
Transformations of Signed-Binary Number Representations
for Efficient VLSI Arithmetic

Boris D. Andreev, Edward L. Titlebaum, and Eby G. Friedman

Department of Electrical and Computer Engineering
University of Rochester

Rochester, New York 14627
{bandreev, tbaum, friedman} @ece.rochester.edu

Abstract

The VLSI implementation of arithmetic operations may
be significantly improved by using non-conventional
number representations and transforming intermediate
results from one format to another format. For a target
function, the objective is to change the number
representations of the input and output operands such that
a minimum amount of logic circuitry is required to achieve
a computation. Redundant arithmetic has received
increasing interest in the past decade to reduce or
eliminate carry propagation chains. The development of an
analytical framework that expands the scope of functions
that can be efficiently implemented using signed-binary
representation is discussed in this paper. Implementation
details are described that demonstrate the application of
these results. Particular attention is placed on realizing
the (a+b), –(a+b), (a–b), and –(a–b) functions in a
complex ±1 multiplier serving as a pseudonoise code
scrambler in wireless CDMA transceivers. *

1. Introduction

The speed of arithmetic logic circuits is a primary
characteristic in many digital VLSI systems, and is often
achieved at the expense of increased area or power
dissipation. The exploding growth of portable devices with
severe constraints on the available resources has motivated
a corresponding interest in innovative design approaches
that overcome tradeoffs among area, speed, and power.

One of the most common VLSI circuits is the binary
adder. Carry signal propagation through long chains of
logic, as in the case of a conventional ripple-carry adder, is

* This research is supported in part by the Semiconductor Research
Corporation under Contract No. 99-TJ-687 and No. 2003-TJ-1068, the
DARPA/ITO under AFRL Contract F29601-00-K-0182, grants from the
New York State Office of Science, Technology & Academic Research to
the Center for Advanced Technology – Electronic Imaging Systems and
to the Microelectronics Design Center, and by grants from Xerox
Corporation, IBM Corporation, Intel Corporation, Lucent Technologies
Corporation, Eastman Kodak Company, and Photon Vision Systems, Inc.

a major source of performance degradation. In many
complex arithmetic circuits, several structures with the
complexity of an adder are required, leading to significant
delay.

During the past decade, redundant arithmetic has
received increasing interest due to the ability to reduce or
eliminate carry propagation chains. Parallel addition is
performed by selecting an intermediate representation of
the sum of two numbers a+b such that the final result is
obtained using simple logic without need for carry
propagation. Although addition with redundant arithmetic
techniques may offer significant improvements in
computing speed, efficient circuit implementations have
traditionally been difficult to achieve. Since input and
output operands of arithmetic circuits are often required in
two’s-complement format, conversion circuits to/from the
intermediate representations are needed. These interface
circuits degrade the overall improvement in speed - the
conversion delay overhead must be smaller than the delay
reduction achieved using parallel computation techniques.
For these reasons, many systems for fast arithmetic, such
as the residue number system (RNS) [1] and the
logarithmic number system (LNS) [2], have not received
widespread use because of the significant overhead of the
conversion process. Alternatively, the number
representations proposed in this paper may be transformed
relatively easily to/from two’s-complement format using
the transformations described in the following sections.

The realization of four functions, (a+b), –(a+b), (a–b),
and –(a–b), with minimum resources is discussed in this
paper. These functions are used in a complex pseudonoise
(PN) code scrambler for wireless third generation CDMA
transceivers [3, 4]. The scrambler multiplies the complex
input signal a + jb by the PN code PNre + jPNim to obtain
the spread spectrum output A + jB = (a + jb) · (PNre +
jPNim). Based on knowledge of the particular pseudonoise
code, the signal of the desired user is extracted from the
multiuser interference. Transformations of number
representations for an efficient VLSI implementation of
the operations in the PN scrambler are described in this

Proceedings of The 3rd IEEE International Workshop on System-on-Chip
for Real-Time Applications ISBN 0-7695-1929-6/03 $17.00 © 2003 IEEE

paper. For a particular arithmetic function, the objective is
to change the number representations of the input and
output numbers such that a minimum amount of logic
circuitry is required to achieve the computation.

