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Abstract

The dependence of the interconnect delay on the interplane via location in three-dimensional (3-D) ICs is investigated in this paper.

The delay of these interconnects can be significantly decreased by optimally placing the interplane vias. The via locations that minimize

the propagation delay of two-terminal interconnects consisting of multiple interplane vias under the distributed Elmore delay model are

determined. For interconnect trees, the interplane via locations that minimize the summation of the weighted delay of the sinks of the tree

are also determined. For these interconnect structures, the interplane via locations are obtained both through geometric programming

and near-optimal heuristics. Placement constraints are imposed such that the path is negligibly affected. The proposed heuristics are used

to implement efficient algorithms that exhibit lower computational times as compared to general optimization solvers with negligible loss

of optimality. Various interplane via placement scenarios are considered. Simulation results indicate delay improvements for relatively

short point-to-point interconnects of up to 32% with optimally placed interplane vias. For interconnect trees, the maximum

improvement in delay for optimally placed interplane vias is 19%. The proposed algorithms can be integrated into a design flow for 3-D

circuits to enhance placement and routing where timing is a primary design criterion.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Technology scaling has enabled an increase in integration density and a considerable decrease in the intrinsic gate delay
through smaller and faster devices. Higher integration densities require both a greater number and longer interconnects.
Therefore, as the device delay is reduced, the performance of integrated circuits has become dominated by the interconnect
delay. In addition, other interconnect-related issues, such as power consumption and signal integrity, have become more
pronounced with technology scaling. To manage these issues, a variety of techniques have been developed such as tapered
buffers, repeater insertion, wire sizing, and shielding, to name only a few. Nonetheless, these techniques increase silicon
area and power consumption and do not mitigate the primary issue, which is the increase in interconnect length. As a
result, innovative technologies and design techniques are required to satisfy the ever increasing demand for greater
performance.

Three-dimensional (3-D) or volumetric integration is such a promising alternative which offers the opportunity to relieve
the deleterious effects of long interconnects [1]. Another important characteristic of 3-D structures is that these systems can
include different technologies such as GaAs and SiGe, and design disciplines such as analog, digital, RF circuits, and
MEMS implemented within a single 3-D multiplane system, where each of the system components is fabricated with a high
yield manufacturing process. Such technological diversity extends the capabilities of 3-D systems over a conventional
CMOS platform, expanding the boundaries of the IC design space.

Three-dimensional systems can be conceptualized both at the package and wafer level [1–3]. Although package level
techniques for 3-D circuits reduce the off-chip interconnect distances and overcome the limitations of systems-on-chip
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(SoC), such as process yield and compatibility issues, these methods do not significantly decrease the length of the on-chip
interconnects, a problematic issue in high performance circuits. The on-chip interconnect length can be greatly decreased
by employing those 3-D technologies where the interplane interconnections are not limited to the die periphery.

Beam recrystallization [4], silicon epitaxial growth [5], solid phase crystallization [6], and processed wafer bonding [7] are
examples of wafer level fabrication techniques that have been proposed for 3-D circuits, where the interconnections among
devices located on different planes are implemented with vertical interplane interconnects. All but the last one of these
techniques involve the growth of the devices of the stack on a bulk silicon layer. The primary disadvantage of these
fabrication techniques except for the wafer bonding technique, however, is the difficulty in providing high quality devices.

The processed wafer bonding technique differs from the other fabrication processes in that this technique supports the
processing of each plane as an independent wafer [7–10]. These alternatives naturally involve high quality devices since
each device layer is developed as a standard two-dimensional (2-D) IC, producing high yield for each individual die within
the stack. A major limitation of these techniques is the misalignment of the planes during the bonding process, placing
constraints on the minimum size of the interplane vias. Another important concern is the substrate thickness of the upper
planes of the 3-D structure, which primarily determines the length of the interplane vias. Although wafer thinning is
applied, sufficient substrate thickness is required to sustain the mechanical stresses developed during the stacking of the
3-D system. Alternatively, silicon-on-insulator (SOI) technology can be used for the upper planes of the 3-D structure,
drastically reducing the interplane via length [11–13]. Thermal effects are significantly pronounced for this technology,
however, due to the low thermal conductivity of SiO2 [13].

In this paper, wafer bonding is considered to be the target technology for 3-D systems. A schematic of a 3-D circuit is
illustrated in Fig. 1, where two physical planes are bonded with adhesive materials or metal pads [8]. As illustrated in Fig. 1,
the physical planes are bonded face to face. Back-to-face bonding can also be utilized. Each physical plane of the stack is
similar to a conventional 2-D circuit, in that a plane includes a device layer and multiple metal layers to connect individual
circuits located on the same physical plane (the intraplane interconnects). Communication among circuits on different
physical planes (the interplane interconnects) is implemented by interplane vias, which are called vias here for brevity.

To fully exploit the potential of 3-D circuits, sophisticated placement and routing algorithms are required. A channel
routing methodology suitable for 3-D standard cell and gate array circuits has been presented in Ref. [14], while a thermal
aware placement technique for the same type of circuits is presented in Ref. [15]. The routing problem for 3-D FPGAs has
also been addressed in Ref. [16]. Early 2-D CAD algorithms have recently been adapted for 3-D circuits [17–23]. In all of
these algorithms, however, the particular traits of the interplane interconnects, such as the non-uniform impedance and the
location of the via, are not considered. In addition, in some of these approaches, the interplane vias are completely ignored
[23] or considered equivalent to the intraplane interconnects [21], an assumption that does not apply to every form of 3-D
integration, such as system-in-package.

Zhang et al. [24] consider the effect of the vertical vias on the interplane interconnects in their delay expression by
modeling the line with different impedances; however, the authors apply two restrictive assumptions. One assumption is
that the via is always placed at the center of the line, independent of line length, and the second assumption is that each
horizontal segment of the interconnect has the same impedance characteristics. The former assumption can lead to severe
performance inaccuracies, while the latter assumption does not accurately depict the physical nature of the interplane
interconnects as described in Ref. [25]. Randomly placing the vias can result in significant performance degradation.

The via locations that yield the minimum propagation delay of interplane interconnects are determined in this work. In
the case of two-terminal interconnects with multiple vias, the via locations are determined through geometric programming
and non-convex quadratic programming, where globally optimum solutions are obtained. These solutions are compared in
terms of optimality with a proposed heuristic. Another heuristic for the near-optimal via location of multi-terminal
interconnect trees is also introduced. Optimization algorithms based on the proposed heuristics exhibit lower
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Fig. 1. Schematic of a three-dimensional circuit [8] where face-to-face bonding is employed.
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computational times as compared to general optimization solvers. Finally, the effect of the impedance characteristics of the
interconnect segments on the improvement in delay achieved by the proposed via placement method is investigated.
Simulation results demonstrate the integration of variable via locations into placement and routing algorithms for 3-D
circuits, which can considerably enhance the performance of a 3-D design flow.

The rest of the paper is organized as follows. In Section 2, the problem of via placement for two- and multi-terminal
interconnects is defined and specific characteristics of interconnects in 3-D circuits are discussed. A heuristic for
determining the near-optimal via location of interplane interconnects that comprise more than one via is presented in
Section 3. The via locations for multi-terminal nets that minimize the summation of the weighted delay of the branches of
the tree are determined in Section 4. Efficient algorithms based on the proposed heuristics are described in Section 5.
Simulation results are presented in Section 6, illustrating the performance enhancements that can be achieved by optimally
placing vias in 3-D circuits. Finally, in Section 7, some conclusions are offered.

