
Logic operations in memory using a memristive Akers array

Yifat Levy a, Jehoshua Bruck b, Yuval Cassuto a, Eby G. Friedman c, Avinoam Kolodny a,
Eitan Yaakobi b, Shahar Kvatinsky a,n

a Department of Electrical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
b Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
c Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY 14627, USA

a r t i c l e i n f o

Article history:
Received 4 March 2014
Received in revised form
27 May 2014
Accepted 25 June 2014
Available online 13 August 2014

Keywords:
Memristor
Memristive systems
Logic array
Memory array
von Neumann Architecture
Akers logic array

a b s t r a c t

In-memory computation is one of the most promising features of memristive memory arrays. In this
paper, we propose an array architecture that supports in-memory computation based on a logic array
first proposed in 1972 by Sheldon Akers. The Akers logic array satisfies this objective since this array can
realize any Boolean function, including bit sorting. We present a hardware version of a modified Akers
logic array, where the values stored within the array serve as primary inputs. The proposed logic array
uses memristors, which are nonvolatile memory devices with noteworthy properties. An Akers logic
array with memristors combines memory and logic operations, where the same array stores data and
performs computation. This combination opens opportunities for novel non-von Neumann computer
architectures, while reducing power and enhancing memory bandwidth.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Conventional computers are based on a von Neumann archi-
tecture, where separate units process and store data. A different
approach is to process data within the same unit that stores the
data (i.e., process data within memory). An illustration of both
architectures is shown in Fig. 1. In this paper, a hardware version
of processing within memory is proposed. The proposed circuit is
based on a study of rectangular logic arrays, first proposed in 1972
by Sheldon Akers [1].

In an Akers logic array (or, in short, an Akers array), the
execution of any Boolean function is performed by flowing data
across an array of primitive logic cells. The data are transferred
from each primitive logic cell to neighboring cells, as shown in
Fig. 2a. The operation of an Akers array is similar to systolic array
[2] and cellular automata [19]. The primitive logic cell has three
inputs and two outputs, as shown in Fig. 2b. The inputs of the
primitive logic cell include two control inputs x and y and a
variable input z, which is replaced in our circuit by an internal

state (i.e., the stored data). The primitive logic cell performs a
predefined logical operation f(x, y, z), which is described below.
The output of each primitive logic cell is used as control inputs x
and y of, respectively, the bottom and right neighboring primitive
logic cells.

To execute any Boolean function within an Akers array, specific
input values are inserted as control inputs into the left-most
column and the upper-most row. The control input y of the left-
most column is set to 1 for all rows, and the control input x of the
upper-most row is set to 0 for all columns, as shown in Fig. 2a.
These control inputs along with the array structure and the
function f(x, y, z) determine the Boolean function computed by
the array. The inputs to this Boolean function are the bits stored
within the array cells. The output of the Boolean function com-
puted by the Akers array is the output of the primitive logic cell at
the bottom right of the array. It is also possible to define multiple
Boolean functions (or, alternatively, a multi-bit output) on the
same Akers array, in which case additional primitive cell outputs
are used as external functional outputs. To date, an Akers array has
been treated as a mathematical concept since the benefit of an
Akers logic array with conventional semiconductor technology
(i.e., CMOS technology) is limited, as described in Section 2.

The emergence of memristive technologies [3] enables the
integration of computation and memory, including logic within
memory [5–6,20–26]. The high density of memristors and compat-
ibility with CMOS makes an Akers array with memristors practical.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/mejo

Microelectronics Journal

http://dx.doi.org/10.1016/j.mejo.2014.06.006
0026-2692/& 2014 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail addresses: yifatl@tx.technion.ac.il (Y. Levy), bruck@caltech.edu (J. Bruck),

ycassuto@ee.technion.ac.il (Y. Cassuto),
friedman@ece.rochester.edu (E.G. Friedman),
kolodny@ee.technion.ac.il (A. Kolodny), yaakobi@caltech.edu (E. Yaakobi),
skva@tx.technion.ac.il (S. Kvatinsky).

Microelectronics Journal 45 (2014) 1429–1437

www.sciencedirect.com/science/journal/00262692
www.elsevier.com/locate/mejo
http://dx.doi.org/10.1016/j.mejo.2014.06.006
http://dx.doi.org/10.1016/j.mejo.2014.06.006
http://dx.doi.org/10.1016/j.mejo.2014.06.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mejo.2014.06.006&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mejo.2014.06.006&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mejo.2014.06.006&domain=pdf
mailto:yifatl@tx.technion.ac.il
mailto:bruck@caltech.edu
mailto:ycassuto@ee.technion.ac.il
mailto:friedman@ece.rochester.edu
mailto:kolodny@ee.technion.ac.il
mailto:yaakobi@caltech.edu
mailto:skva@tx.technion.ac.il
http://dx.doi.org/10.1016/j.mejo.2014.06.006


In this paper, a memristive Akers array is proposed, where the
variables z are stored within the memristive cells, and the control
inputs x and y are voltages. The proposed memristive Akers array
serves as a practical example of in-memory computation.

