a group of cells to implement wildcard
functionality carries a storage overhead of 2× (i.e., 122F2)
as two bits are required to store every value.

ML0

ML1

ML2

1

0

1

D

0

1

1

D

SL

SA

SA

SA

Store a "1"

Store a "0"

Store a "X"

BL1 BL1BL0 BL0

Figure 6: TCAM reconfiguration

AC-DIMM can be configured at run-time to work as a
RAM, a CAM, or a TCAM. In TCAM mode, the cell is
4.4× more compact than a CMOS TCAM cell [6], but 4.5×
larger than the MTJ based 3T3R cell (27F2) presented in
prior work on TCAM DIMM [12], which assumes ITRS pa-
rameters for the device area. ITRS assumes a standalone
memory process where spacing can be more aggressively
optimized due to regular patterning within the data ar-
rays. The aggressive design rules for standalone memory
processes are not publicly available; the results presented
here are representative of an embedded STT-MRAM logic
process. For comparison, the layout of the 3T3R cell pre-
sented in [12] occupies a cell area of 164F2 when imple-
mented using FreePDK45.

4.3 Bit Serial Operation
Existing TCAM circuits generally favor large search widths

(72-576 bits [10]) to fulfill system throughput requirements.
However, the low dynamic range (RHigh/RLow) of STT-
MRAM prevents the search width from scaling beyond a few
bits [12]. AC-DIMM implements a bit-serial search scheme,
wherein a search operation progresses iteratively, first sens-
ing the cell on the initial column, and progressively search-
ing column by column across the data array. The results
presented in Section 8 indicate that bit-serial operation can
improve performance and energy-efficiency when search keys
are short.

Supporting bit-serial operation requires additional logic
within the memory array. Each row is augmented by sense
amplifier logic, helper flip-flop logic, and multi-match reso-
lution logic (Figure 7). The sense amplifier logic resolves a
single bit of the search result (by XNORing the stored bit
and the search bit), which is ANDed with the previous re-
sult (stored in FF1). The helper flip-flop (FF2) buffers the
current search result, where a logic 1 represents a match.

A multi-match resolution (MMR) circuit makes it possible
to read out matching rows successively at the end of a search,
without requiring any additional decoding. The MMR is
based on a token passing design [9] and serves to select the
first match within a data array. Upon conclusion of a search,
the value stored in the helper flip-flop is passed to a match
buffer. The MMR operates by precharging a chain of pass
transistors and discharging the chain up to the first matching
row (i.e., giving the token to the first match). Subsequently,
the match buffer for the row is cleared and the MMR passes
the token to the next matching row.

5. ARCHITECTURE
Architecting a high-performance associative memory sys-

tem requires striking a careful balance between two impor-
tant design metrics. First, memory capacity must be suf-

192

SL

D

FF1
Q

reset clk

0
1 D

FF2

Q
Q

clk

se

en

SA

ML Sense Amps
Logic

Helper Flip-Flop
Logic

MMR_in_0

MMR_in_1

MMR_in_0

MMR_out_0

MMR_out_1

MMR_out_0

... ...

Ten

pre

pre

pre

Lookahead

pass transistor
chain

MMR

LAout

Figure 7: Embedded row logic

ficiently large to accommodate most data sets; second, the
associative memory system must support a sufficiently di-
verse set of operations on the search results (e.g., sum, min,
max) to satisfy the demands of different applications. For
a fixed chip area and power budget, memory capacity and
rich functionality are often at odds: adding more compute
capability to a memory circuit requires precious area, and
can consume considerable power.

5.1 Array Organization
AC-DIMM allows each memory row to be searched, read,

and written—a key capability absent from prior work on
TCAM DIMM [12]. A row is read and written through ver-
tical bitlines and is searched through horizontal matchlines
(Figure 8); a row decoder, bitline drivers, and bitline sense
amplifiers enable reads and writes; bitline drivers, matchline
sense amplifiers, and the helper flip-flop (Section 4.3) assist
the bit-serial search.

R
ow

 D
ec

od
er M

M
R

En
co

de
r

Po
pu

la
tio

n
C

ou
nt

BL Sense Amps

Column Decoder

H
el

pe
r F

lip
-F

lo
p

M
L

Se
ns

e
A

m
psSearch Direction

R
 /

W
 D

ire
ct

io
n

Figure 8: Array organization.

The helper flip-flop outputs the word match results af-
ter each stored bit is iteratively compared against the corre-
sponding bit of the search word. The population count logic,
the multi-match resolution (MMR) circuit, and the encoder
are used in processing match results. The population count
logic computes the number of matches. The MMR circuit
selects the first match among all matches, and outputs a
one-hot vector, in which only the row corresponding to the
first match contains a 1 (Section 4.3). The output of the
MMR circuit can be directly used to drive the wordline to
read or write the selected row in the following cycle, which
eliminates the need to use a decoder to select the wordline.
The outputs of the MMR circuit also connect to the encoder
to generate the encoded index of the selected matching row;
hence, the MMR circuit and the binary encoder together
function as a priority encoder. Partitioning priority encoder

Se
ns

e
A

m
ps

Sense Amps

Sense Amps

Se
ns

e
A

m
ps

Array 0 Array 1

Array 3 Array 2

(a) Search organization

Se
ns

e
A

m
ps

Sense Amps

Sense Amps

Se
ns

e
A

m
ps

Array 0 Array 1

Array 3 Array 2

(b) Read organization

Figure 9: Illustration of sharing the sense amplifiers.

functionality between the MMR and the binary encoder cir-
cuits simplifies the circuit design process, and enables effi-
cient read-after-search and write-after-search operations.