2. Via placement problem formulation

The timing-driven via placement problem for two-terminal nets and interconnect trees under the distributed Elmore
delay model is formulated in this section. In conventional 2-D circuits, a two-terminal net such as the structure shown in
Fig. 2 is usually modeled as a line with uniform impedance characteristics, while the vias are either ignored or considered as
small lumped resistive loads. The heterogeneity of 3-D circuits, however, does not support a uniform line model. In 3-D
systems, circuits from different and disparate technologies are integrated onto a single multiplane system. As a
characteristic example of heterogeneous 3-D systems, consider the 3-D SOI process developed by the M.I.T. Lincoln
Laboratory [26]. This process includes wafer bonding of three planes with three metal layers available for each plane, where
the sheet resistance of the topmost plane is approximately an order of magnitude smaller than that of the other metal
layers. The difference in the impedance characteristics of the interconnects in 3-D systems is also the result of process
variations that exist among dies of the same wafer (interdie variation) and among dies of different wafers (wafer-to-wafer
variations). The interplane interconnects are, therefore, modeled as wire segments with non-uniform impedance
characteristics.

In order to analyze the delay of a line, the distributed Elmore delay model has been adopted due to the simplicity and
high fidelity of this model [27]. The accuracy of the model can be further improved as discussed in Ref. [28]. However,
unlike a single plane, more than one set of fitting coefficients is required in a 3-D system. Alternatively, higher order models
with greater accuracy as compared to the Elmore delay model can be utilized to characterize the delay of the interplane
nets. Due to the particular traits of the interplane nets in 3-D circuits, however, the optimization problem can be
non-convex even for the simple Elmore delay model. Employing higher order delay models further exacerbates the
difficulty of optimizing the interconnect delay as the convexity of these timing models cannot be easily proved. In addition,
these models may not be in suitable form to be solved as a geometric programming problem, which can yield globally
optimum solutions. Consequently, any solutions based on these models can produce local minima, possibly creating
inferior solutions than that produced by the less accurate Elmore delay model. An increase in the computational time
should also be considered as a natural tradeoff for greater accuracy when utilizing such models. Two-terminal interplane
nets comprising multiple vias are considered in Section 2.1. The more complex task of via placement for interplane
interconnect trees in 3-D circuits is introduced in Section 2.2.

2.1. Two-terminal net with multiple vias

The problem of timing-driven via placement for two-terminal nets is formulated in this section. Consider the interplane
interconnect shown in Fig. 2 that connects two circuits located n physical planes apart. The horizontal segments of the line
are connected through the vias, which can traverse more than one plane. Consequently, the number of horizontal segments
within the interconnect is smaller than or at most equal to the number of physical planes between the two circuits, i.e.,
nXm, where the equality only applies when each of the vias connects metal layers from two adjacent physical planes.

Each horizontal segment j of the line is located on a different physical plane with length lj. The vias are denoted by the
index of the first of the two connected segments. For example, if a via connects segment j and j+1, the via is denoted as vj
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Fig. 2. Interplane interconnect consisting of m segments connecting two circuits located n planes apart.
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with length lvj. Note that planes j and j+1 are not necessarily physically adjacent. The total length of the line L is equal to
the summation of the length of the horizontal segments and vias

L ¼ l1 þ lv1 þ � � � þ lj þ lvj þ � � � þ lm. (1)

The length of each horizontal segment of the line is bounded

lj minpljplj min þ Dxj , (2)

or, alternatively, the via placement is constrained

0pxjpDxj , (3)

where ljmin is the minimum length of the interconnect segment on plane j, and Dxj is the length of the interval in which the
via that connects planes j and j+1 is placed. This interval length is called the ‘‘allowed interval’’ here for clarity. xj is the
distance of the via location from the edge of the allowed interval.

ljmin is the length of an interconnect segment connecting two allowed intervals or an allowed interval and a placed cell.
These lengths are considered fixed. Alternatively, the routing path of a net is not altered except for the via location within
the allowed intervals. Each horizontal segment is assumed to be laid out on a single metal layer within the physical plane.
In the case where a horizontal segment is on more than one layer, as the outcome of a layer assignment algorithm [29], the
problem can be approached in two different ways. The intraplane vias can be treated as additional variables where the
location of these vias also needs to be determined. This formulation, however, requires the additional allowed intervals be
determined specifically for the intraplane vias. Alternatively, the first and last section of the segment connected to the
interplane vias remains as a variable while the remaining sections of that horizontal segment constitute the minimum length
of segment ljmin, which is constant, as previously discussed.

The distributed Elmore delay model is used to determine the delay of these interconnects. The corresponding electrical
model of the line is depicted in Fig. 3. The related notation is listed in Table 1. The distributed Elmore delay of a two-
terminal interconnect in matrix form is

TðlÞ ¼ 0:5lTAlþ blþD, (4)
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Fig. 3. Interplane interconnect model composed of a set of non-uniform distributed RC segments.

Table 1

Notation for two-terminal nets and interconnect trees

Notation Definition

RS Driver resistance

CL Load capacitance

rj (cj) Resistance (capacitance) per unit length of horizontal segment j

rvj (cvj) Resistance (capacitance) per unit length of interplane via vj

Rj (Cj) Total interconnect resistance (capacitance) of horizontal segment j

Rvj (Cvj) Total interconnect resistance (capacitance) of interplane via vj

Ruj
Upstream resistance of the allowed interval of via vj

Ruij
Common upstream resistance of the allowed interval of via vi and vj

di Candidate direction for a type-2 move

Cdj
Total downstream capacitance of the allowed interval of via vj (in every direction di)

Pspq Path from root of the tree to sink spq

Pspqvj
Path to sink spq including vj in every candidate direction

Ukj Set of vias located upstream vj up to vk, including vk and belonging to at least one path Pspqvj

Pspqvj
Path to sink spq that does not include vj

PspqUkj
Path to sink spq that does not include any of the vias in the set Ukj

Pspqvj di
Path to sink spq that includes vj and belongs to direction di

Pspqvj di
Path to sink spq including vj in every candidate direction except for di

Cdvj di
Downstream capacitance of the allowed interval of via vj for the paths Pspqvj di

C
dvj di

Downstream capacitance of the allowed interval of via vj for the paths Pspqvj di

V.F. Pavlidis, E.G. Friedman / INTEGRATION, the VLSI journal 41 (2008) 489–508492
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l ¼ l1 l2 � � � lm�1 lm

� �T
, (5)

A ¼

r1c1 r1c2 r1c3 � � � r1cm

r1c2 r2c2 r2c3 � � � r2cm

..

. ..
.

� � � � � � ..
.

r1cm�1 r2cm�1 r3cm�1 � � � rm�1cm

r1cm r2cm r3cm � � � rmcm

2
66666664

3
77777775
, (6)

b ¼

r1
Pm�1
i¼1

cvilvi þ CL

� �
þ c1RS

..

.

rmCL þ cm RS þ
Pm�1
i¼1

rvilvi

� �

2
66666664

3
77777775

T

, (7)

D ¼ RS

Xm�1
i¼1

cvilvi þ CL

Xm�1
i¼1

rvilvi þ
1

2

Xm�1
i¼1

rvicvil
2
vi þ RSCL. (8)

Note that Eq. (5) includes only the length of the horizontal segments of the interconnect lj, as the length of the vias lvj is
considered constant. Since Eq. (8) is a constant quantity, the optimization problem can be described as follows:

ðPÞ
minimizeTðlÞ ¼ 0:5lTAlþ bl

subject to ð1Þ; ð2Þ; and ð3Þ:

As described by the following theorem, the primal problem (P) is typically not convex and, therefore, convex quadratic
programming optimization techniques are not directly applicable.

Theorem 1. The primal optimization problem (P) is convex iff

riþ1ci � riciþ140. (9)

Proof. A is a positive definite matrix if all subdeterminants are positive. By elementary row operations, the
subdeterminants of A are positive iff (9) applies. If (9) applies, A is positive definite and (P) is a convex optimization
problem.&

Note that Eq. (9) should be satisfied for every horizontal segment of the interconnect such that A is a positive definite
matrix.

