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With higher operating frequencies, transmission lines are required to model global on-
chip interconnects. In this paper, an accurate and efficient solution for the transient
response at the far end of a transmission line based on a direct pole extraction of the
system is proposed. Closed form expressions of the poles are developed for two special
interconnect systems: an RC interconnect and an RLC interconnect with zero driver
resistance. By performing a system conversion, the poles of an interconnect system with
general circuit parameters are solved. The Newton–Raphson method is used to further
improve the accuracy of the poles. Based on these poles, closed form expressions for
the step and ramp response are determined. Higher accuracy can be obtained with
additional pairs of poles. The computational complexity of the model is proportional to
the number of pole pairs. With two pairs of poles, the average error of the 50% delay is
1% as compared with Spectre simulations. With ten pairs of poles, the average error of
the 10%-to-90% rise time and the overshoots is 2% and 1.9%, respectively. Frequency
dependent effects are also successfully included in the proposed method and excellent
match is observed between the proposed model and Spectre simulations.

Keywords: Interconnect; modeling; transient response; pole.

1. Introduction

With increasing on-chip signal frequencies, the effect of interconnect inductance
has become more significant, particularly in global interconnects. Furthermore, the
clock period is continuously decreasing. The timing characteristics of on-chip signals
therefore need to be determined and controlled more precisely. Accurate intercon-
nect models, such as RLC transmission lines, and efficient solutions to analyze
on-chip interconnects are required in the integrated circuit design process.1, 2

Sakurai presented an accurate closed-form solution for distributed RC intercon-
nect based on a single pole approximation in Refs. 3–4. By truncating the transfer
function, multi-pole models have been proposed in the last decade to capture the
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effect of inductance; for example, two poles in Ref. 5 and four poles in Ref. 6.
No closed-form solution, however, is provided for the four-pole method. In Ref. 7,
the solution for an open-ended interconnect with a step input signal is rigorously
developed. This solution is however highly complicated and not suitable for an
exploratory design process. In Ref. 8, a traveling wave analysis (TWA) model has
been presented, where the key points of the waveform are determined with a three-
pole model, and linear or RC approximations are used to connect those key points
to construct the waveform. This method is improved in Ref. 9, where the key points
and slopes are more accurately determined with the model described in Ref. 7, and
straight lines are used to construct the signal waveforms in different time regions. In
both of these papers, the output response is divided into a number of time regions
where the waveform expressions for each of the regions are different, making the
models less compact. Furthermore, none of these aforementioned papers consider
frequency dependent effects. With higher on-chip frequencies, frequency dependent
effects in wider interconnect can no longer be ignored. In Ref. 10, a Fourier analysis
based interconnect model is proposed, where the far end response is approximated
by the first several harmonics. Frequency dependent effects can be included in this
model; however, the model is only suitable for periodic signals. In all of these papers,
a uniform wire impedance is assumed. In advanced global interconnect structures,
such as a network-on-chip,11 interconnects are regularly designed on the topmost
layers. At early design stages, the layout describing the orthogonal layers is not
available. Treating the orthogonal layer as a ground plane is a reasonable assump-
tion for capacitance extraction.12 To control chemical mechanical polishing (CMP)
induced process variations, dummy fillings are often inserted on-chip to achieve a
uniform pattern density, making a uniform impedance assumption more accurate.

Moment matching method13 and Krylov-subspace-based model order reduc-
tion techniques, such as Pade via Lanczos (PVL),14 Arnoldi algorithm,15 and pas-
sive reduced order interconnect macromodeling algorithm (PRIMA),16 have been
widely used in solving complex interconnect structures. With transmission line
effect becoming more significant, additional RLC segments need to be used to
model the distributed interconnect behavior. The computational efficiency of these
method will be reduced, making them unsuitable for single interconnect analysis in
early design stages.

In Ref. 17, a new method for computing the far end response of a transmission
line is proposed. The model is based on a direct pole extraction of the exact transfer
function of a transmission line, rather than approximating the poles by truncating
the transfer function5, 6 or matching moments.13 Closed-form waveform expressions
are developed, permitting flexible trade-offs between accuracy and efficiency. This
model is extended in this paper by including frequency dependent effects. The
poles of RC interconnect are also determined analytically. The rest of the paper
is organized as follows. In Sec. 2, the exact poles of two special case interconnect
systems are determined. Based on these poles, the step and ramp responses are
developed. In Sec. 3, an interconnect system with general circuit parameters is
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solved. The Newton–Raphson method is used to determine the exact poles of the
system. Frequency dependent effects are successfully included in Sec. 4. Finally,
some conclusions are offered in Sec. 5.