Note that in Figure 8 there are two sets of sense amplifiers:
one set connects to the bitlines and another set to the match-
lines. The structure and functionality of the matchline and
bitline sense amplifiers are identical. It is possible to elim-
inate one set of sense amplifiers by sharing sense amplifiers
across data arrays, thereby reducing the area overhead of the
sense amplifier blocks. The cycle time of a bit-serial search
is more critical than the cycle time of a read—a 32-bit search
requires 32 cycles, whereas a 32-bit read requires only one
cycle. The matchline sense amplifiers should therefore be
close to the matchline, since the additional latency to sense
the bitline signals from the sense amplifiers of a neighboring
data array is tolerable. An efficient sense amplifier sharing
scheme can exploit the orthogonal read and search directions
by rotating the arrays and sharing the sense amplifiers: the
matchline sense amplifers for one array are used as the bit-
line sense amplifers of another array. Figure 9 shows an
example: array 1 is rotated 90o with respect to array 0; ar-
ray 2 is rotated another 90o with respect to array 1; and
array 3 is again rotated 90o. On a search (Figure 9a), the
sense amplifiers adjacent to each array are used; on a read
(Figure 9b), the sense amplifiers of a nearest neighbor are
leveraged. To enable sharing, all four arrays are restricted
to perform the same type of operation (read or search) at
any time.

5.2 Microcontroller
AC-DIMM provides a user program flexible control over

the reduction operations to be performed on the search re-
sults by placing a specialized microcontroller at the center
of the four arrays. The microcontroller implements a simple
RISC ISA with 16-bit instructions (Table 1). The instruc-
tion formats are listed in Figure 10.

ALU ADD, ADDU, SUB, SUBU, MULT, MULTU, DIV,
DIVU, MOVE, LI, NEG, AND, OR, NOT, XOR, NOP

Control BNEZ, BLEZ, BGTZ, J
Memory LB, LBU, LH, LHU, LW, SB, SH, SW
Special NEXT

Table 1: Microcontroller instructions.

Figure 10 also demonstrates the four-stage microcontroller
pipeline. There are 32 registers: 16 are general purpose, six
are special purpose, and ten are data registers pre-loaded
with immediates. The six special purpose registers include

193

ALU

IF

ID

EXE/
MEM

WB

M
U

X

Array 0
Array 1
Array 2
Array 3

Opcode R_dst R_src
Opcode R_dst Imm

15-10 9-5 4-0

Opcode Offset R_src
Opcode Address

Branch
Jump

w/ Imm
Regular

RSELECT

Instruction
Memory

GP & SP
Registers

R
ow

 B
uf

fe
r

Store

Load

Figure 10: Illustrations of the microcontroller and the in-
struction formats.

RHI and RLO for multiplication and division, RSELECT for
selecting one of the four arrays, ROUT for communicating to
the upper level reduction tree node, RCOUNT for holding the
match count of the selected array, and RINDEX for holding
the encoded index of the selected matching row. Both mem-
ory and arithmetic operations are handled in the execution
stage. Memory instructions operate on the row buffer of the
selected array. The row buffer is addressed implicitly, elimi-
nating address computation. The special instruction NEXT
signals the MMR circuit to reset the current matching row to
a mismatch. The MMR circuit then selects the next match-
ing row, which allows the microcontroller to iteratively read
or write the set of matching rows.

5.3 Reduction Tree
After the local computation at the microcontroller com-

pletes, the reduction tree computes three outputs: the sum
of all local microcontroller results, the total match count,
and the index of the first matching row. While other oper-
ations could be incorporated into the reduction tree, these
three operations are sufficient to accelerate a broad range of
applications considered in the evaluation.

Priority
Encode

Pop.
Count

μController

Priority
Encode

Pop.
Count

Summation
Logic

Figure 11: Illustration of the reduction tree.

As shown in Figure 11, every group of four nodes share
a reduction tree node that outputs its results to the next
higher level of the tree. Arithmetic overflows may occur in
the microcontrollers or the summation logic. In such a case,
the on-DIMM controller is notified and a flag register is set.
In the case of a division by zero, microcontrollers and sum-
mation logic are aborted and diagnostic information (i.e.,
the type of exception), the current µCode pointer, and the
memory location pointer are stored in the result store. AC-
DIMM relies on the user library to handle these exceptions.

5.4 System Interface
AC-DIMM can be modularly included in a DDR3 memory

system without modifying the processor die or the mother-
board. The on-DIMM controller serves as the interface to
the system memory bus. It includes a RAM block containing
control registers, a key buffer, a µCode buffer, and a result
store (Figure 2) that the processor can access. The con-
troller manages all AC-DIMM operations and ensures that
the DDR3 timing constrains are not violated.

Memory Allocation and Deallocation. A create func-
tion allocates a block of memory from the (associative) phys-
ical address space. To simplify cache design and to avoid
cache flushes, memory requests sent from the processor to
the associative memory are made uncacheable1. A destroy
function reclaims allocated memory for future use.