2.2. Interconnect trees

Timing-driven via placement for interplane interconnect tree structures is formulated in this section. A simple interplane
interconnect tree (also called an interconnect tree for simplicity) is illustrated in Fig. 4a, while some related terminology is
listed in Table 1. The sinks of the tree are located on different physical planes within a 3-D stack. Sub-trees not directly
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V.F. Pavlidis, E.G. Friedman / INTEGRATION, the VLSI journal 41 (2008) 489–508 493



Author's personal copy

connected to the interplane vias and that do not contain any interplane vias (i.e., intraplane trees) are also shown. The
interconnect segment from each physical plane is denoted by a solid line of varying thickness. Different objective functions
can be applied to optimize such an interconnect structure. In this paper, the weighted summation of the distributed Elmore
delay of the branches of an interconnect tree is considered as the objective function

Tw ¼
X
8spq

wspq Tspq , (10)

where wspq and Tspq are the weight and distributed Elmore delay of sink spq, respectively. The weights are assigned to the
sinks according to the criticality of the net. The criticality of the nets is user defined. Alternatively, for a specific circuit, the
identified critical paths are assigned higher weights. The criticality of the sinks can also be determined either by adopting a
uniform distribution or, alternatively, as adopted here, the criticality of the paths can be based on the length of the specific
paths. Consequently, the longer nets are assigned greater weights, which is a reasonable and practical approach.

For a via connecting multiple interconnect segments, or equivalently, for a via with degree greater than two, there are
several candidate directions dis along which the delay can be decreased. The placement of vias along these directions is
constrained by the ldis, as shown in Fig. 4b, where the length ldis are not generally equal. In addition, vias can span more
than one physical plane. For example, consider the via connecting sinks s23 and s33. This via traverses two physical planes,
where the allowed interval for placing the via can be different for each plane.

Three different types of moves for an interplane via are defined. A type-1 move is shown in Fig. 5a. This type of move
requires the insertion of an intraplane via (to preserve connectivity), as depicted by a dot in Fig. 5a. In the following
analysis, the effect of these additional intraplane vias on the delay of the tree is assumed to be insignificant, where the
impedance characteristics of the intraplane vias are assumed to be considerably lower than the impedance characteristics of
the interplane vias [30], particularly if bulk CMOS devices are used for the upper planes. Alternatively, this effect can be
included by appropriately shrinking the length of the allowed interval of the interplane via.

A type-2 move is shown in Fig. 5b. A type-2 move differs from a type-1 move in that an additional interconnect segment
of length Dl is inserted. Although an additional interconnect segment is required for this type of move, a reduction in the
delay of the tree can occur. The segments of length Dl illustrated in Fig. 5b are located on the same y-coordinate but on
different physical planes, yet are shown on different coordinates for added clarity.

Another type of move is illustrated in Fig. 5c, where additional interplane vias are inserted, and is denoted as a type-3
move. This type of move is not permitted for two reasons. The additional interplane vias outweigh the delay reduction
resulting from optimizing the length of the connected segments due to the high impedance characteristics of the interplane
vias. Additional interplane vias also increase the vertical interconnect density which is undesirable. The routing congestion
also increases as these vias typically can block the metal layers within a plane, adversely affecting the length of the allowed
intervals for the remaining nets.

To better explain the different types of moves illustrated in Fig. 5, consider the cross-section of these interplane moves as
shown in Fig. 6. In Fig. 6, lj and lj+1 are the length of the interconnect segments in the x-direction that belong to the plane j

and j+1, respectively (not necessarily adjacent). In Figs. 5a and 6a, the interplane via is shifted to the left to decrease the
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length of segment lj. If x–y routing is permitted within one metal layer (i.e., segments in both the x- and y-direction within
the same metal layer are allowed), no intraplane via is required to preserve connectivity. If, however, only one routing
direction is allowed in each metal layer, the segments on plane j+1 occupy more than one layer and, therefore, an
intraplane via (shown by the dot) is required. In Figs. 5b and 6b, the via is shifted by Dl to the right, extending segment lj on
plane j by Dl. An additional segment Dl is required on plane j+1 to connect the segments routed in the y-direction with the
interplane via. As previously described, an intraplane via may also be required. Alternatively, the overhead of segment Dl

on plane j+1 can be avoided by adding interplane vias, as shown in Figs. 5c and 6c. Such a type of move, however, is not
allowed in order to maintain a low interplane via density.

The constraints described by Eqs. (1) and (2) are extended to each sink and via of the interconnect tree. The constraint in
Eq. (1) is adapted to consider any increase in wire length that can result from a type-2 move for some branches of the tree.
Consequently, for a selected move direction di for via vj and path Pspqvj

, Eqs (1) and (2) are, respectively,

Lspq ¼ l1 þ lv1 þ � � � þ lj þ lvj þ ljþ1 þ � � � þ ln; for a type-1 move. (11)

Lspq ¼ l1 þ lv1 þ � � � þ lj þ lvj þ Dl þ ljþ1 þ � � � þ ln; for a type-2 move. (12)

lj minpljplj min þ ldi; for a type-1 move: (13)

lj minpljplj min þ ldi þ Dl; for a type-2 move. (14)

Consequently, the constrained optimization problem for placing a via within an interplane interconnect tree can be
described as

ðP1Þ
minimize Tw;

subject to ð1Þ 8 sink spq; ð11Þ2ð14Þ:

By similar reasoning as for two-terminal nets, (P1) typically includes an indefinite quadratic form lTAl, where A is the
matrix described in Eq. (6) adapted for interconnect trees. Certain transformations can be applied to convert (P) and (P1)
into a convex optimization problem [31]; the objective functions, however, are no longer quadratic. Alternatively, (P) and
(P1) can be cast as a geometric programming problem. Geometric programs include optimization problems for functions
and inequalities of the following form:

gðyÞ ¼
XM
j¼1

sjy
a1j

1 y
a2j

2 � � � y
anj
n , (15)

sjy
a1j

1 y
a2j

2 � � � y
anj
n p1, (16)

where the variables yjs and coefficients sjs must be positive and the exponents aijs are real numbers. Although equality
constraints are not allowed in standard geometric problems, (P) and (P1) can be solved as generalized geometric programs
as described in Ref. [32], where globally optimum solutions are determined. In Section 3, an efficient heuristic for placing
vias in two-terminal nets is presented.

3. Two-terminal net via placement heuristic

In this section, a heuristic for the near-optimal interplane via placement of two-terminal nets that include several
interplane vias is described. The key step in the heuristic is that the optimum via placement depends primarily upon the
length of the allowed interval (that is estimated or known after an initial placement) rather than the exact location of the
via. Consider the interplane interconnect line shown in Fig. 2, where the optimum location for via j that connects
interconnect segments j and j+1 is to be determined. With respect to this via, the critical point (i.e., qT el=qxj ¼ 0) of the
Elmore delay is

xj ¼ �
lvjðrjcvj � rvjcjþ1 þ rjþ1cjþ1 � rjcjþ1Þ þ Rujðcj � cjþ1Þ þ Dxjðrj � rjþ1Þcjþ1 þ Cdjðrj � rjþ1Þ

rjcj � 2rjcjþ1 þ rjþ1cjþ1

� �
, (17)

where Ruj and Cdj are the upstream resistance and downstream capacitance, respectively, of the allowed interval for via j

(see also Table 1), as shown in Fig. 2. The Elmore delay of the line with respect to xj can be either a convex or a concave
function [25]. The remaining discussion in this section applies to the case where the Elmore delay of the line is a convex
function with respect to xj. A similar analysis can be applied for the concave case.

In Eq. (17), the optimum via location x�j is a monotonic function of Ruj and Cdj. The sign of the monotonicity depends
upon the interconnect impedance parameters of the segments j and j+1 connected by via j. As the length of the allowed
intervals for all of the vias is constrained by Eq. (3), the minimum and maximum values of Ruj and Cdj can be readily
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determined, permitting the values of x�j for these extrema, x�j min and x�j max, to be evaluated. Due to the monotonic
dependence of xj on Ruj and Cdj, the optimum location for via j, x�j , lies within the range delimited by x�j min and x�j max. The
following cases can be distinguished, while a proof of the heuristic is provided in Appendix A.

(i) If x�j maxp0, x�j ¼ 0, and the optimum via location coincides with the lower bound of the interval as defined by Eq. (3).
(ii) If x�j minXDxj, x�j ¼ Dxj, and the optimum via location coincides with the upper bound of the interval as defined by Eq.