The design of the proposed memristive Akers array is demon-
strated here by a small example of a four by four array, producing a
variety of array operations, including a bit sorting algorithm as a
case study. The rest of the paper is organized as follows. In Section
2, background describing both the Akers array and memristors is
provided. The proposed memristive Akers array is described and
evaluated in, respectively, Sections 3 and 4, followed by a discus-
sion of design considerations for larger arrays in Section 5. A small
example of different array operations is described in Section 6,
followed by some concluding remarks in Section 7.

2. Background

In this section, the theory of the original Akers logic arrays is
described and the basic principles of memristive devices are
reviewed, including the model used in this paper for evaluating
the proposed memristive Akers array.

2.1. Akers logic array

An Akers logic array is a two-dimensional array of identical
primitive logic cells connected in a rectangular grid, as shown in
Fig. 2a. The primitive logic cell in the array is a three input logic
gate that executes the logical operation,

f ðx; y; zÞ ¼ xzþyz: ð1Þ
Note that in the original Akers array [1], four alternative logical

operations that generate the correct behavior of the array are
proposed. In this paper, only Eq. (1) is used due to the easy
implementation with memristors.

The output of each primitive logic cell is transferred to the two
neighboring primitive logic cells in the array – one below and one
to the right of the array. The transferred data are the x and y
control inputs of, respectively, the vertical and horizontal neigh-
bors, as shown in Fig. 2a. The control input y of the left-most
column is set to 1 for all rows, and the control input x of the upper-
most row is set to 0 for all columns.

The execution of a Boolean function is performed by organizing
the contents of the array cells according to the particular specifi-
cation, and reading the functional output from the output of the

lower-right cell (or from multiple cell outputs in the case of a
Boolean function with a multiple bit output or, alternatively,
multiple Boolean functions simultaneously computed within the
same array). Hence, the same array can be used for different
Boolean functions, each specifying a different organization of
inputs. Examples of several Boolean functions are illustrated
in Fig. 3.

Sorting of four bits fz0; z1; z2; z3g is shown in Fig. 3a. The binary
sorting function on n inputs is defined as the n Boolean functions
f 0;…; f n�1, where f iðz0;…; zn�1Þ ¼ 1 if the number of “1” inputs
among z0;…; zn�1 is greater than i (i.e., f 0 is the maximum value
and f n�1 is the minimum of the output). For the sorting function,
each input variable of the sorting Boolean function is replicated a
number of times up to the number of inputs [1]. For example, z3 is
replicated four times, while z1 is replicated two times. The number
of primitive logic cells is therefore ∑n�1

i ¼ 0ðiþ1Þ ¼ ðn2=2Þþðn=2Þ -
where n is the number of inputs to the sorting Boolean function.
The output bits of the sorting Boolean function are placed along
the diagonal of the array, as shown in Fig. 3a.

Another example for a Boolean function within an Akers array
is a four-bit XOR [1], as shown in Fig. 3b. The variable inputs of the
primitive logic cells are arranged similarly to the sorting array,
where the complementary value of the XOR inputs are also stored
as input variables of the primitive logic cells. The output of the
XOR operation is the output of the bottom right primitive logic
cell. The number of primitive logic cells for an n-bit XOR is n2.

Since the inputs of the Boolean function must be replicated
within an array, the number of primitive logic cells increases
quadratically with the number of inputs of the Boolean function. A
CMOS Akers logic array therefore requires significant area, making
an Akers array impractical with standard CMOS. In contrast, the
density and circuit architecture of memristive devices make the
Akers array natural for memories. A memristive Akers array within
memory can be denser than standard SRAM (without computation
capabilities), as listed in Table 1.

2.2. Memristors

Memristors and memristive devices [3,7] are two-port passive
elements with varying resistance. The change in the resistance of
these devices depends on the current flowing through the device (or,
alternatively, the voltage across the device), as shown in Fig. 4. While
in theory the change in the resistance of a memristor depends
directly on the current (or voltage), for memristive devices the
dependence can be more complicated and described by internal
state variables [7]. In this paper, the term memristor is used to
describe both memristors and memristive devices.