2. Special Cases of a Single Interconnect System

For a distributed RLC interconnect driven by a voltage source with a driver resis-
tance Rd and loaded with a lumped capacitance CL, as shown in Fig. 1, the transfer
function is5, 10

H(s) =
1

(1 + RdCLs) cosh(θ) + (Rd/Zc + ZcCLs) sinh(θ)
, (1)

where θ =
√

(R + Ls)Cs and Zc =
√

(R + Ls)/Cs = θ/Cs. R, L, and C are,
respectively, the resistance, inductance, and capacitance of the interconnect. The
poles of Eq. (1) are difficult to solve directly except for two special cases: an RC

interconnect and an RLC interconnect with a zero driver resistance. In Sec. 2.1,
the poles of an RC interconnect system are solved. In Sec. 2.2, the poles of an RLC

interconnect with a zero driver resistance are solved. Step and ramp responses are
developed in Sec. 2.3.

2.1. RC interconnect

For RC interconnect, L = 0. The transfer function Eq. (1) can be rewritten as

H(s) =
1

(1 + Aθ2) cosh(θ) + Bθ sinh(θ)
, (2)

where A = RT CT , B = RT + CT , RT = Rd/R, CT = CL/C, and θ =
√

RCs. Let
F (s) = 1/H(s). The poles of H(s) are zeros of F (s) and satisfy F (s) = 0. Observe
that θ needs to be an imaginary number to make F (s) zero. Assume θ = jx, where
x is a real number. Expression F (s) = 0 can be transformed to

(1 − Ax2) cosx − Bx sin x = 0 , (3)

or

tan x =
1 − Ax2

Bx
. (4)

The roots of Eq. (4) are the crossing points of the functions of y = tanx and
y = (1 − Ax2)/(Bx), as shown in Fig. 2.

d

LC

R R, L, C

−
+

Fig. 1. Distributed interconnect with a lumped capacitive load and driver resistance.
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Fig. 2. Graphic view of the roots of (4), RT = CT = 1.

Applying Taylor series expansions of cosx ≈ 1 − x2/2 + x4/24 and sinx ≈
x− x3/6 to Eq. (3), and ignoring those terms with an order higher than x4, x2 can
be obtained as

x2
0 =

1
2 + A + B −

√
(A + B)2 − A + 1

3B + 1
12

A + 1
3B + 1

12

. (5)

When RT = CT = 0, the exact value of x2
0 is π2/4. In order to capture this trend,

Eq. (5) is revised to

x2
0 =

1
2 + A + B −

√
(A + B)2 − A + 1

3B + 1
11.54

A + 1
3B + 1

12

. (6)

Note that if the terms higher than x2 are omitted after applying Taylor expansions,
the solution simplifies to

x2
0 =

1
0.5 + A + B

=
1

0.5 + RT + CT + RT CT
, (7)

which is similar to the solution provided in Ref. 4.
Since the Taylor series approximations used above are expanded around zero,

the solution shown in Eq. (6) corresponds to the root x0 which is most close to
zero, as shown in Fig. 2. In order to obtain other high order solutions, Taylor series
approximations expanded at nπ (n = 1, 2, . . .) are used. Since the negative roots
of Eq. (3) have the same absolute value as the positive roots, only positive roots
are considered in this paper. In determining the timing response of an interconnect,
lower order poles are the most important; the accuracy of the higher order poles can
be lower. In order to produce a closed-form solution for enhanced computational
efficiency, a second order Taylor expansion is used for case n ≥ 1. Let ∆x = x−nπ,
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cosx ≈ (−1)n[1− (∆x)2/2], and sinx ≈ (−1)n∆x. Substituting these Taylor series
approximations into Eq. (3) and ignoring those terms with an order higher than
(∆x)2 results in(

A + B − 1
2
E

)
(∆x)2 + (2A + B)nπ∆x + E = 0 , (8)

where E = An2π2 − 1. Solving Eq. (8) for xn results in

xn =
−(2A + B)nπ +

√
(nπB)2 + 4(A + B) + 2E2

2(A + B) − E
+ nπ . (9)

The accuracy of Eqs. (6) and (9) is illustrated in Fig. 3 for different values of RT

and CT . The exact solution is obtained numerically. As shown in Fig. 3, the error
of the higher order solutions is larger for greater values of RT and CT . In these
cases, the effect of the higher order solutions on the timing responses is, however,
negligible.