(3).
(iii) If DxjXx�j minX0 and DxjXx�j maxX0, the bounded interval as defined by Eq. (3) reduces to

0px�j minpxjpx�j maxpDxj. (18)

In this case, the via location cannot be directly determined. However, by iteratively decreasing the range of values
for x�j , the near-optimal location for via j can be achieved.

The following example is used to demonstrate that the physical domain for x�j iteratively decreases to a single point,
the optimum via location. Consider segment i, j, and k in Fig. 2, where segments i and k are located upstream and

downstream of segment j, respectively. From Eqs. (2) and (3), the minimum and maximum values of R0
ui, R0

uj, R0
uk, C0

di,

C0
dj, and C0

dk are determined, where the superscript represents the number of iterations. Assume that x�0min and x�0max are

obtained from Eq. (17) to satisfy Eq. (18) for all three segments, i, j, and k. Note that this condition is assumed to
illustrate the convergence of the heuristic and is not a requirement for segments i and k. Segments i and k can satisfy
any of the cases (i)–(iv) of the proposed heuristic. As the range of values for the via location of segments i and k

decreases according to Eq. (18), the minimum (maximum) value of the upstream resistance and downstream

capacitance of segment j increases (decreases), i.e., R0
uj minoR1

uj min, C0
dj minoC1

dj min, R1
uj maxoR0

uj max, and

C1
dj maxoC0

dj max. Due to the monotonicity of x�j on Ruj and Cdj, x�0j minox�1j min and x�1j maxox�0j max. The range of

values for x�j therefore also decreases and, typically, after two or three iterations, the optimum location for the
corresponding via is determined.

(iv) If x�j minp0 and x�j maxXDxj, the via location cannot be directly determined. Additionally, the bounding interval cannot
be reduced. Consequently, some loss of optimality occurs. This departure from the optimal, however, is smaller than
0.03% as shown by the optimization results described in Section 6. In all of the simulations, less than 1% of the
interconnect instances yield boundary values for x�j such that the inequalities x�j minp0 and x�j maxXDj are satisfied.

The inequalities in (iv) are usually satisfied, where the length of the allowed interval for a via is relatively small as
compared to the length of the allowed intervals for the remaining vias. A non-optimal via placement for that interconnect
segment does not significantly affect the overall delay of the line. Furthermore, the non-optimal placement of a via does not
necessarily affect the optimal placement of the remaining vias. For example, any via placed according to the criteria
described in (i) and (ii) is not affected by the placement of the remaining vias. Therefore, as noted earlier, the length of the
allowed intervals rather than the exact location of the vias is the key factor in determining the optimum via locations. The
same fundamental notion is used in a heuristic to place the interplane vias in the case of interconnect trees in 3-D circuits,
which is described in Section 4.

4. Multi-terminal net via placement heuristic

A near-optimal heuristic for placing vias in interconnect trees in 3-D circuits is presented in Section 4.1. A variant of the
problem in Section 4.1 where the interplane vias are placed to minimize the delay of a single critical branch of a tree is
discussed in Section 4.2.

4.1. Interconnect trees

In this section, placing an interplane via within an interconnect tree in a 3-D circuit to minimize the summation of the
weighted Elmore delay of the branches of the tree is investigated. Since several moves for the interplane vias are possible, as
discussed in Section 2.2, the expressions that determine the via location are different in multi-terminal nets. To determine
which type of move for those vias with a connectivity degree greater than two can yield a decrease in the delay of a tree, the
following conditions apply.

Condition 1. If rj4rj+1, only a type-1 move for vj can reduce the delay of a tree.

Proof. The proposition is analytically proven in Appendix B. The condition can also be intuitively explained. A type-2
move increases by Dl the length of segment lj. The reduction in lj+1 is counterbalanced by the additional segment with
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length Dl on the j+1 plane (see Fig. 5b). Consequently, the total capacitance of the tree increases. If Condition 1 is
satisfied, a type-2 move also increases the total resistance of the tree and, therefore, the delay of the tree will only increase
by this via move.&

Condition 2. For a candidate direction di, if rjorj+1 andX
8spq2Pspqvj di

wsp ðrj þ rjþ1ÞCdvjdi
p

X
8spq2Pspqvjdi

wspðrjþ1 � rjÞCdvjdi
(19)

is satisfied, a type-2 move can reduce the delay of the tree.

Proof. The proof of this condition is also intuitive. All of the interconnect segments located upstream from vj see an increase in
the capacitance by cjDl, increasing the delay of each downstream sink vj. Consequently, only a reduction in the resistance can
decrease the delay of the tree. Alternatively, the sinks located downstream from the candidate direction di see a reduction in the
upstream resistance by (rj�rj+1)Dlo0, while the sinks downstream from the other directions see an increase in the upstream
resistance by (rj+rj+1)Dl. For a type-2 move, resulting in a decrease in the delay of the tree, both the weighted sum of these two
components as determined by the weight of the sinks and the downstream capacitances must be negative.&

Condition 2 is evaluated for each via of a tree with degree greater than two. If Eq. (19) is satisfied for more than one
direction, the direction that produces the greatest value of the RHS of Eq. (19) is considered the optimum direction for that
via. Finally, note that both conditions 1 and 2 are only necessary and not sufficient conditions. Following the notation
listed in Table 1, the critical point for a via connecting two segments on planes j and j+1 and satisfying condition 1 is

xtype-1 ¼

P
vi2U1j

P
sm2PsmUij

wsmRuij
þ

P
sp2Pspvj

wsp Ruj

0
B@

1
CAðcjþ1 � cjÞ � lvj

rjcvj
� rvj

cjþ1

� 	
þ ðrj � rjþ1Þ cjþ1ldw þ Cdvj

� 	
P

sp2Pspvj

wsp rjcj þ rjþ1cjþ1 � 2rjcjþ1


 � .

(20)

For a type-2 move along a candidate direction di, the critical point for a via connecting two segments on planes j and j+1 is

xtype-2 ¼

P
sp2Pspvjdi

wsp rjþ1 Cdvjdi
þ cjþ1ldi

� 	
�
P

vi2U1j

P
sm2PsmUij

wsm Ruij
ck �

P
sp2Pspvj

wsp rjcvj
� cjþ1ldi

þ Cdj
þ rjþ1C

dvjdi
þ Ruj

ck

� 	
P

sp2Pspvj

wsp rjcj þ rjþ1cjþ1


 � .

(21)

4.2. Single critical sink interconnect trees

There are cases where the delay of only one branch of a tree is required to be optimized. Although the heuristic presented
in Section 4.1 can be used for this type of tree, a computationally simpler, yet accurate, optimization procedure for single
critical net trees is possible and is described here. Denoting by sc, the critical sink of the tree, the weight for this sink wsc is
one, while the assigned weight for the remaining sinks are zero. Consequently, the expression that minimizes delay is
significantly simplified. In addition, the approach is different as compared to the optimization problem discussed in Section
4.1. More specifically, the interplane vias that belong to the critical branch (the on-path vias) are optimized according to
the heuristic for two-terminal nets. There is no need to test conditions 1 and 2 for these vias, as any type-2 move only occurs
in the direction that includes the critical sink. Regarding those vias that are not part of the critical path (the off-path vias),
these vias are placed to minimize the capacitance of the tree. This situation occurs because the non-critical sinks of the tree
only contribute as capacitive loads to the delay of the critical sink.

The location of the off-path vias are readily determined since the impedance characteristics of the interconnect segments
are known. Note that in this sense, the placement of the off-path vias is always optimal. Any loss of optimality is caused by
the placement of the on-path vias. As the near-optimal two-terminal net heuristic is used for placing the on-path vias, the
loss of optimality is negligible. In Section 5, these heuristics are used to develop efficient algorithms for placing vias in two-
terminal and multi-terminal nets in 3-D ICs.
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5. Via placement algorithms

Efficient near-optimal algorithms for placing vias among interplane interconnects are presented in this section. Based on
the aforementioned heuristic for two-terminal nets, an efficient algorithm is presented for two-terminal nets in Section 5.1.
A second algorithm that considers interplane interconnect trees is presented in Section 5.2. A third algorithm that places
interplane vias to minimize the delay for the particular case of interconnect trees with a single critical branch is discussed in
Section 5.3.