Since 2008, numerous emerging nonvolatile memory technologies
have been connected to the theory of memristors [8–12]. These
technologies are nonvolatile, fast, dense, CMOS compatible, low power,
and have high write endurance. The compatibility of memristors with

Arithmetic Logical 
Unit

Arithmetic Logical 
Memory

Input Output

Arithmetic Logical 
Unit

Memory

Input Output

Fig. 1. Different computer architectures. (a) von Neumann architecture – separate
memory and an ALU. (b) Processing within memory architecture (e.g., memristive
Akers array). The memory can also process data. The size of the ALU is therefore
smaller and the required memory bandwidth lower (schematically represented by
the thickness of the arrow between the memory and the ALU).

Fig. 2. Akers logic array. (a) An example of a three by three Akers array structure.
(b) A primitive logic cell with three inputs x, y, z and two identical outputs f(x, y, z).

Y. Levy et al. / Microelectronics Journal 45 (2014) 1429–14371430



CMOS enables the use of memristors not only as memory, but also as
logic circuits [4–6,13,20–26].

Several models have been proposed to describe the behavior of
memristors. In this paper, the TEAM model is used [14]. The TEAM
model is general and can fit memristors from different techno-
logies. In the TEAM model, it is assumed that a memristor has
current thresholds, ioff and ion, and an internal state variable x.
When the current flowing through the memristor is above the
current thresholds, the memristor changes state either from Ron to
Rof f or from Rof f to Ron depending upon the original state and
direction of the current. The voltage–current relationship and the
change in state variable are described by

vðtÞ ¼ RONþ
ROFF�RON

xof f �xon
ðx�xonÞ

� �
U iðtÞ ð2Þ

dxðtÞ
dt

¼
kof f U

i tð Þ
iof f

�1
� �αof f

U f of f ðxÞ; 0o iof f o i;

kon U
i tð Þ
ion
�1

� �αon
U f onðxÞ; io iono0;

0; otherwise;

8>>><
>>>:

ð3Þ

where RON and ROFF are, respectively, the minimum and maximum
resistance of the memristor, xon and xoff are, respectively the
minimum and maximum value of the state variable x, fon(x) and
foff(x) are window functions (the TEAM window function is used in

this paper), and koff, kon, αoff, and αon are fitting parameters. An
example of an I–V curve of the TEAM model is shown in Fig. 5.

3. Proposed memristive Akers logic array

As previously mentioned, an Akers array with conventional
CMOS technology is impractical due to the significant area
requirements. The use of memristors, which are dense and
fabricated physically above the CMOS transistors, significantly
reduces the area.

The proposed memristive Akers primitive logic cell is based on
the structure of complementary memristors (or complementary
resistive switches, CRS) [15,16]. In the proposed memristive reali-
zation of an Akers array, the input variable z is the stored internal
state of a memristor. The inputs of the executed Boolean function
are therefore treated as stored data within a memristive memory
array. In this section, the structure of the primitive logic cell is
described as well as the operation of the array.

3.1. Primitive logic cell structure

The proposed primitive logic cell realizes the logical connec-
tivity described by Eq. (1). The primitive cell consists of two anti-
serial memristors (connected with opposite polarity), as shown in
Fig. 6a. The control inputs of the primitive logic cell x and y are
voltages (logical one and zero are, respectively, a positive voltage
Vr and ground). The variable input z is the stored logical state of
memristor MZ , which is represented by the resistance of the
device (low and high resistances are considered, respectively, as
logical one and zero). The memristor MZ has the complementary
logical state of MZ . The stored logical state of MZ and MZ are
written during a write operation prior to execution.

Ideally, the memristors can be modeled as switches, where a
high resistance is an open circuit and a low resistance is a short
circuit, as shown in Fig. 6b. In an ideal model, one switch is open
and the other switch is closed. If z is logical one, the switch of z is

Table 1
Area of memory technologies F – feature size, T – transistor, C – capacitor, and R – resistive device (memristor).

Technology Memory cell Area per cell (F2) Computing capabilities Sequential

SRAM 6T 140 No –

DRAM 1T 1C 6–12 No –

Flash 1T 4 No –

RRAM (memristive memory, single device per cell) 1R 4 Yes [5–6,25–26] Yes
Complementary resistive switches 2R 4–8 Yes [24] Yes
Akers array within memory 2R 4T 20–90 Yes No

Fig. 4. Memristor symbol. The polarity of the memristor is represented by the thick
black line. When current flows into the device, the resistance of the device
increases. When current flows out of the device, the resistance of the device
decreases.

Fig. 3. Four-bit input structure for an Akers arrays for Boolean functions (a) Sort fz0 ; z1 ; z2 ; z3 ;g, and (b) XORðA;B;C;DÞ.