The basic commands provided to the processor are read,
write, and search. Read and write are ordinary load and
store instructions except that the destination address is a
memory mapped location in an uncacheable page. A search
is initiated by a set of stores. A search command sends a
control vector to the AC-DIMM controller; the vector spec-
ifies a pointer to the search key, the search key length, the
region of memory to be searched, and the desired reduc-
tion operation. The key is stored in the key buffer prior
to a search. Upon receipt of the search command, the AC-
DIMM controller reads the search key out of the key buffer,
and broadcasts it to the arrays in the selected region. The
controller iteratively issues a number of bit-serial search op-
erations, and the desired results are forwarded to the result
store. A search command outputs the following results: 1)
the number of matches, 2) the index of the first matching
row, and 3) a result computed by a user-defined kernel exe-
cuting on the local microcontrollers.

DDR3 Interface. Similar to the TCAM DIMM [12],
AC-DIMM can be modularly included in a DDR3 mem-
ory system. A typical DDR3 transaction is not sufficiently
long to ensure the completion of every AC-DIMM operation.
Rather than pushing the memory logic to run faster (which
requires additional power and area overhead), we use the
dummy write scheme proposed by Guo et al [12]. A dummy
write is effectively an idle cycle on the memory bus gener-
ated by writing a NULL value to a known location on the
on-DIMM controller. The following process describes how a
dummy write is used.

The processor starts an AC-DIMM compute session with
a query (Section 6), and subsequently issues a read from
the status register of the on-DIMM controller, which records
the number of matching rows in the array with the highest
match count. The number of matches and the length of
µCode are used to compute the number of cycles remain-
ing before the desired result is produced.2 The processor
then issues an appropriate number of dummy writes before
reading the search results.

The peripheral circuitry of the array, the microcontroller,
and the reduction tree are all pipelined, which significantly
improves the processing throughput and makes the overhead
of the dummy writes tolerable.

1“Uncacheable” is a page attribute supported by Intel since
i386 [17] and by AMD since AMD64 [3], which prevents the
memory requests sent to the page from entering the cache
subsystem, and memory requests from being reordered.
2This requires the µCode to be written such that its worst
case execution time can be statically inferred.

194

To reduce the programming effort, a user-level library
is provided to facilitate mapping applications to the AC-
DIMM programming framework. Bubbles are automatically
inserted to obey the DDR3 timing constraints.

6. PROGRAMMING MODEL
AC-DIMM combines content addressability and processing-

in-memory. The cell structure and array organization al-
low data to be co-located with a descriptor, which is used
for retrieving the data. On a match, the microcontrollers
(located with every group of four arrays) are signaled to
run user-defined µCode on the search results and gener-
ate partial results. These partial results propagate to the
on-DIMM result store via a reduction tree; in the case of
multiple matches, the microcontroller iteratively processes
each matching entry. Notably, the wordline of the matching
row is automatically selected by the MMR circuit; hence, no
address calculation is required. When all of the microcon-
trollers finish, the on-DIMM controller collects and combines
the partial results. The processor issues a read command to
return the final result.

6.1 Partitioning
Realizing the full potential of AC-DIMM requires the work-

load to be partitioned between the processor and AC-DIMM.
The AC-DIMM computational model exhibits the best per-
formance when data level parallelism is present. The current
version of AC-DIMM only supports integer computation;
nevertheless, on a floating-point application, AC-DIMM can
gather and organize the data for the processor.

6.2 Data Structures
The data structures used in AC-DIMM are motivated by

the associative computing paradigm proposed by Potter [38].
Structured data organized in stacks, queues, matrices, trees,
and graphs are converted into a tabular form. Each entry of
the table contains a key-value pair, where the key is a user-
defined descriptor. In certain cases, the content itself may be
a descriptor, and is searched. String Match [40], for instance,
aims at determining if a query string is present anywhere in
a string dataset. The AC-DIMM implementation of String
Match uses the string itself as the search key, and reads the
population count to determine the number of matches for a
query.

6.3 Implementation
The AC-DIMM programming model defines a query-compute-

response framework, where query and response are two prim-
itives.

To initiate a compute session, the processor issues a query
to the AC-DIMM controller, which assembles the search key
and broadcasts the key to a set of arrays. Once the search
finishes, the local microcontrollers are signaled to execute a
set of user-defined operations and iteratively process each
matching row. Partial results generated by the microcon-
trollers are propagated through a reduction tree to produce
the final result. The processor retrieves the response from
the memory-mapped result store (Figure 12).

User-level library functions largely hide the operational
details from the user, reducing the programming effort and
improving the maintainability of the code. However, µCode
is application-specific and must be written by the user. We
claim this effort is tolerable since the control flow is auto-

Prog 0

M
M

R

���

!"!"!

!"!"!

AC-DIMM
Controller

Reduction Tree

μCode

Query

Reponse

Search

Search

Search

DDR3 Bus

Prog 1

Array

Figure 12: An illustration of the proposed AC-DIMM pro-
gramming model.

matically handled by the MMR circuit. Example applica-
tions described in Section 7.3 show that the µCode for most
applications is both intuitive and short.

6.4 Application Mapping
Case studies on example benchmark applications are pre-

sented in this section. Mapping an application to the AC-
DIMM programming model is a three step process: 1) defin-
ing the key-value data structure, 2) partitioning the work-
load between the processor and AC-DIMM, and 3) designing
the µCode.

Apriori [32] is an association-rule mining algorithm that
finds large itemsets in a set of transactions. The key is
a bit vector which records the presence of each item in a
transaction. No value accompanies the key.

The processor stores the keys in the AC-DIMM data ar-
ray. For each candidate itemset, the query function searches
the corresponding columns marked by the search key. The
response function returns the number of matches (popula-
tion count). No µCode is required for this application.

Matrix Multiplication [40] computes the product of
two input matrices. The key comprises a bit string repre-
senting the matrix address, row index, and column index.
The value is the corresponding matrix entry.