Of all redundant sets, the signed-binary (SB) set

Sx = {0,1, 1 } and the initial sum set Sy = {0, 1, 2} have
received significant attention due to the small size, relative
ease of representation within the binary number system,
and low conversion overhead to/from the conventional
two’s-complement format. The sum of any two bits ai+bi

may be represented by a digit yi in the initial sum set
Sy = {0, 1, 2}. The sum of two N-bit numbers a + b may
therefore be expressed as an (N+1)-digit initial sum
number y, with digits yi ∈ Sy. The digits from the two sets,
Sx and SY, are related through the self-inverting
transformation trxy(zi) = 1 - zi , zi ∈ {Sx ∪ Sy} [5]. The
numerical values of some N-digit numbers from both sets
may be expressed as

−

=

=
1N

0i

i
ix 2x(x)T and

−

=

=
1N

0i

i
iy 2y(y)T . (1)

In the following discussion, the notations Tx(x) and
TY(y) are used to denote both the numerical values of the
corresponding number, x or y, as well as the (N+1)-bit
representation of these values in two’s complement binary
format. Note that the value TY(y) is equal to the sum of
a+b; only the number format of y is not binary. As shown
in [5], if an initial sum y is transformed into a SB number x
through the digit transformation trxy: yi = 1 - xi, the relation
between the two's-complement numbers is

(2),)x(T2)x(T12

2)x(tr(x)][trT(y)Tba

x
N

x
N

1N

0i

i
ixyxyyy

+=−−=

===+
−

=

where 1)x(T)x(T xx +=− and)x(Tx is the binary number

Tx(x) with all bits inverted. This relation may be applied to
achieve an alternative VLSI implementation of an adder by
mapping the bits of the two N-bit numbers to signed-
binary digit from Sx (skipping the initial summation to yi),
converting the redundant number into the two's-
complement counterpart Tx(x), and finally, transforming
that result into the sum of the numbers Ty(y) [5]. The
conversion of an SB number to TC is achieved through the
reverse application of (2) (trxy is symmetric). This
approach permits the optimization of more flexible
arithmetic circuits when certain manipulations of the
intermediate results (or several consecutive operations) are
applied to perform carry-free addition in the Sx - SY

domain. Efficiency is achieved because expensive
operations in the two's-complement domain are performed
with less resources expended on the intermediate signed-
binary number which is easily manipulated (inverted
and/or added) without a carry propagation delay. The SB
number is mapped onto the correct result in two's-

complement. The most resource intensive part of this
process is the SB TC conversion, which is essentially
identical to a conventional two's-complement addition [5].
Tx(x) becomes the sum of the numbers TY(y) through an
inversion of all but the last bit as described by (2).

An analytical description of the remaining arithmetic
functions in a PN scrambler is provided in section 2. The
sign bit is discussed in section 3 while numerical examples
that demonstrate the application of these results are
presented in section 4. To illustrate the general framework
of this methodology, alternative transformations are
considered in section 5. A practical application of these
transforms for wireless CDMA transceivers is described in
section 6. Concluding remarks are offered in section 7.