After solving xn, the poles of an RC interconnect system can be obtained,

pn =
θ2

RC
=

−x2
n

RC
, n = 0, 1, 2, . . . . (10)

The residue of the corresponding poles is

kn = lim
s→pn

s − pn

F (s)
=

1
F ′(pn)

=
2xn/(RC)

(1 + B − Ax2
n) sin xn + (2A + B)xn cosxn

, (11)

where F ′(pn) is the derivative of F (s) at pn.
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Fig. 3. Analytic solution of Eq. (3) as compared with the exact solution for different values of
RT and CT .
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2.2. RLC interconnect with a zero Rd

If Rd is zero, Eq. (1) simplifies to

H(s) =
1

cosh(θ) + CT θ sinh(θ)
. (12)

Note that θ also needs to be an imaginary number to make F (s) zero. Similar to
the approach for the RC case, assume θ = jx, where x is a real number. The poles
of the transfer function should satisfy

cosx − CT x sin x = 0 , (13)

or

x =
cotx

CT
. (14)

By applying Taylor series approximations (fourth-order approximation for n = 0
and second-order approximation for n ≥ 1), x can be solved as

xn =




√√√√ 1
2 + CT −

√
C2

T + 1
3CT + 1

12

1
3CT + 1

12

, n = 0 ,

(1 + CT )nπ +
√

(CT nπ)2 + 2 + 4CT

1 + 2CT
, n ≥ 1 .

(15)

Note that when CT approaches zero, Eq. (13) becomes cosx = 0, and the solution
xn approaches (n + 1/2)π, where n = 0, 1, 2, . . . . In order to capture this trend,
Eq. (15) is revised as

xn =




√√√√ 1
2 + CT −

√
C2

T + 1
3CT + 1

11.54

1
3CT + 1

12

, n = 0 ,

(1 + CT )nπ +
√

(CT nπ)2 + π2

4 + 4CT

1 + 2CT
, n ≥ 1 .

(16)

The accuracy of Eq. (16) is illustrated in Fig. 4 for different values of CT . The
exact solution is obtained numerically. As shown in Fig. 4, when CT increases from
zero to infinity, xn decreases from (n + 1/2)π to nπ.

The poles of the transfer function can be obtained from the following expression,

LCs2 + RCs = θ2 = −x2
n , n = 0, 1, 2, . . . . (17)

Each xn corresponds to a pair of poles,

pn,± =
−RC ± √

R2C2 − 4LCx2
n

2LC
. (18)
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Fig. 4. Analytic solution of Eq. (13) as compared with the exact solution for different values
of CT .

The residue of the corresponding poles kn,± can be solved as

kn,± = lim
s→pn,±

s − pn,±
F (s)

=
1

F ′(pn,±)

=
±2xn√

R2C2 − 4LCx2
n[(1 + CT ) sin xn + CT xn cosxn]

. (19)

2.3. Step and ramp response

From the poles and corresponding residues, the transfer function can be repre-
sented as

H(s) =
∑

i

ki

s − pi
, (20)

where i is the index covering all of the poles. Consider a wire structure exam-
ple as shown in Fig. 5. The interconnect parameters per unit length are Rint =
12.24 mΩ/µm, Lint = 0.74 pH/µm, and Cint = 0.266 fF/µm, which are extracted
from FastHenry18 and FastCap19 with a signal frequency of 2GHz. The amplitude
of the transfer function obtained from Eq. (20) is compared with the exact transfer

GroundGround
1µ

1µSignal line

Orthogonal layer

Orthogonal layer
10  mµ m

m

mµ210  mµ 10  mµ
m1µ

Fig. 5. Wire geometry of an example circuit, where the signal wire is shielded by two ground lines.
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Fig. 6. Comparison between the analytic expression (20) and the exact transfer function. The
wire length is 5 mm and the load capacitance is CL = 50 fF; (a) RC interconnect case, Rd = 30 Ω.
(b) RLC interconnect with a zero Rd.