5.1. Two-terminal net near-optimal via placement algorithm (TTVPA)

The heuristic described in Section 3 has been used to implement an algorithm that exhibits near-optimal via placement
for two-terminal interplane interconnects in 3-D ICs, producing significantly lower computational time as compared to
general optimization solvers. The pseudocode of the heuristic algorithm is illustrated in Fig. 7. The input to the algorithm is
the minimum length of the interconnect segments and the length of the allowed intervals. In the first step of the algorithm,
the maximum and minimum upstream (downstream) resistance (capacitance) for each allowed interval is determined. In
the following steps, the range of values for the optimum via location as given by Eq. (17) is evaluated. In step five, these
values are compared to the inequalities described in Section 3. If a via location is determined in this step, the via is marked
as processed and the capacitance and resistance arrays are updated. If, after a number of iterations, there are unprocessed
vias, the vias are placed, in step 14, at the center of the corresponding allowed intervals and the algorithm terminates.

A bottom-up approach is followed for placing the vias. The downstream capacitance of the allowed interval for the via
located on the last level of the tree is constant; therefore, the upstream resistance of this via can only vary due to the
location of the other vias. With such an approach, a low computational time is achieved as most of the vias are placed
within one iteration of the algorithm. Alternatively, a top-down approach can also be adopted, where the via on the first
plane of the 3-D circuit has a constant upstream resistance. The location of the remaining vias affects only the downstream
capacitance of this via. If processing the vias in step 4 of the algorithm is randomly performed, additional iterations for
placing each via can be required since both the downstream capacitance and upstream resistance can vary.

As discussed in Section 2.2, vias can span more than one physical plane, where the allowed intervals are different for each
plane. The location for these vias can be determined by two approaches. First, the smallest allowed interval can be
considered as the allowed interval for each plane traversed by the via. Such an approach, however, is not efficient as the
delay of a net can be further decreased if different allowed intervals are considered. Specifically, a stacked via can be treated
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Fig. 7. Pseudocode of the proposed near-optimal via placement algorithm for two-terminal nets (TTVPA).
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as a set of interplane vias where each via connects two adjacent planes and the minimum length of the interconnect segment
between these vias is set to zero (i.e., lmin in Eq. (2) is equal to zero). The additional horizontal segments correspond to
additional variables; however, the delay of the tree can be further reduced. Note that in either of these two approaches, the
algorithm is not modified, only the input vectors are different. Consequently, the proposed algorithm can handle vias
spanning multiple physical planes with different allowed intervals on each plane.

5.2. Interconnect tree near-optimal via placement algorithm (ITVPA)

The via placement optimization algorithm for multi-terminal nets is presented in this section. The input to the algorithm
is an interplane interconnect tree where the minimum length of the segments, the weight of the sinks, and the length of the
allowed intervals are provided. Pseudocode of the algorithm is shown in Fig. 8. Due to the different types of moves that are
possible in interplane interconnect trees, the candidate direction for via placement is initially determined in steps 1–5. The
move_type routine operates from the leaf to the root, where the type and direction of the move of each via of the tree has
degree greater than two. Conditions 1 and 2 are tested for each via and direction. In step 6, the optimize_tree_delay routine
places the vias within a tree such that (10) is minimized.

This routine is based on the algorithm used for two-terminal nets as the objective function is of the same form. The
process of placing the vias, however, proceeds with certain modifications. A bottom-up approach is applied starting from
the last level of the tree towards the root of the tree. For each level of the tree, those vias that belong to this level are
successively placed. Within each level, the via being processed is selected according to the order of the paths of the tree
produced during the tree generation step. After placing the vias within a level of the tree, the upstream resistance and
downstream capacitance matrices are updated. Those vias successfully placed during this iteration of the algorithm are
marked as processed. In the case where some vias are not optimally placed and the maximum number of iterations has been
reached, the same criterion used in the two-terminal net algorithm is adopted for determining the location of these vias.

5.3. Single critical branch near-optimal via placement algorithm (SCBVPA)

Although the heuristic presented in the previous section can be used to improve the delay of trees with a single critical
path, a simpler optimization procedure for single critical net trees is described in this section. The input to the proposed
algorithm is a description of the interplane interconnect tree where the minimum length of the segments, the weight of the
sinks, and the length of the allowed intervals are provided. Pseudocode of the algorithm is shown in Fig. 9. In steps 1–3,
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Fig. 8. Pseudocode of the proposed near-optimal via placement algorithm for interconnect trees (ITVPA).

Fig. 9. Pseudocode of the proposed near-optimal via placement algorithm for single critical branch interconnect trees (SCBVPA).
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each of the off-path vias is placed at the minimum capacitance location within the corresponding allowed interval. The
direction_move routine sets the direction of the on-path vias to that direction, which includes the critical sink of the tree. In
step 5, the optimize_tree_delay routine is utilized to determine the location of the on-path vias. As previously mentioned,
any loss of optimality for this type of tree results from the heuristic used to place the via in two-terminal nets. As shown in
Section 6, however, this heuristic produces results similar to optimization solvers, and the proposed algorithm naturally
exhibits significantly lower computational time as compared to general purpose solvers. Results for other types of
interplane interconnect are also presented.

6. Test cases for via placement algorithms

Simulation and analytic results for various interplane interconnects in 3-D ICs are presented in this section. The
interplane interconnects for a different number of physical planes are analyzed. The impedance characteristics of the
horizontal segments and vias are extracted for several interconnect structures using a commercial impedance extraction
tool [33]. Copper interconnect is assumed with an effective resistivity of 2.2 mO cm. Based on the extracted impedances, the
resistance and capacitance of the horizontal segments range from 25 to 125O/mm and 100 to 300 fF/mm, respectively, for a
90 nm CMOS technology node [34,35]. The cross-section of the vias is 1 mm� 1 mm, with 1-mm spacing from the
surrounding horizontal metal layers, assuming an SOI process as described in Ref. [25]. For all of the interconnect
structures, the total and minimum length of each horizontal segment is randomly generated. For simplicity, all of the vias
connect the segments of two adjacent physical planes (i.e., m ¼ n). In Section 6.1, simulation and analytic results for two-
terminal nets with multiple vias are reported. Results for multi-terminal nets and single critical sink interconnect trees are
presented in Section 6.2. Limitations of the algorithms and the impact of routing congestion on the quality of the results
are discussed in Section 6.3. The savings in delay that can be achieved by optimally placing the vias is demonstrated for
different via placement scenarios.

6.1. Two-terminal net with multiple vias

In this section, the improvement in delay achieved by placing the vias is demonstrated and simulation results from the
proposed via placement algorithms for two-terminal nets (TTVPA) are presented. SPICE delay simulations are reported in
Table 2. Each horizontal interconnect segment is modeled as a 50 RC p-segment, while each interplane via is modeled by
ten RC p-segments. Consequently, if an interplane interconnect traverses four planes, where each via connects the
horizontal interconnect segments of two adjacent planes, a total of 230 RC p-segments are utilized to model the entire
interconnect length. The delay of the line T1, where the vias are placed at the center of the allowed intervals, is listed in
column 2. The delay T2, listed in column 3, corresponds to the line delay for random via placement. The minimum
interconnect delay Tmin, where the vias are optimally placed, is listed in column 4. The via locations or, equivalently, the
length of the horizontal segments, are determined from the algorithm described in Section 5.1. The improvement in delay as
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Table 2

SPICE simulation results demonstrating the delay savings achieved by near optimal via placement