2. Analytical Expressions of the Functions of a
Complex ±1 Mulitplier
The objective of this section is to apply the ideas briefly

presented in the introduction to achieve expressions for the
functions –(a+b), (a–b), and –(a–b). Based on (2), –(a+b)
can be expressed as

())x(T12)x(T12(y)T)ba(x
N

x
N

y ++−=−−−=−=+− . (3)

Conventional addition of 1 requires a carry propagation
chain, making the –(a+b) function difficult to implement.
Any addition of a signed-binary number with a two's-
complement number, however, may be completed in two
gate delays, producing a signed-binary output [6]. An
algorithm to implement the –(a+b) function is:

1. Sum the two input operands bitwise, producing an
initial sum in the set SY = {0,1,2}.

2. Map this result to a signed-binary number using

xi = (1-yi), xi ∈ Sx = {0,1, 1 }.
3. Perform the addition of +1 in two gate delays. The

result is in borrow-save signed-binary form [6, 7].
4. Convert the result from SB to TC format using a

conventional adder [5, 6, 8].
Note that the first three operations are simple logic

functions over a limited number of input operands, making
this algorithm amenable to optimization. It is assumed that
the result of the +1 addition is required to be in sign-
magnitude format. A number in signed-magnitude format
can be efficiently transformed and passed to the carry
generate-propagate (G-P) inputs of a carry lookahead
adder (CLA), where the conversion to TC is performed [9].
Applying conventional logic optimization, the (N+1)-digit
signed-binary result corresponding to Tx(x)+1 is

⊕==

⊕==

00
'
0

"
0

00
'
0

"
0"

0
baMM

baMS
d (4)

⊕⊕=⊕=

⋅⊕=⋅=

0011
'
0

'
1

"
1

0011
'
0

'
1

"
1"

1
babaSMM

babaSMS
d (5)

Proceedings of The 3rd IEEE International Workshop on System-on-Chip
for Real-Time Applications ISBN 0-7695-1929-6/03 $17.00 © 2003 IEEE

()
1Ni2

babaMSMM

babaMSMS
d

1i1iii
'

1i
'

1i
'
i

"
i

1i1iii
'

1i
'

1i
'
i

"
i"

i −≤≤
+⋅⊕=⊕=

+⋅⊕=⋅=

−−−−

−−−− (6)

+==

=

−−−− 1N1N
'

1N
'

1N
"
N

"
N"

N
baMSM

0S
d . (7)

Each digit at the output "
id is expressed in sign-

magnitude form and is a function of the signed-binary
input or the input two's-complement operands, a and b.
With these expressions, the signed-binary number
representation (SBNR) of Tx(x)+1 is achieved in two gate
delays. This number is converted to two's-complement or,
alternatively, may be inverted while in signed-binary form
to alternate between the (a+b) and –(a+b) functions.

Note that the conversion expressed by (3) cannot be
directly implemented by an N-bit adder with set carry-in
bit c0 = 1, because Tx(x)+1 is not achieved. Although the
conversion is similar to a regular addition, the function of
the carry-in bit is different since the outputs are inverted.

Similar expressions are considered for the difference
a – b. In this case, the SB digits xi are produced from the
initial sum yi, which is obtained from the bit-wise sum

ai + ib . The function is equal to

=−+=+=+=−
=

N

0i

i
ixyyy 2)x1(11(x)][trT1[y]T)ba(

 = 1 + [2N – 1 – Tx(x)] = 2N – Tx(x) . (8)

The x number is in signed-binary representation. The
inverse –Tx(x), the same number with toggled sign bits, is
converted to TC to achieve a – b. The corresponding
inverse function –(a–b) is

())x(T2)x(T2)ba(x
N

x
N +−=−−=−− . (9)

The implementation of the two difference functions is
similar to that of the summation functions, with the
exception of the +1 addition. This addition is conveniently
incorporated in a prelogic stage by (4) - (7). The
transformations and operations required to compute the
four functions, with two alternative implementations of the
a+b addition, are summarized in Table 1. Note that
although the sign-magnitude combination "10" is
forbidden, the sign inversion does not cause problems in
the CLA performing the SB TC conversion. This
behavior occurs because in the case of this forbidden bit
pair, the corresponding generate-propagate (G-P) signals
of the CLA become "11" and the value of the generate bit
does not affect the output result [9].