function for the RC case in Fig. 6(a) and RLC case with a zero Rd in Fig. 6(b),
respectively. In Fig. 6(a), m is the number of poles considered in the model. In
Fig. 6(b), m is the number of pole pairs, since the poles in this case are in pairs. As
shown in the figure, the analytic transfer function converges to the exact transfer
function with increasing m. As compared with the RC case, more poles are required
for the RLC case to obtain an accurate result.
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From Eq. (20), the normalized step response Vs(t)/Vdd and ramp response
Vr(t)/Vdd are, respectively,

Vs(t)
Vdd

= u(t)

[
1 +

∑
i

(
ki

pi
epit

)]
, (21)

Vr(t)
Vdd

= V1(t) − V1(t − tr), V1(t) =
u(t)
tr

[
t + m1 +

∑
i

(
ki

p2
i

epit

)]
, (22)

where u(t) is the step function. The following moment information is used,

m0 = −
∑

i

ki

pi
= 1 , m1 = −

∑
i

ki

p2
i

. (23)

For an RC interconnect,

m1 = −Rd(C + CL) − R(0.5C + CL) , (24)

and for an RLC interconnect with a zero driver resistance,

m1 = −R(0.5C + CL) . (25)

The step and ramp responses obtained from Eqs. (21) and (22) are compared
with Spectre simulations in Fig. 7. In the Spectre simulation, the transmission line
is modeled as a series of π-shaped RC or RLC segments. Each segment is 10 µm
long. Good agreement between the analytic solution and Spectre simulations is
observed. The accuracy of the ramp response is much higher than that of the step
response since a ramp signal consists of fewer high frequency components.

3. Distributed RLC Interconnect with Driver Resistance

For an interconnect driven by a gate, there are primarily two kinds of approaches for
timing analysis. In the first approach, the driver and the interconnect are separated.
The voltage waveform at the gate output is obtained through pre-characterized
delay and transition time information characterizing the gate.20 This waveform
is applied at the input of the interconnect to obtain the far end response. With
increasing inductive effects, more complicated driver output models are required
to characterize the reflection behavior of the propagating signals, such as the two-
ramp model described in Ref. 21 and the three-piece model in Ref. 22. Recently,
several current source models (CSM) have been developed,23–25 where the nonlinear
behavior of the gate is characterized, making the driver output response more accu-
rate. In the second approach, the driver and interconnect are analyzed as a single
system, where the Thevenin model is generally used,5, 7, 10, 26, 27 as shown in Fig. 1.
In this approach, the interaction between the driver and interconnect is modeled
as a single system.

For the first approach, once the driver output voltage is obtained, this voltage
waveform can be treated as a voltage source with zero resistance, and applied to
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Fig. 7. Step and ramp response obtained analytically as compared with Spectre simulations.
(a) Step response, RC, (b) Ramp response, RC, (c) Step response, RLC, and (d) Ramp response,
RLC.

the input of an interconnect. By representing this voltage source as a piecewise
linear waveform, the far end response is a combination of a number of ramp and/or
step responses, which are solved in Sec. 2.2. For the second voltage approach, the
method proposed in Sec. 2.2 needs to be improved to include the effect of the
driver resistance. With a system transform, the poles of a general RLC interconnect
system are solved in Sec. 3.1. The accuracy of the poles are further improved with
the Newton–Raphson method as described in Sec. 3.2. The accuracy and efficiency
of the proposed model are discussed in Sec. 3.3.

3.1. System transform

In Ref. 9, the circuit model as shown in Fig. 1 is mapped into an open-ended inter-
connect system by matching the moments. Similarly, the interconnect system with
a driver resistance can also be mapped into a system without a driver resistance.
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Consider a step signal at the input of the circuit shown in Fig. 1. The height of
the initial step at the driver output is VddZ0/(Rd + Z0), where Z0 =

√
L/C is

the characteristic impedance of a lossless line. As described in Ref. 28, the atten-
uation coefficient of a transmission line saturates with increasing frequency to the
asymptotic value R/2Z0. Assume the total interconnect resistance of the new sys-
tem (without a driver resistance) is R′ and the load capacitance is C′