Length (mm) T1 (ps) T2 (ps) Tmin (ps) Improvement (%) n

1017 12.35 12.64 11.42 8.14 (10.68) 4

1180 13.37 14.42 12.33 8.43 (16.95) 4

849 11.00 11.71 10.27 7.11 (14.02) 4

969 13.52 14.96 12.12 11.55 (23.43) 4

967 12.38 12.59 11.72 5.63 (7.42) 4

1612 18.54 19.85 17.24 7.54 (15.14) 5

1537 20.80 19.47 19.37 7.38 (0.52) 5

1289 17.78 18.43 16.45 8.09 (12.04) 5

1443 18.77 19.54 18.07 3.87 (8.14) 5

1225 16.97 18.33 15.62 8.64 (17.35) 5

2118 30.52 34.81 26.44 15.43 (31.66) 7

2130 27.92 27.32 25.94 7.63 (5.32) 7

1961 28.49 30.67 26.16 8.91 (17.24) 7

2263 35.58 40.11 31.31 13.64 (28.11) 7

2174 32.31 30.34 29.16 10.80 (4.05) 7

Average improvement 8.85 (14.14)

The resistance and capacitance per unit length of the vias are rvi ¼ 6.7O/mm and cvi ¼ 6 pF/mm, respectively. The length of the vias is lvi ¼ 20 mm. The

driver resistance is RS ¼ 15O and the load capacitance is CL ¼ 100 fF. The length of the allowed intervals is Dxi ¼ 200mm.
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compared to the case where the vias are placed at the center of the line is listed in column 5. The number in parentheses
corresponds to the improvement in delay over a random via placement. Note that the variation in the improvement in
delay changes significantly for those listed instances, although the interconnect lengths are similar and the load capacitance
and driver resistance are the same. This considerable variation demonstrates the strong dependence of the line delay on the
impedance characteristics of the segments of the line and supports modeling the interplane interconnect as a group of non-
uniform segments. Additionally, depending upon the impedance characteristics of the line segments, placing a via at the
center of the allowed intervals is, for certain instances, near-optimal, explaining why the improvement in delay is not
significant in these instances. The same characteristic applies to those cases where a random placement is close to the
optimum placement. Nevertheless, as listed in Table 2, an improvement of up to 32% is observed for relatively
short interconnects, demonstrating that an optimum via placement can significantly enhance the speed of 3-D circuits
(in addition to the primary benefit of reduced wire length and therefore lower power).

The algorithm presented in Section 5.1 is compared both in terms of optimality and efficiency to two optimization
solvers. The first solver, YALMIP [36], is a general optimization solver that supports geometric programming while
GLOPTIPOLY [37] is an optimization solver for non-convex polynomial functions. YALMIP and GLOPTIPOLY
produce identical solutions. Due to the excessive computational time of GLOPTIPOLY (greater than three orders of
magnitude as compared to YALMIP), however, only comparisons with YALMIP are reported. Optimization results are
listed in Table 3 for different values of Dx ranging from 50 to 300 mm.

As reported in columns 8 and 9 of Table 3, TTVPA exhibits high accuracy as compared to YALMIP. These results are
independent of the number of planes that comprise the 3-D interconnect, demonstrating that the proposed algorithm yields
optimum solutions for most interconnect instances. In addition, for those cases where some of the vias are not optimally
placed, the loss of optimality is insignificant (as previously discussed in Section 3). For the interconnects reported in Table
3, the computational time of YALMIP and TTVPA are reported in Table 4. The runtime ratio of YALMIP to TTVPA is
listed in column 5. TTVPA is approximately two orders of magnitude faster than YALMIP. The complexity of TTVPA has
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Table 3

Optimization results for various two-terminal interplane interconnects and number of physical planes n

n Average

interconnect

length (mm)

Dxis (mm) Delay improvement (%) Deviation of TTVPA from

optimum solution (%)

Instances

Vias placed in the center Random via placement Average Maximum

Average Maximum Average Maximum

3 270 50 3.36 11.10 5.88 22.23 0 0.005 10,000

3 520 100 4.59 17.63 8.02 35.92 0 0.008 10,000

3 1020 200 5.90 23.12 10.27 47.07 0 0.013 10,000

4 405 50 4.02 13.01 6.00 25.97 0 0.006 10,000

4 781 100 5.26 16.95 7.91 34.11 0 0.002 10,000

4 1155 150 5.94 21.61 8.89 44.46 0 0.011 10,000

5 540 50 4.48 13.73 6.16 27.49 0 0.005 10,000

5 1040 100 5.69 17.97 7.79 35.82 0.0001 0.012 10,000

5 1541 150 6.35 22.36 8.63 46.26 0.0001 0.017 10,000

Table 4

Computational time for placing the vias of those interconnects reported in Table 3

n Average interconnect

length (mm)

Runtime (s) Runtime ratio� times Instances

YALMIP TTVPA

3 270 1072.34 7.57 141.69 10,000

3 520 1051.80 7.08 148.60 10,000

3 1020 1076.45 7.39 145.58 10,000

4 405 7550.26 36.06 209.36 10,000

4 781 19716.58 34.33 574.30 10,000

4 1155 1602.73 12.78 125.38 10,000

5 540 2247.20 20.04 112.14 10,000

5 1040 6340.68 18.91 335.31 10,000

5 1541 10437.60 19.00 549.35 10,000
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an almost linear dependence on the number of interplane vias. As depicted in Fig. 7, each via is typically processed once;
otherwise, a maximum of two to five iterations are required to place a via.

As shown in Table 3, the savings in delay from the near-optimal via placement strongly depends upon the length of the
allowed intervals. For example, doubling the length of the allowed intervals for via placement increases almost two-fold the
maximum improvement in delay. As the length of the allowed intervals increases, the constraints in Eq. (2) are relaxed and
a greater performance benefit from optimally placing the vias is achieved.

The effect of the non-uniformity of the interplane interconnects on the improvement in delay is graphically illustrated in
Fig. 10, where the improvement in delay for interplane interconnects spanning four and five physical planes is depicted.
The average savings in delay of highly non-uniform interconnects (i.e., r(i+1)/ri ¼ 1–10 and ci/c(i+1) ¼ 1–10) can be
significant, approaching 10% and 13% for a moderately sized length, where the vias are placed at the center of the allowed
intervals and are randomly placed, respectively. The maximum improvement can exceed 60%, as shown in Fig. 10.

6.2. Interconnect trees

In Table 4, optimization results for interconnect trees with various number of leaves and planes (i.e., tree depth) are
reported. The optimality and efficiency of ITVPA is similar to that of TTVPA, as the optimization routine for ITVPA is
approximately the same as for TTVPA. The runtime of ITVPA is similar to that of TTVPA and has a linear dependence on
the number of vias within the tree. The complexity of the additional routine that determines the direction and type of move
for each via is linear with the number of vias within the tree.

The improvement in the delay of the interconnect trees is listed in columns 6–9 of Table 5. The results are compared to
the case where the vias are initially placed at the center of the allowed interval (i.e., xi ¼ Dxi/2) and to the case where the
vias are placed at the lower edge of the allowed interval (i.e., xi ¼ 0). The improvement in performance depends upon the
length of the allowed interval. This dependence, however, is weak as compared to two-terminal nets. In addition,
the improvement in delay is lower than the point-to-point nets for the same allowed length intervals. This reduction in
delay improvement occurs for two reasons.

For those vias with degree greater than two, which constitute the majority of interplane vias in interconnect trees, after
the type of move for each via is determined, the actual interval length that these vias are allowed to move is Dxi/2 and not
Dxi (see Fig. 5). Furthermore, in the proposed algorithm, any modifications to the routing tree are strictly confined within
the allowed interval such that the routing tree is least affected. This constraint requires an additional interconnect segment
for type-2 moves. If this constraint is relaxed, an additional interconnect segment is not necessary and the length of the
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Fig. 10. Average and maximum improvement in delay for different range of interconnect segment resistance and capacitance ratios for two different via

placement scenarios. The vias are placed at the center of the allowed intervals and the vias are randomly placed.
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interconnect segments can be further reduced, resulting in a considerably greater improvement in performance.
Maintaining fixed paths limits the efficiency of the proposed algorithms; however, the algorithms are sufficiently general for
use with placement and routing tools for 3-D ICs as long as these tools provide an allowed interval for via placement. In
addition, interconnect routing can consider other important design objectives such as thermal effects or routing congestion.
The proposed algorithm for placing vias in multi-terminal nets can be applied as a subsequent step without significantly
affecting the initial layout produced by existing tools.