The processor stores the key-value pairs in the AC-DIMM
data array. For each entry in the result matrix, the proces-
sor queries the row and column indices. The µCode reads
the corresponding operands from the matching rows in each
input matrix array and computes the product. The single-
ton products are summed by the reduction tree adders to
produce the final result, which is returned by the response
function.

Word Count [40] calculates the number of distinct words
in a text file. A data element has two keys: the first key,
a file ID, denotes which text file the word belongs to; the
second key and the value are the word itself.

The processor parses the input text and stores the data
elements in the AC-DIMM data array. The query func-
tion searches for a word and the response function returns
the number of matches. To fetch the following search key,
the processor disables all previous matching rows (by signal-
ing the “enable” flip-flop in each matching entry [12]), and
queries on the file ID. The response function uses the pri-
ority index to read the value from the first matching entry

195

Core 8 cores, 4.0 GHz, 4-issue
Functional units Int/FP/Ld/St/Br units 2/2/2/2/2, Int/FP Mult 1/1

IQ, LSQ, ROB size IssueQ 32, LoadQ/StoreQ 24/24, ROB 96
Physical registers Int/FP 96/96
Branch predictor Hybrid, local/global/meta 2K/2K/8K, 512-entry direct-mapped BTB, 32-entry RAS

IL1 cache (per core) 32KB, direct-mapped, 32B block, 2-cycle hit time
DL1 cache (per core) 32KB, 4-way, LRU, 32B block, hit/miss delay 3/3, MESI protocol

L2 cache (shared) 4MB, 8-way, LRU, 64B block, 24-cycle hit time
Memory controller 4-channel, 64-entry queue, FR-FCFS, page interleaving

AC-DIMM Subsystem 256MB AC-DIMM, 8 chips per DIMM, DDR3-1067 MHz
Timing (DRAM cycles) [31] tRCD: 7, tCL: 7, tWL: 6, tCCD: 4, tWTR: 4, tWR: 8, tRTP: 4,

tRP: 7, tRRD: 4, tRAS: 20, tRC: 27, tBURST: 4, tFAW: 20

Table 2: System architecture core parameters.

Application Benchmark Category Problem size Search key (width) AC-DIMM computation

Apriori MineBench Association rule mining 95,554 transactions, Itemset (2-5 bits) Count the matches
1000 items in the transaction set

Histogram Phoenix Image processing 6816 × 5112 BMP Pixel values (8 bits) Count the matches in the image
Reverse Index Phoenix Text processing HTML files, 1GB URLs (64-1024 bits) Find the matched documents IDs
String Match Phoenix Text processing 10MB key file, Encrypted keys Find the match

0.5KB encrypted file in the encrypted file
(128 bits)

Word Count Phoenix Text processing 10MB text file Words (8-128 bits) Count the word matches
Matrix Phoenix Scientific computing 500 × 500 matrices Matrix indices Compute inner product

Multiply (32 bits) on any selected two vectors
Kmeans Phoenix Clustering 10000 3D points Data set ID, Compute point-mean distance

20 means cluster IDs (8 bits) and update the cluster center
PCA Phoenix Statistical learning 500 × 500 matrix Matrix indices Compute mean matrix

(8 bits) and covariance matrix
Linear Phoenix Optimization 10MB points Vector indices Compute sum and

Regression (8 bits) inner product of vectors
BitCount MiBench Automotive 75000 bit vectors Bit positions (1 bit) Count the 1s in the data set

Susan MiBench Automotive 384 × 288 PGM Pixel indices (32 bits) Compute the average brightness
Dijskstra MiBench Network 100 vertex graph Vertex ID (32 bits) Find the adjacent vertex
Vortex SPEC Associative database 3 inter-related DB, Item ID (32 bits) Find the matched entry

CINT2000 200MB

Table 3: Workloads used with the AC-DIMM system.

(which is the next distinct word to be searched). No µCode
is needed in this application.

Reverse Index [40] creates a reverse indexing table from
URLs to HTML files that contain those URLs. Each key is a
URL, and the corresponding value is the document ID that
contains the URL.

The processor first parses the HTML files, extracts the
URLs, and stores the key-value pairs in the AC-DIMM data
arrays. Next, the processor queries AC-DIMM using the
URL as the search key. For each match, the µCode reads the
document ID and forwards it to the on-DIMM result store.
Finally, the response function returns all the document IDs
found by the query.

Kmeans [40] is a clustering algorithm that groups a set
of input data points into clusters. It assigns each data point
a cluster ID and outputs the generated cluster centers. A
data point has two keys: a data set ID and a cluster ID
denoting which cluster the data point belongs to. The data
point itself is the value.

The algorithm proceeds in two phases. The processor
first sends the microcontrollers the cluster centers. For each
cluster center, the processor issues a query on a data set
ID. The µCode reads each matching point, computes its
distance to the cluster center, and updates the cluster ID
of that point. No response function is needed in the first
phase. Second, the processor queries each of the cluster IDs.
For each search, the data points that belong to the clus-
ter are selected. The µCode sums up the matching points.
The response function returns the sum and the number of

matches (population count). The processor computes the
new cluster centers and decides whether to perform one more
iteration of the main loop.

7. EXPERIMENTAL SETUP
Circuit, architecture, and application level simulations have

been conducted to quantify area, energy, and performance
(Section 8). Tools, parameters, and assumptions used for
the experiments are described in this section for each level
of the simulations.