Y. Levy et al. / Microelectronics Journal 45 (2014) 1429–1437 1431



closed and the logical value of y is transferred to the output. If z
is logical zero, the switch is open and the complementary switch is
closed, transferring x to the output.

The precise output of the primitive logic cell is the result of a
voltage divider between MZ and MZ . The output voltage Vf is

Vf ¼
Vy�Vx

RZþRZ

URZþVx; ð4Þ

where RZ and RZ are, respectively, the resistance of memristors MZ

and MZ , varying from Ron to Rof f : Vx and Vy are the input voltages x
and y. The output voltage Vf for different input conditions is listed in
Table 2, demonstrating that, as required, the primitive logic cell indeed
executes the Boolean function (1).

3.2. Logic array operation

The Akers logic array is an array of primitive logic cells that can
also be used as a memory array, as shown in Fig. 7. Unlike regular
memory arrays, the memristive Akers logic array can compute
different Boolean functions in addition to storing data. The
computation of Boolean functions within the logic array is divided
into two stages. The initial stage is a “write” operation to the
memristors. In this stage, the initial logical state of memristors MZ

and MZ is simultaneously written. This stage can be part of a
regular write operation of the memory or, alternatively, an explicit
initialization prior to computing the Boolean function. In this
paper, initialization of a single primitive logic cell is evaluated.

Writing to the array (e.g., addressing the specific primitive cells
within the array and parallelizing the writes) is only briefly
discussed since this process is similar in any CRS-based memory
(e.g., see [16]). Relevant adjustments (e.g., adding CMOS selectors
to achieve isolation between the primitive cells and maintain
regular read and write operations), however, need to be performed
to achieve a memory integrated with an Akers logic array, as
shown in Fig. 7c.

The second stage executes the Boolean function. In this stage, a
low voltage is used to ensure that the resistance of the memristors
in the array does not change.

1) Stage 1 – initialization of the primitive logic cells (write)
Initialization of the logical states of MZ and MZ is simulta-
neously achieved due to the anti-serial connection of both
memristors. In the complementary structure, applying a suffi-
ciently high voltage to both memristors switches both mem-
ristors to different resistances, where one memristor achieves a
high resistance and the other memristor achieves a low
resistance. The write procedure in a complementary pair of
memristors is shown in Fig. 8.
To write a logical one to MZ , the resistances MZ and MZ are
required to be, respectively, a low and high resistance. The
write procedure therefore applies a sufficiently positive voltage
Vw to y while grounding x. To write a logical zero to MZ , the
write procedure applies Vw to x while grounding y, or alter-
natively, apply �Vw to y and grounding x. At the end of the
write operation, the resistance of MZ and MZ are RON and ROFF,
where the resistance of one memristor is RON and the resistance
of the other memristor is ROFF.

Fig. 5. Current–voltage characteristics of a memristor based on the TEAM model
[14] for a sinusoidal current input with an amplitude of 17 mA and frequency of
100 kHz. The memristor parameters are listed in Table 3.

Fig. 6. Primitive logic cell. (a) The proposed primitive logic cell using memristors. (b) A behavioral model of the basic logic cell, where the memristors are modeled as ideal
switches.

Table 2
Output voltage of primitive logic cell from Eq. (4).

x y z RZ Vf – derived from Eq. (4) f(x, y, z)

0 0 0 ROFF 0 0
0 0 1 RON 0 0
0 1 0 ROFF RON

ROFF þRON
UVr 0

0 1 1 RON ROFF
ROFF þRON

UVr 1

1 0 0 ROFF ROFF
ROFF þRON

UVr 1

1 0 1 RON RON
ROFF þRON

UVr 0

1 1 0 ROFF Vr 1
1 1 1 RON Vr 1

Y. Levy et al. / Microelectronics Journal 45 (2014) 1429–14371432



2) Stage 2 – execution of the Boolean function (read)
The structure of the memristive logic array is shown in Fig. 2a.
The array is similar to the structure of the original Akers logic

array. In a memristive Akers logic array, each primitive logic
cell consists of complementary memristors. The x and y control
inputs are voltages, and, as in the original Akers array, the input
y of the left-most column is set to logical one (execution
voltage Vr), and the input x of the upper row is set to logical
zero (ground) for all columns. Since the output of the memris-
tive primitive logic cell is a voltage, the result of the logical
operation for each primitive logic cell is transferred to the
neighboring cells.
To maintain correct operation of the memristive Akers logic
array, the resistance of the memristors in the array must not
change during execution. The current flowing through the
memristors Ir is therefore maintained lower than the threshold
current of the memristors. The current is

Ir ¼
jVy�Vxj
RZþRZ

r Vr

RONþROFF
omaxð iof f ; ion

�� ��Þ:���� ð5Þ

4. Evaluation of primitive logic cells

In this section, the proposed memristive primitive logic cell is
evaluated with 0.18 mm CMOS and simulated in SPICE. A Verilog-A
TEAM model [17] is used to simulate the behavior of the
memristors.

