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Abstract

The VLSI implementation of arithmetic operations may 
be significantly improved by using non-conventional 
number representations and transforming intermediate 
results from one format to another format. For a target 
function, the objective is to change the number 
representations of the input and output operands such that 
a minimum amount of logic circuitry is required to achieve 
a computation. Redundant arithmetic has received 
increasing interest in the past decade to reduce or 
eliminate carry propagation chains. The development of an 
analytical framework that expands the scope of functions 
that can be efficiently implemented using signed-binary 
representation is discussed in this paper. Implementation 
details are described that demonstrate the application of 
these results. Particular attention is placed on realizing 
the (a+b), –(a+b), (a–b), and –(a–b) functions in a 
complex ±1 multiplier serving as a pseudonoise code 
scrambler in wireless CDMA transceivers. *

1. Introduction 

The speed of arithmetic logic circuits is a primary 
characteristic in many digital VLSI systems, and is often 
achieved at the expense of increased area or power 
dissipation. The exploding growth of portable devices with 
severe constraints on the available resources has motivated 
a corresponding interest in innovative design approaches 
that overcome tradeoffs among area, speed, and power.  

One of the most common VLSI circuits is the binary 
adder. Carry signal propagation through long chains of 
logic, as in the case of a conventional ripple-carry adder, is 
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a major source of performance degradation. In many 
complex arithmetic circuits, several structures with the 
complexity of an adder are required, leading to significant 
delay. 

During the past decade, redundant arithmetic has 
received increasing interest due to the ability to reduce or 
eliminate carry propagation chains. Parallel addition is 
performed by selecting an intermediate representation of 
the sum of two numbers a+b such that the final result is 
obtained using simple logic without need for carry 
propagation. Although addition with redundant arithmetic 
techniques may offer significant improvements in 
computing speed, efficient circuit implementations have 
traditionally been difficult to achieve. Since input and 
output operands of arithmetic circuits are often required in 
two’s-complement format, conversion circuits to/from the 
intermediate representations are needed. These interface 
circuits degrade the overall improvement in speed - the 
conversion delay overhead must be smaller than the delay 
reduction achieved using parallel computation techniques. 
For these reasons, many systems for fast arithmetic, such 
as the residue number system (RNS) [1] and the 
logarithmic number system (LNS) [2], have not received 
widespread use because of the significant overhead of the 
conversion process. Alternatively, the number 
representations proposed in this paper may be transformed 
relatively easily to/from two’s-complement format using 
the transformations described in the following sections.  

The realization of four functions, (a+b), –(a+b), (a–b),
and –(a–b), with minimum resources is discussed in this 
paper. These functions are used in a complex pseudonoise 
(PN) code scrambler for wireless third generation CDMA 
transceivers [3, 4]. The scrambler multiplies the complex 
input signal a + jb by the PN code PNre + jPNim to obtain 
the spread spectrum output A + jB = (a + jb) · (PNre + 
jPNim). Based on knowledge of the particular pseudonoise 
code, the signal of the desired user is extracted from the 
multiuser interference. Transformations of number 
representations for an efficient VLSI implementation of 
the operations in the PN scrambler are described in this 
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paper. For a particular arithmetic function, the objective is 
to change the number representations of the input and 
output numbers such that a minimum amount of logic 
circuitry is required to achieve the computation.  

Of all redundant sets, the signed-binary (SB) set          

Sx = {0,1, 1 } and the initial sum set Sy = {0, 1, 2} have 
received significant attention due to the small size, relative 
ease of representation within the binary number system, 
and low conversion overhead to/from the conventional 
two’s-complement format. The sum of any two bits ai+bi