7.1 Circuits and Synthesis
Cadence SPECTRE circuit simulations have been con-

ducted for all constituent parts of the data array including
the cell, the embedded row logic, and the wordline and bit-
line driver circuitry. The MTJ element is modeled with a
simple bias dependent tunneling magnetoresistance (TMR)
model3 (Equation 1), in conjunction with ITRS parameters
for the 22nm node [18]. Process-voltage-temperature (PVT)
variations may cause TMR degradation of an MTJ. We con-
sider a 10% reduction in the RHigh value and a 10% increase
in the RLow value, which produces the worst case results.

3TMR is a measure of the change in the resistance of the
MTJ between the high and low states: TMR = (Rhigh −
RLow)/RLow. Physical device studies show that RHigh de-
grades as a function of the applied bias [35]. The bias de-
pendent TMR model is a simple curve fitting approach to
emulate the voltage dependence of the TMR, which has been
used in published compact device models [25].

196

!"

#"

#!"

Histogram Reverse
Index

Word Count String
Match

Bitcount Dijsktra Apriori Vortex Geomean Kmeans Linear
Regression

Matrix
Multiply

PCA Susan Geomean

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

TCAM-DIMM AC-DIMM

AC-DIMM vs. TCAM-DIMM AC-DIMM only

3.2 3.8 4.5

Figure 13: AC-DIMM and TCAM DIMM performance speedup normalized to the DRAM-based system.

TMR(VMTJ) =
TMR0

1 +
V 2
MTJ

V 2
h

. (1)

The CMOS transistor model is based on the predictive
technology model (PTM) for the 22nm node [48]. Low
threshold CMOS devices are modeled by scaling the device
thresholds and velocity saturation parameters, in a manner
consistent with the device models provided in FreePDK45
[2]. The circuit layout includes the array cell, as well as
the logic gates within the embedded row logic. The embed-
ded row logic circuitry is pitch-matched to the memory cell.
The layout geometry is scaled to the 22nm node and perti-
nent interconnect parasitic impedances are extracted using
the PTM interconnect model and back-annotated into the
circuit simulation.

The area, energy, and delay of the decoders, population
count circuits, encoders, summation logic, and local micro-
controllers are estimated from RTL code and design com-
piler [1] synthesis. FreePDK45 [2] is the synthesis library.
The results are scaled from 45nm technology to 22nm tech-
nology by parameters (Table 4) generated by SPECTRE
circuit simulations.

FO4 Delay (ps) FO4 Leakage (nW) Voltage (V)
45nm 11.8 2.45 1.0
22nm 6.5 5.68 0.8

Table 4: Technology scaling parameters.

The interconnect (H-tree connecting memory arrays) area,
energy, and delay are calculated using FreePDK45 metal
layer parameters [2] and the PTM [48] interconnect model.
The intermediate metal layer is chosen for the H-tree.

7.2 Architecture
The SESC [41] simulator was augmented to model an

eight-core computer system. A 256MB AC-DIMM (eight
AC-chips per DIMM) system connects to the memory con-
troller through a DDR3-1067 bus. The memory controller
uses page-interleaving address mapping [47] and the FR-
FCFS scheduling method [42]. Core architectural parame-
ters are listed in Table 2. CPU energy is evaluated using
McPAT [23].

7.3 Applications
AC-DIMM can be utilized by a large number of appli-

cations including data mining, clustering, text processing,
scientific computing, and image processing. We compose a

benchmark suite that represents a wide range of applica-
tions from NU-MineBench [37], Phoenix [40], MiBench [13],
and SPEC CINT2000 [15]. AC-DIMM is evaluated with
the single-threaded version of each benchmark, while the
evaluated baseline runs the parallel applications (Phoenix
benchmarks and Nu-MineBench) with eight threads. De-
tailed workload parameters are listed in Table 3.

8. EVALUATION
This section describes architectural and circuit-level eval-

uations of AC-DIMM. Performance, energy, and area are
reported. The results are compared to a DRAM-based sys-
tem and the previous work on TCAM DIMM [12].

8.1 Performance
Over a set of eight workloads, both AC-DIMM and TCAM

DIMM outperform the DRAM-based system by an average
speedup of 3.8× and 3.2×, respectively (Figure 13). (The
remaining five workloads are not portable to TCAM DIMM
due to its limited flexibility; these workloads are shown
on the right of Figure 13.) The performance improvement
comes from using a content-addressable memory (in this
case, AC-DIMM and TCAM DIMM); on a search, the search
key is simultaneously compared against all of the stored keys
and the matching one is returned. This approach surpasses
any software algorithm since retrieving data out of the mem-
ory is not required, which not only improves the perfor-
mance, but also eliminates unnecessary power consumption
and bus traffic.

AC-DIMM presents an additional 19% performance im-
provement over the TCAM DIMM. Note that the STT-
MRAM based AC-DIMM searches in a bit-serial fashion
(Section 4.3), whereas the TCAM DIMM using PCM has
a 128-bit search width. As compared to a wide search,
bit-serial search results in lower peak power (Figure 14b),
and allows AC-DIMM to implement more aggressive (and
hence faster) peripheral circuitry than the TCAM DIMM.
Figure 14a shows the delay of a search followed by a reduc-
tion tree operation with respect to the search width. For
both reduction tree operations (i.e., population count and
priority index), AC-DIMM exhibits a lower delay when the
search width is less than 32 bits (Table 3).

