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Abstract - A method is introduced to evaluate time domain signals
within RLC trees with arbitrary accuracy in response to any input signal.
This method depends on finding a low frequency reduced order transfer
function by direct truncation of the exact transfer function at different
nodes of an RLC tree. The method is numerically accurate for any order
of approximation, which permits approximations to be determined with a
large number of poles appropriate for approximating RLC trees with
underdamped responses. The method is computationally efficient with a
complexity linearly proportional to the number of branches in an RLC
tree. A common set of poles are determined that characterize the
responses at all of the nodes of an RLC tree which further enhances the
computational efficiency. Stability is guaranteed by the DTT method for
low order approximations with less than 5 poles. Such low order
approximations are useful for evaluating monotone responses exhibited
by RC circuits.

L. Introduction

It has become well accepted that interconnect delay dominates gate
delay in current deep submicrometer VLSI circuits [1]-[5]. With the
continuous scaling of technology and increased die area, this situation is
becoming worse [6]-[11]. In order to properly design complex circuits,
accurate characterization and simulation of the interconnect behavior and
signal transients are required. This high accuracy is necessary for analyzing
performance critical modules and nets and to accurately anticipate possible
hazards during switching. Also, increasing performance requirements have
forced a reduction of the safety margins used in worst case design, requiring
more accurate interconnect delay characterization. Thus, the process of
characterizing signal waveforms in tree structured interconnect (or nearly tree
structured) is of primary importance since most interconnect in a VLSI circuit
is tree structured [12]-[14].

AWE (Asymptotic Waveform Evaluation) based algorithms [15]-[21]
have gained popularity as a more accurate delay model as compared to the
Elmore delay model. AWE uses moment matching to determine a set of low
frequency dominant poles that approximate the transient response at the nodes
of an RLC tree. However, AWE suffers two primary problems [16]-{20]. The
first problem is that the AWE method can lead to an approximation with
unstable poles even for low order approximations [16]-[20]. The second
problem is that AWE becomes numerically unstable for higher order
approximations which limits the order of the approximations determined using
AWE 1o less than approximately eight poles (of which some poles may be
unstable and are discarded) [16]-[20]. This limited number of poles is
inappropriate for evaluating the transient response of an underdamped RLC
tree which requires a much greater number of poles to accurately capture the
transient response at all of the nodes. To overcome this limitation, a set of
model order reduction algorithms have been developed to determine higher
order approximations appropriate for RLC circuits based on the state space
representation of an RLC network. Examples are Pade via Lanczos (PVL)
[22], Matrix Pade via Lanczos (MPVL) [23], Arnoldi Algorithms [24], Block
Amoldi  Algorithms  [25], Passive Reduced-Order Interconnect
Macromodeling Algorithm (PRIMA) [26], [27], and SyPVL Algorithm [28].
However, these model order reduction techniques have significantly higher
computational complexity than AWE. The complexity of these techniques is
super linear with n, where n is the order of the RLC tree and is equal to the
total number of capacitors and inductors in the tree. This high complexity is
due to these model order reduction techniques solving » linear equations in n
variables several times [22]-[28]. This complexity is much higher than the
complexity of AWE which is linearly proportional to » for an RLC tree [16]-
[20]. Note that n can be on the order of thousands for a typical large industrial
RLC circuit.

The objective of this paper is therefore to introduce a new method [29]
for evaluating the transient response at the nodes of a general RLC tree
capable of determining high order approximations appropriate for
underdamped RLC trees in a computationally efficient manner (complexity
linear with 7). A single line as a special case of a tree with only one output (or
sink) is included in this tree analysis methodology. This new method also has
improved stability properties for low order approximations as compared to
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AWE, a useful feature with RC trees which do not require higher order
approximations. The rest of the paper is organized as follows. A description of
the DTT method is provided in section II. The transient responses based on
the DTT method for several RC and RLC trees are compared to SPICE
simulations in section III. Finally, some conclusions are offered in section IV.

I1. The DTT Method

The concepts used to develop the DTT method are explained in this
section. The rules governing the poles and zeros in an RLC tree are defined in
subsection A. The method used to calculate the exact transfer functions at the
nodes of an RLC tree is introduced in subsection B. The use of transfer
function truncation to determine a reduced order approximation is discussed in
subsection C as well as the stability and complexity of the reduced order
system.