The primitive logic cell is based on a complementary resistive
switch structure. The CRS behaves as a linear resistor with a
resistance of RONþROFF below a certain voltage. Above this voltage,
hysteresis exists in the current–voltage curve of the CRS [15,16].
The current–voltage curve of the primitive logic cell is shown in
Fig. 9.

The primitive logic cell is evaluated with and without CMOS
selectors connected to the control inputs, x and y. The primitive

Fig. 7. Memristive memories (exemplified by a three by three array). (a) Single
memristor within a crossbar, (b) standard complementary memristive cells within
a crossbar, and (c) Akers logic array within a memristive memory. The basic
memory cell for the Akers logic array consists of two memristors and four CMOS
transistors (as selectors).

Fig. 8. Write operation of logical one to memristor MZ . Due to the complementary
structure of the circuit, writing to MZ and MZ is achieved simultaneously in both
memristors by applying a single voltage VW. After the write procedure, the
resistance of MZ and MZ is, respectively, RON and ROFF.

Y. Levy et al. / Microelectronics Journal 45 (2014) 1429–1437 1433



logic cell drives a load capacitor of 10 fF. The parameters used for
the memristors are listed in Table 3. A schematic of the simulated
primitive logic cell is shown in Fig. 10a. The results of the
initializing stage are shown in Fig. 10b. The write latency of the
primitive cell depends upon the switching time of the memristor,
assumed as 1.1 ns. The primitive logic cell exhibits a write latency
of 6.6 ns (six times more than the switching time of a single
memristor).

The results of the execution stage are shown in Fig. 10c and 10d.
The primitive logic cell executes the correct logical behavior with
degradation in the output signal. The degradation depends upon
the ratio between ROFF and RON. The output degradation is 0.1%
without selectors (ROFF/RON¼1000) and 4% with CMOS selectors
(for a 0.18 mm CMOS process). The output degradation is discussed
in the following section.

5. Output degradation

Since memristors are passive elements, signal degradation
occurs at the output of each primitive logic cell. The degradation
depends primarily on the ratio between ROFF and RON, where a
higher ratio reduces the degradation. The degradation limits the
size of the Akers array.

The degradation of the output signal as a function of array size
is shown in Fig. 11a for Akers arrays with and without CMOS
selectors. The use of CMOS selectors makes the output degradation
worse since the CMOS element adds a resistance in series. For
larger arrays, the degradation is more significant and limits the
size of the sub-arrays of the memory. The degradation for different

ratios of ROFF and RON is shown in Fig. 11b. For an array composed
of 128 by 128 primitive logic cells, the minimal degradation of the
output reaches 10% for ROFF/RON¼1000. For arrays with CMOS

Fig. 9. Current–voltage characteristic of the primitive logic cell for a sinusoidal
current input with an amplitude of 17 mA and frequency of 100 kHz. The circuit
parameters are listed in Table 2. For a current lower than the current thresholds ion
and ioff (10 mA), the resistance of both memristors is constant. For a current higher
than the current thresholds, the resistance of both memristors changes.

Table 3
Memristor parameters.

kon �8 m/s
koff 0.5 m/s
ion �10 μA
ioff 10 μA
xon 0
xoff 3 nM
αon 1
αoff 4
RON 100 Ω
ROFF 100 kΩ
Vw 3 V
Vr 1 V
CMOS selectors CMOS 0.18 mm process

W¼0.42 mm

Fig. 10. Initialization and execution of primitive logic cell. (a) Schematic of the
simulated circuit, (b) simulation of memristive initialization operation. Vy is the
write voltage applied to the primitive logic cell (positive and negative for,
respectively, writing logical one and zero to Z), and simulation of memristor
execution operation (c) without selectors and (d) with selectors. The simulation
parameters are listed in Table 2.

Y. Levy et al. / Microelectronics Journal 45 (2014) 1429–14371434



selector with a resistance of 1 kΩ, the actual output degradation is
15%. Using larger CMOS transistors lowers the degradation. A
higher ROFF/RON ratio enables a larger array, where a ratio of

10,000 enables arrays of more than a million logic primitive cells
with an output degradation of 10%.

6. Test case – memristor-based logic within memory array

To evaluate a memristive Akers array, several Boolean functions
are investigated within the array. In this section, simulation results
of a two-input XOR and sorting of four bits are presented as simple
test examples.