Notice that the performance of Reverse Index deteriorates
in both AC-DIMM and TCAM DIMM implementations.
Reverse Index spends considerable execution time on text
parsing. The irregular control flow (regular expression pro-
cessing) does not lend an efficient mapping to an associative
memory and runs on the processor instead (Section 7.3).

Beyond associative memory capability, AC-DIMM is able

197

0.0

0.1

1.0

10.0

Histogram Reverse
Index

Word
Count

String
Match

Bitcount Dijkstra Apriori Vortex Geomean Kmeans Linear
Regression

Matrix
Multiply

PCA Susan Geomean

N
or

m
al

iz
ed

 E
ne

rg
y

AC-DIMM TCAM-DIMM

AC-DIMM vs. TCAM-DIMM AC-DIMM only

0.210.150.12

Figure 15: AC-DIMM and TCAM DIMM energy normalized to the DRAM baseline.

10

100

1000

1 10 100 1000

D
el

ay
 (n

s)

Search width (bit)
AC-DIMM Pop. Count AC-DIMM Pri. Encode

TCAM-DIMM Pop. Count TCAM-DIMM Pri. Encode

(a) Delay

5

50

500

5000

1 10 100 1000

En
er

gy
 (n

J)

Search Width (bit)
AC-DIMM TCAM-DIMM

(b) Energy

Figure 14: Delay and energy comparison

to apply a rich set of user-defined operations to the search re-
sults (i.e., matches), and can process the required results in
situ. Figure 13 shows performance over a set of simulated ap-
plications. AC-DIMM outperforms the eight-threaded RAM-
based multicore system by an average of 4.5×. As data
intensive applications often suffer from insufficient off-chip
memory bandwidth, these applications naturally benefit from
the processing-in-memory capability of AC-DIMM. In con-
trast, these applications cannot benefit from the TCAM
DIMM due to insufficient functionality. The two operations
provided by the TCAM DIMM (i.e., population count and
priority index) see limited use in these workloads.

AC-DIMM allows a key-value pair to be co-located within
a row, which allows the value to be read and used immedi-
ately after a match. The TCAM DIMM array architecture
does not provide a separate read port such that data can be
read in the same way it is written. This method generates
extra overhead: when a search operation finishes, the pro-
cessor must explicitly use the matching index to fetch the
data from a separate DRAM module, resulting in additional
memory accesses.

8.2 Energy
AC-DIMM enables local computation by reducing data

movement between the processor and the memory, thereby
reducing the total system energy. To operate within the
power budget of a DDR3 DIMM, bit-serial search is em-
ployed. However, as the search width increases, bit serial
search becomes less energy efficient than the 128-bit search
mechanism used in the TCAM DIMM design. This charac-
teristic is due to the additional energy consumed by repeti-
tively activating the matchline and the bit-serial match re-
solver (Figure 14b). A comparison of the system energy is
shown in Figure 15, which includes the eight applications
that are portable to both AC-DIMM and TCAM DIMM,
and the five applications which are only portable to AC-
DIMM (Section 7). AC-DIMM saves more energy than the
TCAM DIMM in Histogram, Reverse Index, Bitcount, and
Dijkstra, because the associative key and data are co-located
in AC-DIMM. AC-DIMM eliminates the additional RAM
accesses required in a TCAM DIMM system. String Match
consumes more energy in the AC-DIMM system than in the
TCAM DIMM because the search width in this application
is 128 bits; hence, searching consumes more energy in AC-
DIMM. The five applications which are exclusively portable
to AC-DIMM exhibit energy savings over the baseline with
the exception of Matrix Multiply. Matrix multiplication is
highly computation intensive. Running Matrix Multiply on
AC-DIMM consumes the same amount of energy as on a
multi-core processor.

8.3 Area
The area breakdown of the proposed AC-DIMM is shown

in Figure 16. The area efficiency4 is 32%, which is compara-

!"#$

%#$

&#$"'#$

!(#$

!"#$%&'()(%**'%+,-$./%

)*+*$*,,*-.$
/,,*-$0,1021,31.$
435,6567+,6881,.$
91:;5<67$+,11$
=23+1$.0*51$

Figure 16: Area breakdown.

4The area efficiency of a memory circuit is the ratio of the
total area occupied by cells to the total chip area. According
to ITRS [18], the area efficiency of DRAM is 55%.

198

ble to the area efficiency of the TCAM DIMM (37%). The
white space is reserved for clock distribution, power distri-
bution, and decoupling capacitors.

9. CONCLUSIONS
This paper presents AC-DIMM, a high-performance, energy-

efficient associative memory DIMM that can be modularly
included in a DDR3-compatible system. AC-DIMM uses a
novel 2T1R STT-MRAM cell, which is 4.4× denser than
a CMOS TCAM cell. When implemented in an embedded
STT-MRAM process, the cell topology is applicable to any
memory technology that can be used as a RAM. AC-DIMM
broadens the scope of associative memory systems over exist-
ing approaches by allowing a key-value pair to be co-located
in the same row, and by employing integrated microcon-
trollers to execute user-defined operations on search results.
The end result is a high-performance, energy-efficient solu-
tion that successfully combines associative search and pro-
cessing in memory capabilities.

10. REFERENCES
[1] Design Compiler Command-Line Interface Guide.

http://www.synopsys.com/.

[2] Free PDK 45nm open-access based PDK for the 45nm
technology node.
http://www.eda.ncsu.edu/wiki/FreePDK.

[3] Advanced Micro Devices, Inc. AMD64 Architecture
Programmer’s Manual Volume 2: System
Programming, 2010.