A. Pole-Zero Behavior in RLC Trees

The poles and zeros of an RLC tree maintain specific relations to the poles and
zeros of the subtrees forming the RLC tree. These rules are established in this
subsection and are used in the following subsection to develop an algorithm to
determine the poles and zeros of a general RLC tree by recursively
subdividing the tree into smaller subtrees.

Rule 1: The poles of an RLC circuit are zeros of the impedance seen at the
input of the circuit.

This rule can be understood by referring to Fig. 1 and noting that the transfer
functions describing the capacitor voltages and inductor currents have a
common denominator (the characteristic equation of the tree) [30]-[34]. Thus,
the transfer function at an arbitrary node i of an RLC tree and the input
admittance of the tree are given by
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respectively, where N(s) and N, (s) are functions of s dependent on the circuit
structure and D(s) is the common denominator of the circuit. The input
impedance is

Va(s) _ D(s) .

I,(s)  Ny(s) 3
Thus, the common denominator of an RLC circuit is also the numerator of the
input impedance, proving rule 1.
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Fig. 1. A general RLC circuit.

Rule 2: The poles of an RLC circuit driven at node x are zeros of the transfer
Sfunction at node x.

This rule can be explained by referring to Fig. 2. Note that the RLC
circuit 2 is driven by the RLC circuit 1 at node x. Applying rule 1, Z,, is a
short-circuit between node x and the ground at frequencies equal to the poles
of circuit 2. Hence, V(s) is equal to zero when s is equal to the poles of circuit
2, i.e., the poles of circuit 2 are zeros of the transfer function at node x.

X
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Fig. 2. A general RLC circuit composed of two RLC subcircuits connected
together.
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Rule 3: The poles of an RLC circuit driven at node x are zeros of the transfer
Junctions at all of the nodes of parallel RLC circuits driven at x.

This rule can be explained by referring to Fig. 3. The RLC subcircuits 2,
3, ..., k are driven by RLC subcircuit 1 at node x. Applying rule 1, Z_, is a
short-circuit at frequencies equal to the poles of circuit 2. Hence, V (s) is equal
to zero and all of the current supplied by circuit 1 is sunk to ground by Z,,
when s is equal to the poles of circuit 2. Since V(s) is equal to zero and no
current is supplied to the subcircuits 3, ..., k when s is equal to the poles of
circuit 2, the voltages at all of the nodes of subcircuits 3, ..., k are equal to
zero. Alternatively, the poles of circuit 2 are zeros of the transfer functions at
all of the nodes of the parallel subcircuits driven at node x. The same is true
for the poles of subcircuits 3, ..., k which are zeros of the transfer functions at
all of the nodes of the parallel subcircuits driven at node x.

As an example, consider the RLC tree shown in Fig. 4. The RLC section
1 drives the two parallel RLC sections 2 and 3. The transfer functions at nodes
x, 2, and 3 are given by
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respectively, where D is the common denominator and is a polynomial in s of
order six. The specific form of D is not of interest here. The denominators of
subcircuits 2 and 3 are 1 + R,C,s + L,C,s’ and 1 + R,C;s + L,C,5’, respectively.
Note that both denominators appear as multipliers in the numerator of the
transfer function at node x showing that the poles of subcircuits 2 and 3 are
zeros of the transfer function at the driving node x in accordance with rule 2.
Note also that the poles of subcircuit 2 are zeros of the transfer function at
node 3 and vice versa, verifying rule 3.
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Fig. 3. A general RLC circuit composed of an RLC subcircuit driving several
subcircuits connected in parallel.
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Fig. 4. An RLC tree composed of three RLC sections.
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B. Calculating the Transfer Functions at the Nodes of an RLC
Tree