may be represented by a digit yi in the initial sum set        
Sy = {0, 1, 2}. The sum of two N-bit numbers a + b may 
therefore be expressed as an (N+1)-digit initial sum
number y, with digits yi ∈ Sy. The digits from the two sets, 
Sx and SY, are related through the self-inverting 
transformation trxy(zi) = 1 - zi , zi ∈ {Sx ∪ Sy} [5]. The 
numerical values of some N-digit numbers from both sets 
may be expressed as 
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In the following discussion, the notations Tx(x) and 
TY(y) are used to denote both the numerical values of the 
corresponding number, x or y, as well as the  (N+1)-bit 
representation of these values in two’s complement binary 
format. Note that the value TY(y) is equal to the sum of 
a+b; only the number format of y is not binary. As shown 
in [5], if an initial sum y is transformed into a SB number x
through the digit transformation trxy: yi = 1 - xi, the relation 
between the two's-complement numbers is 
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where 1)x(T)x(T xx +=−  and )x(Tx  is the binary number 

Tx(x) with all bits inverted. This relation may be applied to 
achieve an alternative VLSI implementation of an adder by 
mapping the bits of the two N-bit numbers to signed-
binary digit from Sx (skipping the initial summation to yi),
converting the redundant number into the two's-
complement counterpart Tx(x), and finally, transforming 
that result into the sum of the numbers Ty(y) [5]. The 
conversion of an SB number to TC is achieved through the 
reverse application of (2) (trxy is symmetric). This 
approach permits the optimization of more flexible 
arithmetic circuits when certain manipulations of the 
intermediate results (or several consecutive operations) are 
applied to perform carry-free addition in the Sx - SY

domain. Efficiency is achieved because expensive 
operations in the two's-complement domain are performed 
with less resources expended on the intermediate signed-
binary number which is easily manipulated (inverted 
and/or added) without a carry propagation delay. The SB 
number is mapped onto the correct result in two's-

complement. The most resource intensive part of this 
process is the SB TC conversion, which is essentially 
identical to a conventional two's-complement addition [5]. 
Tx(x) becomes the sum of the numbers TY(y) through an 
inversion of all but the last bit as described by (2).  

An analytical description of the remaining arithmetic 
functions in a PN scrambler is provided in section 2. The 
sign bit is discussed in section 3 while numerical examples 
that demonstrate the application of these results are 
presented in section 4. To illustrate the general framework 
of this methodology, alternative transformations are 
considered in section 5. A practical application of these 
transforms for wireless CDMA transceivers is described in 
section 6. Concluding remarks are offered in section 7. 

2. Analytical Expressions of the Functions of a 
Complex ±1 Mulitplier 
The objective of this section is to apply the ideas briefly 

presented in the introduction to achieve expressions for the 
functions –(a+b), (a–b), and –(a–b). Based on (2), –(a+b)
can be expressed as 

( ) )x(T12)x(T12(y)T)ba( x
N

x
N

y ++−=−−−=−=+− .  (3) 

Conventional addition of 1 requires a carry propagation 
chain, making the –(a+b) function difficult to implement.  
Any addition of a signed-binary number with a two's-
complement number, however, may be completed in two 
gate delays, producing a signed-binary output [6]. An 
algorithm to implement the –(a+b) function is: 

1. Sum the two input operands bitwise, producing an 
initial sum in the set SY = {0,1,2}.

2. Map this result to a signed-binary number using           

xi = (1-yi), xi ∈ Sx = {0,1, 1 }.
3. Perform the addition of +1 in two gate delays. The 

result is in borrow-save signed-binary form [6, 7]. 
4. Convert the result from SB to TC format using a 

conventional adder [5, 6, 8]. 
Note that the first three operations are simple logic 

functions over a limited number of input operands, making 
this algorithm amenable to optimization. It is assumed that 
the result of the +1 addition is required to be in sign-
magnitude format. A number in signed-magnitude format 
can be efficiently transformed and passed to the carry 
generate-propagate (G-P) inputs of a carry lookahead 
adder (CLA), where the conversion to TC is performed [9]. 
Applying conventional logic optimization, the (N+1)-digit 
signed-binary result corresponding to Tx(x)+1 is
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Each digit at the output "
id  is expressed in sign-

magnitude form and is a function of the signed-binary 
input or the input two's-complement operands, a and b.
With these expressions, the signed-binary number 
representation (SBNR) of Tx(x)+1 is achieved in two gate 
delays. This number is converted to two's-complement or, 
alternatively, may be inverted while in signed-binary form 
to alternate between the (a+b) and –(a+b) functions. 