In Table 6, optimization results for single critical branch interconnect trees are reported. The improvement in the delay
of these trees is listed in columns 6–9 of Table 6, as compared to the situation where the vias are initially placed at the
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Table 5

Optimization results for various interplane interconnect trees for different number of sinks and physical planes n

n No. of sinks Average

branch

length (mm)

Average

maximum branch

length (mm)

Dxis (mm) Delay improvement (%) Instances

x�i ¼ Dxi=2 x�i ¼ 0

Average Maximum Average Maximum

3 4 153 186 50 2.72 9.33 3.79 11.25 10,000

3 4 307 376 100 4.23 15.17 6.03 17.94 10,000

4 4 208 273 50 1.11 3.53 2.49 5.63 5000

4 4 828 1100 200 3.12 10.29 6.42 13.50 5000

4 4 1243 1650 300 4.07 14.15 7.76 19.38 5000

4 8 431 569 100 3.90 13.24 7.71 19.68 10,238

5 4 264 362 50 1.25 3.83 2.40 5.89 5000

5 4 1054 1452 200 3.62 11.55 6.56 12.04 5000

5 4 791 1089 300 3.90 11.61 6.95 19.34 5000

5 8 454 660 50 0.90 2.69 2.27 4.98 5000

5 8 521 738 100 1.78 5.55 4.33 8.40 5000

5 8 779 1111 150 2.38 7.44 5.67 11.90 5000

5 8 1038 1481 200 2.91 8.71 6.74 12.58 5000

6 8 306 455 50 1.11 3.17 2.36 4.89 5000

6 8 615 913 100 2.00 5.44 4.09 9.85 5000

6 8 922 1373 150 2.72 7.01 5.43 11.72 5000

6 8 921 1371 200 3.32 10.02 6.61 14.21 5000

6 16 555 845 50 0.86 2.74 2.52 4.95 4970

6 16 637 934 100 1.68 4.82 4.84 9.26 5059

6 16 953 1404 150 2.28 6.10 6.32 12.96 5021

Table 6

Optimization results for various single critical sink interconnect trees for different number of sinks and physical planes n

n No. of sinks Average

branch

length (mm)

Average

maximum branch

length (mm)

Dxis (mm) Delay improvement (%) Instances

x�i ¼ Dxi=2 x�i ¼ 0

Average Maximum Average Maximum

4 4 341 453 50 2.72 8.95 3.70 14.63 5000

4 4 1021 1363 150 1.61 5.52 2.18 11.01 5000

4 4 1368 1821 200 1.36 5.49 1.92 8.59 5000

5 4 433 595 50 3.09 9.37 4.55 19.44 5000

5 4 1299 1790 150 1.80 5.55 2.85 13.42 5000

5 4 1734 2391 200 1.51 5.66 2.44 11.35 5000

5 8 427 612 50 2.53 8.10 4.09 16.20 5000

5 8 853 1227 100 1.94 7.22 2.98 12.63 5000

5 8 1282 1845 150 1.57 6.55 2.46 14.04 5000

5 8 1711 2461 200 1.33 4.81 2.25 10.44 5000

6 8 505 753 50 2.88 8.90 4.39 17.8 5000

6 8 1009 1512 100 2.14 6.10 3.45 15.20 5000

6 8 1511 2265 150 1.71 5.46 2.83 12.16 5000

6 16 523 779 50 2.52 8.29 4.54 13.25 4963

6 16 1045 1564 100 1.91 6.69 3.10 10.53 4977

6 16 1563 2351 150 1.55 5.36 2.96 12.37 4976
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center of the allowed interval (i.e., xi ¼ Dxi/2) and where the vias are placed at the lower edge of the allowed interval
(i.e., xi ¼ 0). This improvement is lower than for those interconnect trees listed in Table 5 as only type-1 moves can occur
for the off-path vias. Indeed, any type-2 move for the off-path via only increases the off-path capacitance and, in turn, the
delay of the critical leaf. A smaller number of vias can therefore be relocated to reduce the delay of the single critical sink
trees. Alternatively, for off-path vias, placing a via at the center of the allowed interval can produce an optimum placement,
resulting in a smaller overall improvement in the delay of this type of tree.

6.3. Quality of results

The improvement in the delay of interplane two-terminal and multi-terminal nets achieved by optimally placing the vias
is demonstrated in the previous subsections. Typically, the larger the allowed interval, the greater the improvement in
delay. Consequently, efficient placement tools for 3-D circuits that generate sufficiently large allowed intervals are desired.
These intervals can be available space reserved for interplane interconnect routing. For interconnect trees, the
improvement in delay is smaller than for two-terminal nets. This decreased improvement in delay is due to the constraint of
placing the vias within the allowed intervals in order to minimally affect the routing of the interconnect tree. If the
placement of the vias is permitted within an entire region (e.g., rectangle or polygon), a greater decrease in delay can occur.
Assigning such a region for placing vias, however, increases the congestion within a 3-D circuit as the same number of vias
will compete for sparser routing resources.

Despite the considerably lower computational time of the proposed algorithms, further speed improvement can be
achieved if more than one net is simultaneously processed. Although these algorithms support multiple net optimization
without significant modification, a single net at a time approach likely yields improved results as the most critical nets can
be routed first. Net ordering algorithms [38] can be used to prioritize the routing of those interconnects, permitting the
delay of these nets to be considerably reduced. Additionally, since the number of interplane interconnects is small as
compared to the number of intraplane interconnects [39], processing these interconnects one at a time will not significantly
increase the total computational time.

Thermal issues are expected to be important in 3-D ICs [15], where additional dummy vias are utilized to control the
average and peak temperature of the upper planes within a 3-D system. Additionally, thermally aware cell placement
improves the heat distribution and removal characteristics. These two techniques are decoupled from the proposed via
placement problem which is considered a later step in the design process. Consequently, thermal issues are not strongly
connected with the proposed via placement approach. Alternatively, some of the thermal vias within these available spaces
can be replaced with signal vias connecting circuits on different planes. Placing the signal vias prior to placing the thermal
vias within these regions results in large allowed intervals, thereby improving the effectiveness of the proposed via
placement technique. In this case, where the via placement can significantly enhance the thermal profile of a physical plane,
the allowed interval for some vias can be decreased or removed. Such a practice, however, trades off performance for
thermal management.

7. Conclusions

Significant performance improvements can be achieved by optimally placing interplane vias in 3-D circuits. Employing a
distributed Elmore delay model, the task of optimally placing vias in two-terminal nets with multiple vias and interconnect
trees is presented as a geometric programming problem. Considering physical constraints, near-optimal heuristics are
proposed for two-terminal nets with multiple vias and interconnect trees. A near-optimal and efficient algorithm is also
presented for two-terminal nets, which is compared to general optimization solvers in terms of computational time. Near-
optimal algorithms for interplane via placement in interconnect trees and trees with a single critical sink are also described.