3. The Sign Bit
The summation of two N-bit numbers is generally an

(N+1)-bit number. The results derived in the previous
sections, however, are valid only if the input operands are
N-bit positive numbers or if the output is N-bit with no
overflow. Special care is required to set the Nth sign bit in
order to achieve correct results for all cases. An alternative
is to limit the input operands such that the output is
constrained within the range of an N-bit TC number. In
order to resolve this issue, the two's-complement addition
of two N-bit numbers a+b is presented as

The sum of all positive bits (N-2):0 is denoted by the N-
bit number c and the final addition result by the (N+1)-bit
number r. The lower N-1 bits of c and r are equal such that
only the two most significant bits require attention.

Table 1: Summary of transforms and implementation of the four required functions

Function
Relation to

TY(y)
Relation to

Tx(x)
Implementation description

a+b TY(y))x(T2 x
N +

1. Obtain all xi from ai, bi

2. Produce the 2's complement Tx(x)
3. Invert all bits, set the Nth bit

a+b TY(y)))x(T1(2 x
N +− 1. Obtain all xi from ai, bi, with +1 and inverted sign bits

2. Produce the 2's complement –(Tx(x)+1), set the Nth bit

–(a+b) –TY(y))x(T12 x
N ++− 1. Obtain all xi from ai, bi with +1

2. Produce the 2's complement Tx(x)+1, set the Nth bit

(a–b) TY(y)+1)x(T2 x
N −

1. Obtain all xi from ai, ib

2. Invert all sign bits of x
3. Produce the 2's complement –Tx(x), set the Nth bit

–(a–b) –[TY(y)+1])x(T2 x
N +− 1. Obtain all xi from ai, ib

2. Produce the 2's complement Tx(x), set the Nth bit

a aN-1 aN-2 … a2 a1 a0

b
+

bN-1 bN-2 … b2 b1 b0

Partial positive sum
of bits 0 : (N-2)

 cN-1 cN-2 … c2 c1 c0

Actual summation result rN rN-1 rN-2 … r2 r1 r0

Proceedings of The 3rd IEEE International Workshop on System-on-Chip
for Real-Time Applications ISBN 0-7695-1929-6/03 $17.00 © 2003 IEEE

The input sign bits aN-1 and bN-1 are both weighted by
–2N–1, while the output sign bit rN has a weight of 2N. The
relations between all sign bits are listed in Table 2, where
the following expressions are considered,

1N1N1N1N1N1N cPcbar −−−−−− ⊕=⊕⊕= , (10)

1N1N1N1N1N1N1N1NN cPGc)ba(bar −−−−−−−− +=⊕+= . (11)

Gi and Pi are the carry generate and carry propagate inputs
of the CLA, which performs the SB TC conversion. Note
that the N-1st bit is the same bit as computed by the carry-
lookahead adder. Only the Nth bit is changed and is similar

to the carry cN, with inverted
1-N

c to account for the

negative weight of the sign bits [9]. This function is
achieved inside the adder by inverting the propagated carry
cN-1 when cN is computed. This result is correct for all four
functions. Since the sign bit is controlled by (10) and (11),
computing the Nth digit from (7) is unnecessary (only rN

and rN+1 are affected); therefore, only an N-digit SB
number is required.

4. Numeric Examples
Examples are considered in this section and shown in

Table 3 to verify the analytical results and illustrate the
general ideas behind the conversion process. These
examples do not consider a broad range of values, but
rather are intended to demonstrate the sequence of
operations required to compute the target functions.

The four functions are divided into two pairs. Each pair
is implemented with a minor difference: a single
conditional inversion of the sign bits in the signed-binary
representation. The SB number for the two functions in
each pair is represented by either Tx(x) or Tx(x)+1. The
sign signals are either inverted or not, and the SB number
is mapped to the G-P inputs of a carry-lookahead adder.
The adder outputs are inverted and the two's-complement
sign bit is set according to (11) to achieve the final
function.