Note that the conversion expressed by (3) cannot be 
directly implemented by an N-bit adder with set carry-in 
bit c0 = 1, because Tx(x)+1 is not achieved. Although the 
conversion is similar to a regular addition, the function of 
the carry-in bit is different since the outputs are inverted. 

Similar expressions are considered for the difference      
a – b. In this case, the SB digits xi are produced from the 
initial sum yi, which is obtained from the bit-wise sum      

ai + ib . The function is equal to 

=−+=+=+=−
=

N

0i

i
ixyyy 2)x1(11(x)][trT1[y]T)ba(

         = 1 + [2N – 1 – Tx(x)] = 2N – Tx(x)   .              (8) 

The x number is in signed-binary representation. The 
inverse –Tx(x), the same number with toggled sign bits, is 
converted to TC to achieve a – b. The corresponding 
inverse function –(a–b) is 

( ) )x(T2)x(T2)ba( x
N

x
N +−=−−=−− .               (9) 

The implementation of the two difference functions is 
similar to that of the summation functions, with the 
exception of the +1 addition. This addition is conveniently 
incorporated in a prelogic stage by (4) - (7). The 
transformations and operations required to compute the 
four functions, with two alternative implementations of the 
a+b addition, are summarized in Table 1. Note that 
although the sign-magnitude combination "10" is 
forbidden, the sign inversion does not cause problems in 
the CLA performing the SB TC conversion. This 
behavior occurs because in the case of this forbidden bit 
pair, the corresponding generate-propagate (G-P) signals 
of the CLA become "11" and the value of the generate bit 
does not affect the output result [9]. 

3. The Sign Bit 
The summation of two N-bit numbers is generally an 

(N+1)-bit number. The results derived in the previous 
sections, however, are valid only if the input operands are 
N-bit positive numbers or if the output is N-bit with no 
overflow. Special care is required to set the Nth sign bit in 
order to achieve correct results for all cases. An alternative 
is to limit the input operands such that the output is 
constrained within the range of an N-bit TC number. In 
order to resolve this issue, the two's-complement addition 
of two N-bit numbers a+b is presented as 

The sum of all positive bits (N-2):0 is denoted by the N-
bit number c and the final addition result by the (N+1)-bit 
number r. The lower N-1 bits of c and r are equal such that 
only the two most significant bits require attention.  

Table 1: Summary of transforms and implementation of the four required functions 

Function
Relation to 

TY(y) 
Relation to 

Tx(x) 
Implementation description 

a+b TY(y) )x(T2 x
N +

1. Obtain all xi from ai, bi

2. Produce the 2's complement Tx(x) 
3. Invert all bits, set the Nth bit 

a+b TY(y) ))x(T1(2 x
N +− 1. Obtain all xi from ai, bi, with +1 and inverted sign bits 

2. Produce the 2's complement –(Tx(x)+1), set the Nth bit 

–(a+b) –TY(y) )x(T12 x
N ++− 1. Obtain all xi from ai, bi with +1 

2. Produce the 2's complement Tx(x)+1, set the Nth bit 

(a–b) TY(y)+1 )x(T2 x
N −

1. Obtain all xi from ai, ib

2. Invert all sign bits of x 
3. Produce the 2's complement –Tx(x), set the Nth bit 

–(a–b) –[TY(y)+1] )x(T2 x
N +− 1. Obtain all xi from ai, ib

2. Produce the 2's complement Tx(x), set the Nth bit 

a aN-1 aN-2 … a2 a1 a0

b
+

bN-1 bN-2 … b2 b1 b0

Partial positive sum 
of bits 0 : (N-2) 

 cN-1 cN-2 … c2 c1 c0

Actual summation result rN rN-1 rN-2 … r2 r1 r0
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The input sign bits aN-1 and bN-1 are both weighted by    
–2N–1, while the output sign bit rN has a weight of 2N. The 
relations between all sign bits are listed in Table 2, where 
the following expressions are considered, 