Fig. 11. Output signal degradation for an Akers array with (dashed line) and
without (solid line) CMOS selectors. (a) Signal degradation as a function of
rectangular array size for different ROFF/RON ratios (104 in red, 103 in blue, and 102

in green), and (b) signal degradation in rectangular array of 128 by 128 as a
function of the resistance ratio ROFF/RON with CMOS selector. RON¼1 kΩ, the
resistance of a CMOS selector is 1 kΩ. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. Two-input XOR. (a) Schematic of a two by two memristive Akers array, and (b) the array structure of the Boolean function XOR(A, B).

Fig. 13. Simulation results of a two-input XOR (a) without CMOS selectors and
(b) with CMOS selectors for different inputs A and B. The average output degradation
is 3% and 20%, respectively, without and with CMOS selectors for a 0.18 mm CMOS
process. The execution voltage Vr for the XOR without selectors is 0.5 V.

Y. Levy et al. / Microelectronics Journal 45 (2014) 1429–1437 1435



6.1. Two-input XOR

The schematic and array structure of a XORðA;BÞ are shown in
Fig. 12. The memristive Akers array is a two by two array,
consisting of eight memristors. Initializing the array (writing the
inputs to the memristors) is achieved prior to execution. The
execution is evaluated with the same parameters listed in Table 3,
exhibiting the correct output. The average and maximum output
degradation are, respectively, 20% and 31% for a two-input XOR
with 0.18 mm CMOS selectors (3% without selectors). The relatively
high degradation is due to the minimal size of the CMOS selectors
and the use of high voltage transistors, which have a relatively
high resistance. As previously mentioned, increasing the width of
the transistors significantly lowers the signal degradation.

The average power of the array during execution is, respec-
tively, 6.2 mW and 33.6 mW without and with CMOS selectors. The
results for different input conditions are shown in Fig. 13. For small
arrays, adding CMOS selectors does not affect the speed of the
circuit. For an array with CMOS selectors, execution is slower due
to the capacitance of the selectors.

6.2. Sorting of bits

To evaluate sorting of bits, a four-bit sorting Boolean function is
executed within the memristive Akers array. The memristive Akers
array consists of 10 primitive logic cells (see Fig. 3a) and 20
memristors. The execution is evaluated with the same parameters
listed in Table 3, showing correct output and an average output
degradation of 0.3% without CMOS selectors. The average power of
the array during execution is 1.6 mW. Results for different input
conditions are shown in Fig. 14.

7. Conclusions

The proposed memristive Akers array contains a pair of
complementary memristors in each cell. The array can therefore
be used as a memristive memory, where a single bit is stored
within a memristor pair rather than a single memristor [15,16].
Each cell also performs a primitive Boolean operation, which
enables the logic functionality of the array, as initially shown by
Akers. The combination of an Akers array and memory is promis-
ing and may lead to additional uses, as described in [18]. For
example, an Akers logic array naturally performs bit sorting which
may lead to efficient sorting of words and other data structures.

The integration of memristive memory with a logic array that
executes any Boolean function can lead to a variety of novel non-
von Neumann architectures. The Akers array architecture elim-
inates the memory bottleneck, reducing power and bandwidth.
Memristive Akers logic arrays may also be beneficial for image
processing applications and error correcting operations within
memory.

Acknowledgments

The authors thank Ravi Patel of the University of Rochester for
his useful comments.This work was partially supported by Hasso
Plattner Institute, by the Advanced Circuit Research Center at the
Technion, by the Intel Collaborative Research Institute for Compu-
tational Intelligence (ICRI-CI), and by US-Israel Binational Science
Foundation under Grant no. 2012139.

References

[1] S.B. Akers Jr., A rectangular logic array, IEEE Trans. Comput. C-21 (8) (1972)
848–857 (August).

[2] H.T. Kung, Why systolic architectures? IEEE Comput. 15 (1) (1982) 37–46
(January).

[3] L.O. Chua, Memristor – the missing circuit element, IEEE Trans. Circuit Theory
18 (5) (1971) 507–519 (September).

[4] S. Kvatinsky, N. Wald, G. Satat, E.G. Friedman, A. Kolodny, and U.C. Weiser, MRL
– memristor ratioed logic, in: Proceedings of the International Cellular
Nanoscale Networks and their Applications, August 2012, pp. 1–6.

[5] S. Kvatinsky, N. Wald, G. Satat, E.G. Friedman, A. Kolodny, U.C. Weiser,
Memristor-based material implication (IMPLY) logic: design principles and
methodologies, IEEE Trans. Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, (2014), vol. PP, no.99, pp.1,1, 0.

[6] S. Kvatinsky, E.G. Friedman, A. Kolodny, and U.C. Weiser, Memristor-based
IMPLY logic design procedure, in: Proceedings of the IEEE International
Conference on Computer Design, October 2011, pp.142–147.