[4] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules. In Proceedings of the 20th Very
Large Databases Conference, Santioago de Chile,
Chile, Sept. 1994.

[5] F. Alibart, T. Sherwood, and D. Strukov. Hybrid
CMOS/nanodevice circuits for high throughput
pattern matching applications. In Adaptive Hardware
and Systems (AHS), 2011 NASA/ESA Conference on,
June 2011.

[6] I. Arsovski, T. Chandler, and A. Sheikholeslami. A
ternary content-addressable memory (TCAM) based
on 4T static storage and including a current-race
sensing scheme. Solid-State Circuits, Journal of,
38(1):155 – 158, Jan. 2003.

[7] D. Elliott, W. Snelgrove, and M. Stumm.
Computational RAM: A memory-SIMD hybrid and its
application to DSP. In Custom Integrated Circuits
Conference, 1992., Proceedings of the IEEE 1992,
pages 30.6.1 –30.6.4, May 1992.

[8] K. Eshraghian, K.-R. Cho, O. Kavehei, S.-K. Kang,
D. Abbott, and S.-M. S. Kang. Memristor MOS
content addressable memory (MCAM): Hybrid
architecture for future high performance search
engines. Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, 19(8):1407 –1417, Aug. 2011.

[9] R. Foss and A. Roth. Priority encoder circuit and
method for content addressable memory. Technical
Report Canadian Patent 2,365, 891, MOSAID
Technologies Inc., Apr. 2003.

[10] A. Goel and P. Gupta. Small subset queries and
bloom filters using ternary associative memories, with
applications. In Proceedings of the ACM

SIGMETRICS international conference on
Measurement and modeling of computer systems,
SIGMETRICS ’10, pages 143–154, New York, NY,
USA, 2010. ACM.

[11] M. Gokhale, B. Holmes, and K. Iobst. Processing in
memory: the terasys massively parallel PIM array.
Computer, 28(4):23 –31, Apr. 1995.

[12] Q. Guo, X. Guo, Y. Bai, and E. İpek. A resistive
TCAM accelerator for data-intensive computing. In
Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture,
MICRO-44 ’11, pages 339–350, New York, NY, USA,
2011. ACM.

[13] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M.
Austin, T. Mudge, and R. B. Brown. MiBench: A free,
commercially representative embedded benchmark
suite. In Proceedings of the Workload
Characterization, 2001. WWC-4. 2001 IEEE
International Workshop, Washington, DC, USA, 2001.

[14] A. Hashmi and M. Lipasti. Accelerating search and
recognition with a TCAM functional unit. In
Computer Design, 2008. IEEE International
Conference on, Oct. 2008.

[15] J. L. Henning. SPEC CPU2000: Measuring CPU
performance in the new millennium. IEEE Computer,
33(7):28–35, July 2000.

[16] Y. Huai. Spin-transfer torque MRAM (STT-MRAM)
challenges and prospects. AAPPS Bulletin,
18(6):33–40, Dec. 2008.

[17] Intel Corporation. IA-32 Intel Architecture
Optimization Reference Manual, 2003.

[18] ITRS. International Technology Roadmap for
Semiconductors: 2010 Update.
http://www.itrs.net/links/2010itrs/home2010.htm.

[19] M. Joshi, G. Karypis, and V. Kumar. ScalParC: A
new scalable and efficient parallel classification
algorithm for mining large datasets. In IPPS, 1998.

[20] Kawahara, T. and Takemura, R. and Miura, K. and
Hayakawa, J. and Ikeda, S. and Young Min Lee and
Sasaki, R. and Goto, Y. and Ito, K. and MEGURO,
T. and Matsukura, F. and Takahashi, Hiromasa and
Matsuoka, Hideyuki and OHNO, H. 2 Mb SPRAM
(spin-transfer torque RAM) with bit-by-bit
bi-directional current write and parallelizing-direction
current read. IEEE Journal of Solid-State Circuits,
43(1):109–120, Jan. 2008.

[21] O. D. Kretser and A. Moffat. Needles and haystacks:
A search engine for personal information collections.
In Australasian Computer Science Conference, 2000.

[22] K. Lakshminarayanan, A. Rangarajan, and
S. Venkatachary. Algorithms for advanced packet
classification with ternary CAMs. In Proceedings of
the 2005 conference on Applications, technologies,
architectures, and protocols for computer
communications, SIGCOMM ’05, pages 193–204, New
York, NY, USA, 2005. ACM.

[23] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M.
Tullsen, and N. P. Jouppi. McPAT: An integrated
power, area, and timing modeling framework for
multicore and manycore architectures. In International
Symposium on Computer Architecture, 2009.

[24] L.-Y. Liu, J.-F. Wang, R.-J. Wang, and J.-Y. Lee.

199

CAM-based VLSI architectures for dynamic Huffman
coding. In Consumer Electronics, 1994. Digest of
Technical Papers., IEEE International Conference on,
June 1994.

[25] M. Madec, J. Kammerer, and L. Hebrard. Compact
modeling of a magnetic tunnel junction part II:
Tunneling current model. Electron Devices, IEEE
Transactions on, 57(6):1416–1424, 2010.

[26] S. Matsunaga, K. Hiyama, A. Matsumoto, S. Ikeda,
H. Hasegawa, K. Miura, J. Hayakawa, T. Endoh,
H. Ohno, and T. Hanyu. Standby-power-free compact
ternary content-addressable memory cell chip using
magnetic tunnel junction devices. Applied Physics
Express, 2(2):023004, 2009.