1N1N1N1N1N1N cPcbar −−−−−− ⊕=⊕⊕=    ,     (10)  

1N1N1N1N1N1N1N1NN cPGc)ba(bar −−−−−−−− +=⊕+=  .  (11) 

Gi and Pi are the carry generate and carry propagate inputs 
of the CLA, which performs the SB TC conversion. Note 
that the N-1st bit is the same bit as computed by the carry-
lookahead adder. Only the Nth bit is changed and is similar 

to the carry cN, with inverted 
1-N

c  to account for the 

negative weight of the sign bits [9]. This function is 
achieved inside the adder by inverting the propagated carry 
cN-1 when cN is computed. This result is correct for all four 
functions. Since the sign bit is controlled by (10) and (11), 
computing the Nth digit from (7) is unnecessary (only rN

and rN+1 are affected); therefore, only an N-digit SB 
number is required. 

4. Numeric Examples 
Examples are considered in this section and shown in 

Table 3 to verify the analytical results and illustrate the 
general ideas behind the conversion process. These 
examples do not consider a broad range of values, but 
rather are intended to demonstrate the sequence of 
operations required to compute the target functions.  

The four functions are divided into two pairs. Each pair 
is implemented with a minor difference: a single 
conditional inversion of the sign bits in the signed-binary 
representation. The SB number for the two functions in 
each pair is represented by either Tx(x) or Tx(x)+1. The 
sign signals are either inverted or not, and the SB number 
is mapped to the G-P inputs of a carry-lookahead adder. 
The adder outputs are inverted and the two's-complement 
sign bit is set according to (11) to achieve the final 
function.  

Analogies with bit processing exist in each column and 
each row. Those similarities are discussed in more detail in 
section 6. 

5. Alternative Transformations 
Alternative relations between the sets Sy(y) and Sx(x) are 

discussed in this section. The transformation trxy= 1 - zi is 
denoted as T 0 in the following discussion. Rather than a 
strict requirement for duality (for the transform to be self-
inverting), only a one-to-one mapping condition is 
imposed. One such transformation is 

T1:    yi = xi + 1     :     –1  0 ; 0  1 ; 1  2      .      (12) 

In this case, the two's-complement of the initial sum y is 
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As in the previous transformation, relations for the other 
functions are based on T1 and are listed in Table 4.  
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Note that either (a–b) or –(a–b) can be achieved with 
the same addition circuit, changing only the preprocessing 
step which maps ai and bi onto the xi digits. The results are 
the same up to the Nth bit (which is the sign bit). The sign 
bit is controlled separately or ignored if overflow 
precautions are applied. 

The remaining four of the six possible mappings from 
Sy to Sx are listed in Table 5. The relationships between SY

and the SB sets Sx1 and Sx2 provide a means for fast digit-
processing and efficient computation. Alternatively, 
transforms 3 to 6 require a more elaborate transformation 
to/from SY and can be useful for decomposing an initial 
sum number from Sy into two signed-binary numbers. Both 
transformations, T0 and T1, produce all of the functions 
listed in Table 4. These transformations may also be used 
interchangeably to switch between two functions by only 
changing the prelogic mapping stage. 