[7] L.O. Chua, S.M. Kang, Memristive devices and systems, Proc. IEEE 64 (2) (1976)
209–223 (February).

[8] D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor
found, Nature 453 (2008) 80–83 (May).

[9] X. Wang, Y. Chen, H. Xi, D. Dimitrov, Spintronic memristor through spin-
torque-induced magnetization motion, IEEE Electron Dev. Lett. 30 (3) (2009)
294–297 (March).

[10] L.O. Chua, Resistance Switching Memories are Memristors, Appl. Phy. A: Mater.
Sci. Process. 102 (4) (2011) 765–783 (March).

[11] R. Waser, R. Dittmann, G. Staikov, K. Szot, Redox-based resistive switching
memories – nanoionic mechanisms, prospects, and challenges, Adv. Mater. 21
(25–26) (2009) 2632–2663 (July).

[12] J.J. Yang, D.B. Strukov, D.R. Stewart, Memristive devices for computing, Nature
Nanotechnol. 8 (2013) 13–24 (January).

[13] S. Kvatinsky, G. Satat, N. Wald, E.G. Friedman, A. Kolodny, U.C. Weiser, MRL –

memristor ratioed logic, Proceedings of the International Cellular Nanoscale,
Networks and their Applications, (2012), pp. 1-6.

[14] S. Kvatinsky, E.G. Friedman, A. Kolodny, U.C. Weiser, TEAM – ThrEshold
adaptive memristor model, IEEE Trans. Circuits Syst. I: Regul. Pap. 60 (1)
(2013) 211–221 (January).

[15] E. Linn, R. Rosezin, C. Kügeler, R. Waser, Complementary resistive switches for
passive nanocrossbar memories, Nat. Mater. 9 (5) (2010) 403–406 (April).

[16] O. Kavehei, S. Al-Sarawi, S., K.-R. Cho, K. Eshraghian, D. Abbott, An analytical
approach for memristive nanoarchitectures, IEEE Trans. Nanotechnol. 11 (2)
(2012) 374–385 (March).

Fig. 14. Simulation results of a four-bit set sort using a four by four memristive
Akers array without CMOS selectors. (a) Different output values and (b) different
inputs, all with a single logical one and three zeros. The output is therefore the
same for all input cases. The execution voltage Vr is 200 mV.

Y. Levy et al. / Microelectronics Journal 45 (2014) 1429–14371436

http://refhub.elsevier.com/S0026-2692(14)00205-5/sbref1
http://refhub.elsevier.com/S0026-2692(14)00205-5/sbref1
http://refhub.elsevier.com/S0026-2692(14)00205-5/sbref2
http://refhub.elsevier.com/S0026-2692(14)00205-5/sbref2
http://refhub.elsevier.com/S0026-2692(14)00205-5/sbref3
http://refhub.elsevier.com/S0026-2692(14)00205-5/sbref3
http://refhub.elsevier.com/S0026-2692(14)00205-5/sbref4
http://refhub.elsevier.com/S0026-2692(14)00205-5/sbref4
http://refhub.elsevier.com/S0026-2692(14)00205-5/sbref4
http://refhub.elsevier.com/S0026-2692(14)00205-5/sbref4
http://refhub.elsevier.com/S0026-2692(14)00205-5/sbref5
http://refhub.elsevier.com/S0026-2692(14)00205-5/sbref5
http://refhub.elsevier.com/S0026-2692(14)00205-5/sbref6
http://refhub.elsevier.com/S0026-2692(14)00205-5/sbref6
http://refhub.elsevier.com/S0026-2692(14)00205-5/sbref7
http://refhub.elsevier.com/S0026-2692(14)00205-5/sbref7
http://refhub.elsevier.com/S0026-2692(14)00205-5/sbref7
http://refhub.elsevier.com/S0026-2692(14)00205-5/sbref8
http://refhub.elsevier.com/S0026-2692(14)00205-5/sbref8
http://refhub.elsevier.com/S0026-2692(14)00205-5/sbref9
http://refhub.elsevier.com/S0026-2692(14)00205-5/sbref9
http://refhub.elsevier.com/S0026-2692(14)00205-5/sbref9
http://refhub.elsevier.com/S0026-2692(14)00205-5/sbref10
http://refhub.elsevier.com/S0026-2692(14)00205-5/sbref10
http://refhub.elsevier.com/S0026-2692(14)00205-5/sbref11
http://refhub.elsevier.com/S0026-2692(14)00205-5/sbref11
http://refhub.elsevier.com/S0026-2692(14)00205-5/sbref11
http://refhub.elsevier.com/S0026-2692(14)00205-5/sbref12
http://refhub.elsevier.com/S0026-2692(14)00205-5/sbref12
http://refhub.elsevier.com/S0026-2692(14)00205-5/sbref12
http://refhub.elsevier.com/S0026-2692(14)00205-5/sbref13
http://refhub.elsevier.com/S0026-2692(14)00205-5/sbref13
http://refhub.elsevier.com/S0026-2692(14)00205-5/sbref14
http://refhub.elsevier.com/S0026-2692(14)00205-5/sbref14
http://refhub.elsevier.com/S0026-2692(14)00205-5/sbref14