[27] S. Matsunaga, A. Katsumata, M. Natsui, S. Fukami,
T. Endoh, H. OHNO, and T. Hanyu. Fully parallel
6T-2MTJ nonvolatile TCAM with
single-transistor-based self match-line discharge
control. In VLSI Circuits (VLSIC), 2011 Symposium
on, June 2011.

[28] A. J. Mcauley and P. Francis. Fast routing table
lookup using CAMs. In IEEE INFOCOM, pages
1382–1391, 1993.

[29] D. McGrath. Everspin samples 64Mb spin-torque
MRAM. EETimes, Nov. 2012.
http://www.eetimes.com/design/memory-
design/4401052/Everspin-samples-64-Mb-spin-torque-
MRAM?pageNumber=0.

[30] M. Meribout, T. Ogura, and M. Nakanishi. On using
the CAM concept for parametric curve extraction.
Image Processing, IEEE Transactions on, 9(12):2126 –
2130, Dec. 2000.

[31] Micron Technology, Inc., MT41J128M8. 1Gb DDR3
SDRAM, 2006.

[32] R. Narayanan, B. Ozisikyilmaz, J. Zambreno,
G. Memik, and A. Choudhary. MineBench: A
benchmark suite for data mining workloads. In
Workload Characterization, 2006 IEEE International
Symposium on, Oct. 2006.

[33] M. Oskin, F. Chong, and T. Sherwood. Active pages:
a computation model for intelligent memory. In
Computer Architecture, 1998. Proceedings. The 25th
Annual International Symposium on, 1998.

[34] S. Panchanathan and M. Goldberg. A
content-addressable memory architecture for image
coding using vector quantization. Signal Processing,
IEEE Transactions on, 39(9):2066 –2078, Sept. 1991.

[35] S. S. P. Parkin, C. Kaiser, A. Panchula, P. M. Rice,
B. Hughes, M. Samant, and S. H. Yang. Giant
tunnelling magnetoresistance at room temperature
with MgO (100) tunnel barriers. Nature Materials,
3(12):862–867, 2004.

[36] T.-B. Pei and C. Zukowski. VLSI implementation of
routing tables: tries and CAMs. In INFOCOM ’91.
Proceedings. Tenth Annual Joint Conference of the
IEEE Computer and Communications Societies., Apr.
1991.

[37] J. Pisharath, Y. Liu, W. Liao, A. Choudhary,
G. Memik, and J. Parhi. NU-MineBench 2.0.
Technical report, Northwestern University, August
2005. Tech. Rep. CUCIS-2005-08-01.

[38] J. Potter, J. Baker, S. Scott, A. Bansal,

C. Leangsuksun, and R. Asthagiri. ASC: An
associative computing paradigm. Special Issue on
Associative Processing, IEEE Computer, 1994.

[39] B. Rajendran, R. Cheek, L. Lastras, M. Franceschini,
M. Breitwisch, A. Schrott, J. Li, R. Montoye,
L. Chang, and C. Lam. Demonstration of CAM and
TCAM using phase change devices. In Memory
Workshop (IMW), 2011 3rd IEEE International, May
2011.

[40] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski,
and C. Kozyrakis. Evaluating mapreduce for
multi-core and multiprocessor systems. In Proceedings
of the 13th International Symposium on
High-Performance Computer Architecture, 2007.

[41] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic,
L. Ceze, S. Sarangi, P. Sack, K. Strauss, and
P. Montesinos. SESC simulator, Jan. 2005.
http://sesc.sourceforge.net.

[42] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and
J. D. Owens. Memory access scheduling. In
Proceedings of the 27th annual international
symposium on Computer architecture, ISCA-27, 2000.

[43] S. Sharma and R. Panigrahy. Sorting and searching
using ternary CAMs. In High Performance
Interconnects, 2002. Proceedings. 10th Symposium on,
2002.

[44] R. Shinde, A. Goel, P. Gupta, and D. Dutta.
Similarity search and locality sensitive hashing using
ternary content addressable memories. In Proceedings
of the 2010 international conference on Management
of data, SIGMOD ’10, 2010.

[45] K. Tsuchida, T. Inaba, K. Fujita, Y. Ueda,
T. Shimizu, Y. Asao, T. Kajiyama, M. Iwayama,
K. Sugiura, S. Ikegawa, T. Kishi, T. Kai, M. Amano,
N. Shimomura, H. Yoda, and Y. Watanabe. A 64Mb
MRAM with clamped-reference and
adequate-reference schemes. In Solid-State Circuits
Conference Digest of Technical Papers (ISSCC), 2010
IEEE International, pages 258 –259, Feb. 2010.

[46] W. Xu, T. Zhang, and Y. Chen. Design of spin-torque
transfer magnetoresistive RAM and CAM/TCAM
with high sensing and search speed. IEEE
Transactions on Very Large Scale Integration Systems,
18(1):66–74, Jan 2010.

[47] Z. Zhang, Z. Zhu, and X. Zhang. A permutation-based
page interleaving scheme to reduce row-buffer conflicts
and exploit data locality. In MICRO-33, 2000.

[48] W. Zhao and Y. Cao. New generation of predictive
technology model for sub-45nm design exploration. In
International Symposium on Quality Electronic
Design, 2006. http://ptm.asu.edu/.

[49] J.-G. Zhu. Magnetoresistive random access memory:
The path to competitiveness and scalability.
Proceedings of the IEEE, 96(11):1786 –1798, Nov.
2008.

200