Table 2: Sign bit relations 

Inputs Result

aN-1 bN-1 cN-1 rN rN-1 value

0 0 0 0 0 0 

0 0 1 0 1 +2N-1

0 1 0 1 1 –2N-1

0 1 1 0 0 0 

1 0 0 1 1 –2N-1

1 0 1 0 0 0 

1 1 0 1 0 –2N

1 1 1 1 1 –2N-1

Table 4: Comparison of transformations 

Arithmetic 
function 

T0: yi=1–xi T1: yi=1+xi

)x(T2 x
N + )x(T2 x

N −+
a + b 

))x(T1(2 x
N +−  ))x(T1(2 x

N −−

– (a + b) )x(T12 x
N ++−  )x(T12 x

N −+−

a – b )x(T2 x
N −  )x(T2 x

N +

– (a – b) )x(T2 x
N +−  )x(T2 x

N −−
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6. Example application for a CDMA 
Pseudonoise Scrambler 

Modern CDMA cellular systems employ spread 
spectrum technology to provide multiuser access. An 
integral part of the transceiver is the scrambling operation, 
which involves the multiplication of the chip sequence 
with a pseudonoise (PN) code in order to distinguish 
signals from asynchronous users. In the UMTS third 
generation wireless standard, the scrambling code is 
complex, thereby requiring a complex multiplication [3]. 
Since the components of the complex PN code take binary 
values in the set {−1, +1}, the scrambling multiplier can be 
optimized. The transformations described in the previous 
sections are applied to an efficient implementation of the 
scrambler block in a CDMA wireless receiver. 

The function of the scrambler is the multiplication of a 
complex input signal a + jb by the PN code PNre + jPNim,
where PNre and PNim are in the binary set of {−1,+1}. The 
complex output signal is A + jB = (a + jb)·(PNre + jPNim).
Note that the real and imaginary components of the output 
signal take one of the four values described in Table 6, 
controlled by the pseudonoise code signals. The four 
functions, (a+b), –(a+b), (a–b), and –(a–b), are required to 
implement a scrambler. Area, power, and speed resources 
are saved if the circuit realization is accomplished with 
conditional switching of a minimum number of logic 
elements by the PN signals along the critical path. 

The efficient realization of these four functions has been 
described in previous sections and numeric examples are 
presented in section 4. It is evident from Table 3 that there 
is only one difference in the methods of computing the 
sum functions, (a+b) and –(a+b), and the difference 
functions (a–b) and –(a–b). These functions only differ by 
the initial mapping of the input operands a and b to the 
signed-binary number. As discussed in sections 3 and 4, 
the SB number Tx(x)+1 is required to produce the sum 

functions, while Tx(x) is required for the difference 
functions. From a different perspective, both of the direct 
functions, (a+b) and (a–b), differ from the inverse 
functions, –(a+b) and –(a–b), respectively, by a single step 
- the inversion of all sign bits of the SB representation. 

Based on these observations, an architectural solution 
for the complex ±1 multiplier is proposed in [3, 4]. There 
are two distinct branches. Two of the four functions are 
implemented along each of these branches. As shown in 
Table 6, for any PN code, one summation function and one 
difference function are computed. The delay of the critical 
path is reduced by approximately 30% in the proposed 
signed-binary architecture as compared to conventional 
realizations [3, 4]. This enhanced speed is realized by 
reducing the number of carry propagation chains in the 
proposed architecture.  

7. Conclusions 
An analytical treatment of number representations for 

efficient VLSI arithmetic circuits is presented. It is shown 
that a variety of arithmetic functions, (a+b), –(a+b), (a–b), 
and –(a–b), can be realized with significant resource 
savings. Alternative transformations and potential 
applications are also described and examples are presented 
to support the analytic results. An application of the 
proposed transformations in a wireless CDMA scrambler 
is discussed where a significant speed benefit as compared 
to conventional techniques is achieved. 
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Table 5: All possible mappings of intermediate results 

Initial sum xi=1-yi xi=1+yi x1i=x3i+x4i x2i=x5i+x6i
Input bits 

SY Sx1 Sx2 Sx3 Sx4 Sx5 Sx6

00 0 1 1 1 0 1 0

01, 10 1 0 0 1 1 1 1

11 2 1 1 0 1 0 1 

Table 6: Input/output relations for a ±1 complex multiplier

PN code Outputs

PNre PNim A B

 1 1 a − b a + b  

 1 −1 a + b − (a − b) 

−1 1 − (a + b) a − b 

−1 −1 − (a − b) − (a + b) 
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