L. By matching
the amplitude of the initial propagating wave,

Vdd
Z0

Rd + Z0
e
− R

2Z0 = Vdde
− R′

2Z0 , (26)

R′ can be obtained as

R′ = R + 2Z0 log
(

1 +
Rd

Z0

)
. (27)

By matching the first moment of the two systems,

−m1 = Rd(CL + C) + R(0.5C + CL) = R′(0.5C + C′
L) , (28)

C′
L can be obtained as

C′
L =

−m1

R′ − 0.5C . (29)

After this conversion, the method proposed in Sec. 2.2 can be applied. In Fig. 8, the
waveform obtained from the proposed model is compared with Spectre simulations
and another four-pole model described in Ref. 6. This four-pole model is obtained
by truncating the denominator of the transfer function to the fourth-order; however,
no closed-form solution is available for solving the four poles. Note that although
both the proposed model and the four-pole model are based on an approximation
of the four poles of the system, the proposed model is much more accurate than
the four-pole model when inductive effects are important (a system with a small
driver resistance), as shown in Fig. 8(a). When the system is dominated by the
driver resistance, the proposed model is less accurate, particularly at the beginning
period of the waveform, as shown in Fig. 8(b).

3.2. Improve the accuracy of the poles

The location of the low order poles obtained analytically is compared with the
location of the exact poles in Fig. 9. From the figure, note that there is a one-to-
one mapping between the approximated poles and the exact poles. The real pole
without an arrow in Fig. 9 is mapped to a real pole which is out of the range of the
figure. From these approximated poles, the exact poles are obtained through the
Newton–Raphson method, permitting the accuracy of the model to be significantly
improved. In general, the number of iterations required for convergence is less than
five.

Special attention needs to be paid to those real poles when applying the Newton–
Raphson method. For example, the Newton–Raphson process starting from the
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Fig. 8. Transient response of a transmission line obtained with the proposed model, four-pole
model, and Spectre simulations. tr = 50ps and CL = 50 fF. (a) Rd = 20Ω, (b) Rd = 300 Ω.

approximated pole −3.892× 1010 (the left real pole as shown in Fig. 9) incorrectly
converges to the exact pole −6.396 × 109 rather than converges to the exact pole
outside the range of the figure. In order to distinguish this case from the double
real pole case, the following condition needs to be evaluated. If p is a double real
pole of the system, p satisfies the following expression,

lim
s→p

F (s)
s − p

= F ′(p) = 0 . (30)

For systems with multiple real poles, the system is dominated by the real pole
with the smallest magnitude and the effect of the other real poles can be ignored,
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Fig. 9. Mapping between the approximated poles and the exact poles, Rd = 100 Ω.

unless these poles are close to the dominant pole. The distance between the other
real poles and the dominant real pole is related to the value of F ′(pd), where pd is
the dominant pole. If there is another pole px which is close to pd, F ′(pd) should be
small. When px approaches pd, the value of F ′(pd) approaches zero. In the limit,
px = pd, pd is a double pole, and F ′(pd) = 0, as expressed in Eq. (30).

Pseudo-code for generating the exact poles of a single interconnect system is
shown in Fig. 10. In Fig. 10, the variable over damped is used to indicate whether
the system is overdamped or not. For overdamped systems, the higher order real
poles (with n > 0) are ignored. A threshold value Fth is set for F ′(p), which is used
to indicate the distance between other high order real poles and the dominant real
pole. After the dominant real pole (if the system has real poles, the dominant real
pole is always p0,+) is determined, F ′(p0,+) is evaluated. F (s) can be represented
by the poles as

F (s) =
∞∏

n=0

(
1 − s

pn,+

) (
1 − s

pn,−

)
. (31)

From Eq. (31),

F ′(p0,+) =
−1
p0,+

(
1 − p0,+

p0,−

) ∞∏
n=1

(
1 − p0,+

pn,+

) (
1 − p0,+

pn,−

)

<
−1
p0,+

(
1 − p0,+

p0,−

)
. (32)

If |p0,−| > 2|p0,+|, F ′(p0,+) < −0.5/p0,+. With some guardband, Fth is deter-
mined as −0.3/p0,+. If F ′(p0,+) < Fth, which means pole p0,− is close to p0,+, a
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Fig. 10. Pseudo-code for computing the exact poles. The function Newton Raphson( ) is the
Newton–Raphson converging process starting with the input argument.