[17] S. Kvatinsky, K. Talisveyberg, D. Fliter, E.G. Friedman, A. Kolodny, and U.C.
Weiser, Models of memristors for SPICE simulations, in: Proceedings of the
IEEE Convention of Electrical and Electronics Engineers in Israel, November
2012,.pp.1–5.

[18] E. Yaakobi, A. Jiang, and J. Bruck, In-memory computing of Akers logic array,
in: Proceedings of the IEEE International Symposium on Information Theory,
July 2013, pp. 2369–2373.

[19] S. Wolfram, Universality and complexity in cellular automata, Phys. D: Non-
linear Phenom. 10 (1–2) (1984) 1–35 (January).

[20] E. Gale, B.d.e. Lacy Costello, and A. Adamatzky, Boolean logic gates from a
single memristor via low-level sequential logic, in: Proceedings of the
International Conference on Unconventional Computation and Natural Com-
putation, July 2013, pp. 78–89.

[21] E. Gale, B.d.e. Lacy Costello, and A. Adamatzky, Is spiking logic the route to
memristor-based computers? in: Proceedings of the International Conference
on Electronics, Circuits and Systems, December 2013, pp. 297–300.

[22] M.D. Pickett, R.S. Williams, Phase transitions enable computational univers-
ality in neuristor-based cellular automata, Nanotechnology 24 (38) (2013) 1–7
(September).

[23] S. Shin, K. Kim, S.-M. Kang, Memristive XOR for resistive multiplier, Electron.
Lett. 48 (2) (2012) 78–80 (January).

[24] E. Linn, R. Rosezin, S. Tappertzhofen, U. Böttger, R. Waser, Beyond von Neumann –

logic operations in passive crossbar arrays alongside memory operations, Nano-
technology 23 (305–205) (2012) (August).

[25] J. Borghetti, G.S. Snider, P.J. Kuekes, J.J. Yang, D.R. Stewart, R.S. Williams,
Memristive switches enable ‘stateful’ logic operations via material implica-
tion, Nature 464 (2010) 873–876 (April).

[26] S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E.G. Friedman,
A. Kolodny, U.C. Weiser, MAGIC – memristor aided LoGIC, IEEE Trans. Circuits
Syst. II: Express Briefs (2014) (to appear).

Y. Levy et al. / Microelectronics Journal 45 (2014) 1429–1437 1437

http://refhub.elsevier.com/S0026-2692(14)00205-5/sbref15
http://refhub.elsevier.com/S0026-2692(14)00205-5/sbref15
http://refhub.elsevier.com/S0026-2692(14)00205-5/sbref16
http://refhub.elsevier.com/S0026-2692(14)00205-5/sbref16
http://refhub.elsevier.com/S0026-2692(14)00205-5/sbref16
http://refhub.elsevier.com/S0026-2692(14)00205-5/sbref17
http://refhub.elsevier.com/S0026-2692(14)00205-5/sbref17
http://refhub.elsevier.com/S0026-2692(14)00205-5/sbref18
http://refhub.elsevier.com/S0026-2692(14)00205-5/sbref18
http://refhub.elsevier.com/S0026-2692(14)00205-5/sbref18
http://refhub.elsevier.com/S0026-2692(14)00205-5/sbref19
http://refhub.elsevier.com/S0026-2692(14)00205-5/sbref19
http://refhub.elsevier.com/S0026-2692(14)00205-5/sbref19
http://refhub.elsevier.com/S0026-2692(14)00205-5/sbref20
http://refhub.elsevier.com/S0026-2692(14)00205-5/sbref20
http://refhub.elsevier.com/S0026-2692(14)00205-5/sbref20

	Logic operations in memory using a memristive Akers array
	Introduction
	Background
	Akers logic array
	Memristors

	Proposed memristive Akers logic array
	Primitive logic cell structure
	Logic array operation

	Evaluation of primitive logic cells
	Output degradation
	Test case – memristor-based logic within memory array
	Two-input XOR
	Sorting of bits

	Conclusions
	Acknowledgments
	References