Analogies with bit processing exist in each column and
each row. Those similarities are discussed in more detail in
section 6.

5. Alternative Transformations
Alternative relations between the sets Sy(y) and Sx(x) are

discussed in this section. The transformation trxy= 1 - zi is
denoted as T 0 in the following discussion. Rather than a
strict requirement for duality (for the transform to be self-
inverting), only a one-to-one mapping condition is
imposed. One such transformation is

T1: yi = xi + 1 : –1 0 ; 0 1 ; 1 2 . (12)

In this case, the two's-complement of the initial sum y is
−

=

−

=

=+====+
1N

0i

i
i

1N

0i

i
ixyxyyy 2)x1(2)x(tr(x)][trT(y)Tba

.)x(T2)x(T12 x
N

x
N −+=+−= (13)

As in the previous transformation, relations for the other
functions are based on T1 and are listed in Table 4.

)x(T12)ba(x
N −+−=+− , (14)

[]−

=
=⋅+=+=+=−

1N

0i

i
ixy

1
xy

1
yy 2)x(T11(x)][TT1[y]T)ba(

[])x(T2)x(T1212)x1(1 x
N

x
N

1N

0i

i
i +=+−+=++=

−

=

, (15)

)x(T2)ba(x
N −−=−− (16)

Note that either (a–b) or –(a–b) can be achieved with
the same addition circuit, changing only the preprocessing
step which maps ai and bi onto the xi digits. The results are
the same up to the Nth bit (which is the sign bit). The sign
bit is controlled separately or ignored if overflow
precautions are applied.

The remaining four of the six possible mappings from
Sy to Sx are listed in Table 5. The relationships between SY

and the SB sets Sx1 and Sx2 provide a means for fast digit-
processing and efficient computation. Alternatively,
transforms 3 to 6 require a more elaborate transformation
to/from SY and can be useful for decomposing an initial
sum number from Sy into two signed-binary numbers. Both
transformations, T0 and T1, produce all of the functions
listed in Table 4. These transformations may also be used
interchangeably to switch between two functions by only
changing the prelogic mapping stage.

Table 2: Sign bit relations

Inputs Result

aN-1 bN-1 cN-1 rN rN-1 value

0 0 0 0 0 0

0 0 1 0 1 +2N-1

0 1 0 1 1 –2N-1

0 1 1 0 0 0

1 0 0 1 1 –2N-1

1 0 1 0 0 0

1 1 0 1 0 –2N

1 1 1 1 1 –2N-1

Table 4: Comparison of transformations

Arithmetic
function

T0: yi=1–xi T1: yi=1+xi

)x(T2 x
N +)x(T2 x

N −+
a + b

))x(T1(2 x
N +−))x(T1(2 x

N −−

– (a + b))x(T12 x
N ++−)x(T12 x

N −+−

a – b)x(T2 x
N −)x(T2 x

N +

– (a – b))x(T2 x
N +−)x(T2 x

N −−

Proceedings of The 3rd IEEE International Workshop on System-on-Chip
for Real-Time Applications ISBN 0-7695-1929-6/03 $17.00 © 2003 IEEE

T
ab

le
 3

: N
um

er
ic

 e
xa

m
pl

es
 fo

r
th

e
pr

op
os

ed
 tr

an
sf

or
m

at
io

ns
 th

at
 c

om
pu

te
 th

e
fo

ur
 fu

nc
tio

ns
,

(a
+

b)
, –

(a
+

b)
, (

a–
b)

, a
nd

 –
(a

–b
)

E
xa

m
pl

e
I

E
xa

m
pl

e
II

E

le
m

en
ta

ry
 o

pe
ra

ti
on

s
Su

m

±
(a

+
b)

D

if
fe

re
nc

e
±

(a
–b

)
Su

m

±
(a

+
b)

D

if
fe

re
nc

e
±

(a
–b

)