Newton Raphson process is launched from point 2p0,+ to determine p0,−. Other-
wise, the Newton Raphson process is launched from point 5p0,+ to determine p0,−.
If the process does not converge or incorrectly converges to p0,+, which means the
true value of |p0,−| is greater than 5|p0,+|, the effect of p0,− can be ignored. For the
double pole case, the process of solving the residue requires the complicated process
of solving the second order derivative of F (s). The code produces an output mes-
sage if a double pole occurs. In this case, a small change in the circuit parameters
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can avoid a double pole, while the effect on the output signal waveform caused by
this parameter change cannot be distinguished. After the exact poles are extracted,
a step or ramp response is constructed from Eqs. (21) or (22). In order to eliminate
the artificial discontinuity of the waveform at the end of the input rising edge, the
first moment m1 in Eq. (22) is calculated from the truncated summation, as shown
in the left side of Eq. (23), rather than the exact value of 0.5R′C + R′C′

L.
For the same circuit examples used in Fig. 8, the waveform obtained

from the improved method is re-plotted in Fig. 11. From Fig. 11, the difference
between the analytic waveforms and Spectre simulations is difficult to distinguish
except for the period of the initial time-of-flight.
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Fig. 11. Transient response of transmission line obtained with the improved analytic method as
compared with Spectre simulations, m = 2, (a) Rd = 20Ω, (b) Rd = 300 Ω.
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3.3. Model accuracy and efficiency

The 50% delay, 10%-to-90% rise time, and the normalized overshoot obtained from
the proposed model are compared in Fig. 12 with Spectre simulations for different
input rise times (the input rise time is determined from 0 to Vdd). Since the signal
delay is generally determined by the low frequency components, two pairs of poles
provide a sufficiently accurate delay estimation. The average error is 1% for dif-
ferent input rise times. For the output rise time and overshoot, the error is larger
for smaller input rise times. The error decreases with increasing input rise time,
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Fig. 12. Comparison of the 50% delay, 10%-to-90% output rise time, and the normalized over-

shoot obtained from the proposed model and Spectre simulations, Rd = 20Ω, CL = 50 fF, and
l = 5mm; (a) Delay and output rise time, (b) Overshoot.
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since the output rise time and overshoot are closely related to the high frequency
components. The average error with two pairs of poles is 9.5% for the output rise
time and 5.5% for the overshoot. When the number of pole pairs increases to ten,
these two average errors decrease to 2.0% and 1.9%, respectively.

The computational complexity of the proposed method is approximately pro-
portional to the number of pole pairs. These experiments have been performed on
a SunBlade1500 workstation. The time required for Spectre to perform a 700 ps
transient simulation (250 time steps) is 1.8 s. The proposed model is implemented
with Matlab. The run time is 3.1ms for m = 2 and 10.9ms for m = 10. To achieve
an accuracy similar to the proposed model (m = 2), more than 12 poles are required
in the traditional moment matching method. Since there are no closed-form solu-
tions for solving the poles from the moments, the computational complexity of the
moment matching method is higher as compared with the proposed method. Specif-
ically, the run time for the moment matching method with 12 poles is 13.5ms as
compared to 3.1ms for the proposed method with m = 2. Furthermore, the moment
matching method suffers numerical stability problems with high order approxima-
tions. The accuracy of the proposed model is also verified for different interconnect
lengths and is illustrated in Fig. 13.

4. Frequency Dependent Effects

Both interconnect inductance and resistance are a function of frequency. This fre-
quency dependent interconnect impedance affects the signal waveform, particularly
for those signals containing a greater number of high frequency components.

From Eq. (27), the contribution of the driver resistance to the effective intercon-
nect resistance is Rd eff = 2Z0 log(1+Rd/Z0), which is frequency independent (the
frequency dependence due to Z0 is ignored, and the Z0 used here is determined at
DC). The effective load capacitance is also determined at DC, as shown in Eq. (29).
Considering the effect of the driver resistance and the frequency dependence of R

and L of the interconnect, the effective propagation coefficient θ becomes

θ =
√

[Rd eff + R(s) + L(s)s]Cs . (33)

For different functional forms of R(s) and L(s), the poles of the transfer function
of an interconnect can be obtained by solving Eq. (33). Closed-form solutions may
also be available depending upon the expressions of R(s) and L(s).