The dependence of the improvement in delay on the length of the allowed intervals for via placement is investigated. The
improvement in delay for various interplane via placement scenarios is considered. Delay improvements of up to 16% and
32% are demonstrated for two-terminal nets where the vias are optimally placed as compared to via placement at the
center of the allowed intervals and random placement, respectively. Delay improvements in interconnect trees of up to 14%
and 19% are demonstrated where the vias are optimally placed as compared to via placement at the center of the allowed
intervals and at the lower edge of the allowed intervals, respectively. The proposed algorithms can be embedded into
existing and developmental placement and routing methodologies targeting 3-D circuits.
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Appendix A. Analytic proof of the two-terminal heuristic

A formal proof of the two-terminal heuristic for placing interplane vias is described in this appendix. Consider the
following expression that describes the critical point (i.e., the derivative of the delay is set equal to zero) for placing a via vj,
as illustrated in Fig. A1:

x�j ¼ �
lvjðrjcvj � rvjcjþ1 þ rjþ1cjþ1 � rjcjþ1Þ þ Rujðcj � cjþ1Þ þ Dxjðrj � rjþ1Þcjþ1 þ Cdjðrj � rjþ1Þ

rjcj � 2rjcjþ1 þ rjþ1cjþ1

� �
. (A.1)

From this expression, the critical point xj is a monotonic function of the upstream resistance and downstream
capacitance of the allowed interval for via vj, denoted as Ruj and Cdj, respectively,

x�j ¼ f ðR�uj ;C
�
djÞ. (A.2)

These quantities (R�uj and C�dj) depend upon the location of the other vias along the net and are unknown. However, as
the allowed interval for the vias and the impedance characteristics of the line are known, the minimum and maximum
values of these impedances, Rujmin, Rujmax, Cdjmin, and Cdjmax, can be determined. Without loss of generality, assume that
rj4rj+1 and cj4cj+1 (the other cases are similarly treated). For this case, the critical point (i.e., qT/qxj ¼ 0) is a strictly
increasing function of Ruj and Cdj. Consequently, the minimum and maximum value for the critical point x�j min and x�j max is
determined from, respectively,

x�jmin ¼ f ðRuj min;Cdj minÞ, (A.3)

x�j max ¼ f ðRuj max;Cdj maxÞ. (A.4)

The final value of the upstream (downstream) capacitance for via vj, which is determined after placing all of the remaining
vias of the net denoted as R�uj (C

�
dj) within the range, is

Ruj minoR�ujoRuj max; ðCdj minoC�djoCdj maxÞ. (A.5)

Due to the monotonic relationship of the critical point xj on Ruj and Cdj,

x�j min ¼ f ðRuj min;Cdj minÞox�j ¼ f ðR�uj ;C
�
djÞox�j max

¼ f ðRuj max;Cdj maxÞ. (A.6)

Consequently, by iteratively decreasing the range of the x�j according to (A.6), the location for vj can be determined.
To better explain this iterative procedure, consider the vias, vi, vj, and vk, shown in Fig. A1 that have not yet been placed.

In this example, vias vi and vk are assumed to belong to case (iii) of the heuristic. Since the allowed intervals for vias vi, vj,

and vk and the impedance characteristics of the respective horizontal segments are known, the minimum x�0minand maximum

x�0max critical point for all of the segments i, j, and k are obtained. The minimum and maximum values of R0
ui, R0

uj , R0
uk, C0

di,

C0
dj , and C0

dk are determined, where the superscript represents the number of iterations.

From (A.6), the via location of segments i and k is contained within the limits determined by (A.1). As the interval for
placing the vias vi and vk decreases, the minimum (maximum) value of the upstream resistance and downstream capacitance

of segment j increases (decreases), i.e., R0
uj minoR1

uj min, C0
dj minoC1

dj min, R1
uj maxoR0

uj max, and C1
dj maxoC0

dj max. Due to the

monotonicity of x�j (see (A.2)–(A.4) and (A.6)) on Ruj and Cdj, x�0j minox�1j min and x�1j maxox�0j max. The range of values for x�j ,
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Fig. A1. Interplane interconnect consisting of m segments connecting two circuits located n planes apart.
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therefore, also decreases and, typically, after two or three iterations, the optimum location for the corresponding via is
determined.

The above example is extended to each of the other possible sub-cases that can occur for segments i and k. Specifically,

(a) i and k belong to either case (i) or (ii). Both Ruj and Cdj are precisely determined or, equivalently, Ruj min ¼ Ruj max and
Cdj min ¼ Cdj max. Consequently, the placement of both vias vi and vk is known and x�0j min ¼ x�0j max ¼ x�j . The placement
of vj is also determined within the first iteration.

(b) i belongs to case (i) or (ii) and k belongs to case (iii). Ruj is precisely determined or, equivalently, Ruj min ¼ Ruj max and

the placement of via vi is known. Since vi is placed and k belongs to case (iii), C0
dj minoC1

dj min and C1
dj maxoC0

dj max. The

placement of via vj converges faster, as only the placement of segment k remains unknown after the first iteration.
(c) k belongs to case (i) or (ii) and i belongs to case (iii). Cdj is precisely determined or, equivalently, Cdj min ¼ Cdj max and

the placement of via vk is known. Since vk is placed and i belongs to case (iii), R0
uj minoR1

uj min and R1
uj maxoR0

uj max. The
placement of via vj converges faster as only the placement of segment i remains unknown after the first iteration.

(d) i belongs to any of the cases (i)–(iii) and k belongs to case (iv). Ruj is readily determined (cases (i) and (ii)) or converges,
as described in the previous sub-case, R0

uj minoR1
uj min and R1

uj maxoR0
uj max. As k belongs to case (iv), however, Cdj does

not change as in the cases above. If the decrease in the upstream resistance is sufficient to determine x�j according to
(A.1), vj is marked as processed, otherwise vj is marked as unprocessed and the algorithm continues to the next via. In
the latter case, the placement approach is described by case (iv) of the heuristic.

(e) k belongs to any of the cases (i)–(iii) and i belongs to case (iv). Cdj is readily determined (cases (i) and (ii)) or converges,
as described in sub-case (b), implying C0

dj minoC1
dj min and C1

dj maxoC0
dj max. As i belongs to case (iv), however, Ruj does

not change as in the aforementioned cases. Overall, if the decrease in the downstream capacitance is sufficient to
determine x�j according to (A.1), vj is marked as processed, otherwise vj is marked as unprocessed and the algorithm
continues to the next via. In the latter case, the placement approach is described by case (iv) of the heuristic.

(f) Both i and k belong to case (iv). Therefore, both Ruj and Cdj cannot be bounded. Consequently, vj is marked as
unprocessed and the next via is processed. Alternatively, this sub-case degenerates to case (iv) of the heuristic presented
in Section 3.

Appendix B. Analytic proof of condition 1

A proof for necessary condition 1 is provided as follows.

Condition 1. If rj4rj+1, only a type-1 move for vj can reduce the delay of a tree.

Proof. Consider Fig. B1 where the interplane via vj (the solid square) can be placed in any direction de, ds, and dn within
the interval lde, lds, and ldn, respectively. For the tree shown in Fig. B1 and removing the terms that are independent of vj,
Eq. (10) is

Tw ¼
X

vi2U0j

X
sp2PspUij

wsp Ruij cvj
lvj
þ Cdj

� 	
þ

X
sp2Pspvj

wsp Ruj
ðcvj

lvj
þ Cdj

Þ þ rvj
lvj

Cdj
þ

rvj
cvj

l2vj

2

 !
, (B.1)
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Fig. B1. A portion of an interconnect tree.
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where

Cdj
¼
X
8k

Cdvjdk
þ cjþ1ðlde þ lds þ ldnÞ. (B.2)

Suppose that a type-2 move is required, shifting vj by x towards the de direction (the dashed square). Expression (10)
becomes

T 0w ¼
X

vi2Uij

X
sp2PspUij

wsp Ruij þ
X

sp2Pspvj

wsp Ruj

0
B@

1
CAðcvj

lvj
þ cjxþ Cdj

Þ

þ
X

sp2Pspvj

wsp ½rjxðcvj
lvj
þ Cdj

Þ þ rjþ1lde ðCdj
� ð1=2Þcjþ1lde Þ þ ðrj � rjþ1ÞxCdj

þ ð1=2Þðrvj
cvj

l2vj
þ rjcjx

2
j Þ�. (B.3)

For a type-2 move to reduce the weighted delay of the tree, shifting vj will decrease Tw, or, equivalently, DT ¼ T 0w � Two0.
Subtracting (B.1) from (B.3) yields

DT ¼
X

sp2Pspvj

wsp rjxðcvj
lvj
þ Cdj

Þ þ Ruj
cjxþ rjþ1lde

"
Cdj
�

cjþ1lde

2

� �
þ ðrj � rjþ1ÞxCdj

þ
rjcjx

2
j

2

#

þ
X

vi2Uij

X
sp2PspUij

wspRuijcjx. (B.4)

Since rj4rj+1, (B.4) is always positive and a type-2 move cannot reduce the delay of a tree.&
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