A

10
01

10
11

–1

01

10
01

10
11

10
10

11
10

-8

2
10

10
11

10

b
 (

b
)

11
10

10
01

–2

3
00

01
01

10

00

11
11

00

62

11
00

00
01

Si
gn

i
01

00
00

10
0

00

01
00

10

00

11
01

10
0

10

00
00

00

SB

M
ag

n i

Tx(x)+1

01
00

00
10

0

Tx(x)

01
11

00
10

Tx(x)+1

01
11

01
10

0

Tx(x)

10
01

00
00

In
ve

rt
 s

ig
ns

, i
i

Si
gn

G
=

10
11

11
01

1

11
10

11
01

11
00

10
01

1

01
11

11
11

G-P

i
i

M
ag

n
P

=
10

11
11

01
1

10

00
11

01

10

00
10

01
1

01

10
11

11

C
on

ve
rt

 to
 T

C
 (

C
L

A
)

01
 0

11
11

01
1

10

10
01

10
1

10

00
01

00
11

01
00

01
11

1

In
ve

rt
 a

ll
bi

ts
 (

N
-1

)-
0

Se
t N

th
 b

it
1

 1
00

00
10

0
–1

24

1
 1

01
10

01
0

–7
8

1
 1

11
10

11
00

-2

0
1

 0
11

10
00

0
–1

44

In
ve

rt
ed

 f
un

ct
io

ns

Sk
ip

 s
ig

n
in

ve
rt

io
n

G
i
=

 S
ig

n i
01

00
00

10
0

00

01
00

10

00

11
01

10
0

10

00
00

00

G-P

i
i

M
ag

n
P

=
10

11
11

01
1

10

00
11

01

10

00
10

01
1

01

10
11

11

C
on

ve
rt

 to
 T

C
 (

C
L

A
)

10
10

00
00

11

01

01
10

00
1

01

11
10

10
11

10
11

01
11

1

In
ve

rt
 a

ll
bi

ts
 (

N
-1

)-
0

Se
t N

th
 b

it
0

 0
11

11
10

0
12

4
0

 0
10

01
11

0
78

0

 0
00

01
01

00

20

0
 1

00
10

00
0

14
4

Proceedings of The 3rd IEEE International Workshop on System-on-Chip
for Real-Time Applications ISBN 0-7695-1929-6/03 $17.00 © 2003 IEEE

6. Example application for a CDMA
Pseudonoise Scrambler

Modern CDMA cellular systems employ spread
spectrum technology to provide multiuser access. An
integral part of the transceiver is the scrambling operation,
which involves the multiplication of the chip sequence
with a pseudonoise (PN) code in order to distinguish
signals from asynchronous users. In the UMTS third
generation wireless standard, the scrambling code is
complex, thereby requiring a complex multiplication [3].
Since the components of the complex PN code take binary
values in the set {−1, +1}, the scrambling multiplier can be
optimized. The transformations described in the previous
sections are applied to an efficient implementation of the
scrambler block in a CDMA wireless receiver.

The function of the scrambler is the multiplication of a
complex input signal a + jb by the PN code PNre + jPNim,
where PNre and PNim are in the binary set of {−1,+1}. The
complex output signal is A + jB = (a + jb)·(PNre + jPNim).
Note that the real and imaginary components of the output
signal take one of the four values described in Table 6,
controlled by the pseudonoise code signals. The four
functions, (a+b), –(a+b), (a–b), and –(a–b), are required to
implement a scrambler. Area, power, and speed resources
are saved if the circuit realization is accomplished with
conditional switching of a minimum number of logic
elements by the PN signals along the critical path.

The efficient realization of these four functions has been
described in previous sections and numeric examples are
presented in section 4. It is evident from Table 3 that there
is only one difference in the methods of computing the
sum functions, (a+b) and –(a+b), and the difference
functions (a–b) and –(a–b). These functions only differ by
the initial mapping of the input operands a and b to the
signed-binary number. As discussed in sections 3 and 4,
the SB number Tx(x)+1 is required to produce the sum

functions, while Tx(x) is required for the difference
functions. From a different perspective, both of the direct
functions, (a+b) and (a–b), differ from the inverse
functions, –(a+b) and –(a–b), respectively, by a single step
- the inversion of all sign bits of the SB representation.