The frequency dependent impedance can be modeled by ladder structures of
frequency-independent elements.29, 30 These ladder structures are particularly suit-
able to capture skin effects. A two stage ladder structure29 is adopted in this paper
for simplicity, as shown in Fig 14. Since the frequency dependent effect is natu-
rally more significant at high frequencies, a wider interconnect is adopted so that
additional high frequency components can propagate across the interconnect, distin-
guishing the frequency dependent effects. The signal wire width is 10 µm, the space
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Fig. 13. Comparison of the 50% delay and 10%-to-90% output rise time obtained from the
proposed model and Spectre simulations; tr = 50 ps, (a) 50% delay, (b) 10%-to-90% output rise
time.
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Fig. 14. A segment of interconnect with length ∆l.
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between the signal line and ground is 5 µm, and the remaining geometric param-
eters are the same as depicted in Fig. 5. The parameters in the ladder structure
are calculated by matching the DC and high frequency resistance and inductance
of the ladder structure with the extracted values. Since the resistance of the inter-
connect does not saturate at high frequencies, a value of 40 Ω is assumed as the
high frequency resistance in this example, resulting in the following parameters:
R0 = 40 Ω, R1 = 28.1 Ω, L0 = 1.9 nH, and L1 = 1.12 nH. The DC impedance is
Rdc = 16.5 Ω, Ldc = 2.287 nH, and C = 4.18 pF. The resistance and inductance of
the ladder approximation are compared with the extracted values in Fig. 15.
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Fig. 15. Frequency dependent impedance of an interconnect with a length of 5mm;
(a) Resistance, (b) Inductance.
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With this ladder approximation, the expression used to solve the poles of the
system becomes[

Rd eff + L0s +
R0(R1 + L1s)
R0 + R1 + L1s

]
Cs = θ2 = −x2

n . (34)

The poles can be analytically solved as

pn,± = −a2

3
− X

2
±

√
3

2
i
√

X2 + 4Q , (35)

where

Q =
3a1 − a2

2

9
, (36)

P =
9a1a2 − 27a0 − 2a3

2

54
, (37)

X = 3
√

P +
√

Q3 + P 2 + 3
√

P −
√

Q3 + P 2 , (38)

and

a2 =
L0R0 + L0R1 + R0L1 + L1Rd eff

L0L1
, (39)

a1 =
R0R1C + (R0 + R1)Rd effC + x2

nL1

L0L1C
, (40)

a0 =
(R0 + R1)x2

n

L0L1C
. (41)

From Eq. (35), the Newton–Raphson method can be applied to solve the exact
poles as illustrated in Sec. 3.2. In Fig. 16, the output signal waveforms are compared
for the DC impedance case and the frequency dependent (FD) impedance case.
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Fig. 16. Comparison of the output signal waveforms with and without the frequency dependent
effect, Rd = 10Ω, CL = 50pF, and tr = 50ps.
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As shown in Fig. 16, by considering the FD effect, additional high frequency com-
ponents are suppressed, making the waveform smoother since the high frequency
components experience much greater attenuation due to the increasing interconnect
resistance, as shown in Fig. 17. For the high frequency related waveform properties,
such as the rise time and overshoot, the FD effect should be considered. For low fre-
quency related waveform properties, such as delay, the FD effect can be neglected.
Similar results are also described in Ref. 31. The run time of the Spectre simulation
(700 ps, 225 time steps) is 2.45 s and the run time for the proposed analytic method
(m = 2) is 3.8ms (three orders of magnitude improvement in computational time).

5. Conclusions

By extracting the exact poles, an efficient method has been proposed in this paper
for determining the transient output response of a distributed RLC interconnect.
As demonstrated in the paper, two pairs of poles can provide an accurate delay
estimate exhibiting an average error of 1% as compared with Spectre simulations.
For high frequency related waveform properties, such as the rise time and overshoot,
an average error of less than 2% can be obtained with ten pairs of poles. The
computational complexity of the proposed method is proportional to the number
of pole pairs. By using a ladder structure, frequency dependent effects can also
be included in the method. Excellent agreement is observed between the proposed
model and Spectre simulations.
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