Based on these observations, an architectural solution
for the complex ±1 multiplier is proposed in [3, 4]. There
are two distinct branches. Two of the four functions are
implemented along each of these branches. As shown in
Table 6, for any PN code, one summation function and one
difference function are computed. The delay of the critical
path is reduced by approximately 30% in the proposed
signed-binary architecture as compared to conventional
realizations [3, 4]. This enhanced speed is realized by
reducing the number of carry propagation chains in the
proposed architecture.

7. Conclusions
An analytical treatment of number representations for

efficient VLSI arithmetic circuits is presented. It is shown
that a variety of arithmetic functions, (a+b), –(a+b), (a–b),
and –(a–b), can be realized with significant resource
savings. Alternative transformations and potential
applications are also described and examples are presented
to support the analytic results. An application of the
proposed transformations in a wireless CDMA scrambler
is discussed where a significant speed benefit as compared
to conventional techniques is achieved.

8. References
[1] M. Soderstrand, W. Jenkins, G. Jullien, and F. Taylor,

Residue Number System Arithmetic: Modern Applications in
Digital Signal Processing, IEEE Press, 1986.

[2] T. Stouraitis and V. Paliouras, “Considering the Alternatives
in Low-Power Design,” IEEE Circuits and Devices, Vol. 17,
No.4, pp. 22-29, July 2001.

[3] B. Andreev, E. G. Friedman, and E. L. Titlebaum, "Efficient
Implementation of a Complex ±1 Multiplier," Proc. of the
ACM Great Lakes Symp. on VLSI, pp. 83-88, April 2002.

[4] B. D. Andreev, E. L. Titlebaum, and E. G. Friedman,
"Complex ±1 Multiplier Based on Signed-Binary
Transformations," Journal of VLSI Signal Processing, 2003.

[5] G. M. Blair, "The Equivalence of Twos-complement
Addition and the Conversion of Redundant-binary to Twos-
complement Numbers," IEEE Transactions on Circuits and
Systems I, Vol. 45, No. 6, pp. 669-671, June 1998.

[6] H. Srinivas and K. Parhi, "A Fast VLSI Adder Architecture,"
IEEE Journal on Solid-State Circuits, Vol. 27, No. 5, pp.
761-767, May 1992.

[7] A. Gonzalez and P. Mazumder, "Redundant Arithmetic,
Algorithms and Implementations," Integration, The VLSI
Journal, Vol. 30, No. 1, pp. 13-53, November 2000.

[8] J. M. Dobson and G. M. Blair, "Fast Two's Complement
VLSI Adder Design," Electronic Letters, Vol. 31, No. 20, pp.
1721-1722, September 28, 1995.

[9] N. Weste and K. Eshraghian, Principles of CMOS VLSI
Design, Addison-Wesley, 1993.

Table 5: All possible mappings of intermediate results

Initial sum xi=1-yi xi=1+yi x1i=x3i+x4i x2i=x5i+x6i
Input bits

SY Sx1 Sx2 Sx3 Sx4 Sx5 Sx6

00 0 1 1 1 0 1 0

01, 10 1 0 0 1 1 1 1

11 2 1 1 0 1 0 1

Table 6: Input/output relations for a ±1 complex multiplier

PN code Outputs

PNre PNim A B

 1 1 a − b a + b

 1 −1 a + b − (a − b)

−1 1 − (a + b) a − b

−1 −1 − (a − b) − (a + b)

Proceedings of The 3rd IEEE International Workshop on System-on-Chip
for Real-Time Applications ISBN 0-7695-1929-6/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