It is illustrated in this subsection how to recursively calculate the transfer
functions at the nodes of an RLC tree using the concepts developed in the
previous subsection. Consider the general RLC tree shown in Fig. 5. The
current sunk to ground by a capacitor k is given by C,dv(H)/dt where v(f) is
the voltage across C,. Thus, the current passing through the resistance R, and
the inductance L, is given by

o @
'1(t)—gck dt

where the summation index k operates over all of the capacitors in the tree.
The voltage drop across R, and L, is given by
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In the frequency domain, this relation transforms to
V() =Vi(s) = (sR1+s2m§,cm(s>. ©
Dividing (9) by V,(s), the following relation results,
1-Ti(s) = (sR, +52L1)§Cka(S), (10)

where T\(s) is the transfer function at node 1 and T,(s) is the transfer function
at node k. Note that determining the transfer function at node 1 is sufficient to
determine the poles of the entire circuit since the transfer functions at all of
the nodes of an RLC tree have a common denominator (as mentioned
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Fig. 5. General RLC tree.
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Fig. 6. Building block of a general RLC tree.

Now consider the structure shown in Fig. 6 which depicts an RLC
section driving left and right subtrees. Without loss of generality, a binary
branching factor is used here since a general tree with an arbitrary branching
factor can be transformed into a binary tree by inserting zero impedance
branches [35], [36]. The structure shown in Fig. 6 can be used recursively to
completely represent any RLC tree since the left and right subtrees can in tum
be represented by the same structure. The transfer function at node 1 of Fig. 6
is given by (10), which can be reformulated by using the rational
representations of the transfer functions, 7,(s)=N,(s)/D(s) and T,(s)=N,(s)/D(s),
and is



D(s)~N(s) = (sR, + 5°L) Y C,N, (s). an
k
Assume that the transfer functions at all of the nodes of the left and right RLC
subtrees (when the trees are disconnected) are known and are given by
T,,()=N,,(s)/D(s) at node k, of the left subtree and T,(s)=N,,(s)/D (s) at node
k, of the right subtree. The numerator at node 1, N (s) of Fig. 6, can be directly
calculated by applying rule 2 described in the previous subsection and is
N(s)=D,(s)*D,(s)- (12)
The “o” operator above represents a-polynomial multiplication. The
denominator D(s) can be determined from (11) as
D(s)= N,(s)+(sR, + s’L))M .
where M, is defined as

13

M, = Z;‘C‘N*(s)' 14

and characterizes the summation of the numerators of the transfer functions
across the capacitors in the tree multiplied by the corresponding capacitances.
The summation in M, operates over all of the capacitors in the tree and can be
divided into three comporents,

M, =C,N(s) +ch1Nu ® +2Ck2le2(s) !
kl k2

where k, covers the capacitors in the left subtree and k, covers the capacitors
in the right subtree. By applying rule 3, the numerators in the left subtree can
be described in terms of the parameters of the disconnected left and right
subtrees as N, (s)=N,,(s)®D(s). Similarly, N,(s)=N,,(s)*D(s). Thus, (15) can
be reconfigured as

M, =CN,(s)+ (2 CouNu(s) )- D,(s)+ (ZC,‘ZN,“(s) J- D,(s). 6
k1 k2

Note that the two summations above are M, and M, of the disconnected left
and right subtrees, respectively. Hence, M, can be fully calculated in terms of
the disconnected left and right subtree parameters as

M, =CN()+M,(s)*D,(s)+M, (s)*D,(s) an
Thus, by knowing the parameters of the left and right subtrees, M(s), D(s),
M(s), and D(s), (12), (17), and (13) can be used in that order to determine
N(s), M/(s), and D(s), respectively. The parameters of the left and right
subtrees M(s), D(s), M(s), and D(s), can be determined in turn in terms of
their left and right subtrees by using the structure shown in Fig. 6 and (12),
(17), and (13). This process is repeated recursively until the left and right
subtrees are non-existent. If the left subtree does not exist, then M(s) = 0 and
D(s) = 1. If the right subtree does not exist, then M (s) =0 and D (s) = 1.
After this recursion process terminates, the denominator and numerator across
each capacitance C, in the tree represent the transfer function for the subtree
rooted at the RLC section k. For example, for the tree shown in Fig. 5, D(s)
and N(s) at node 1 represent the transfer function at node 1 for the entire tree.
However, D(s) and N(s) at node 2 represent the transfer function at node 2 for
the subtree composed of the RLC sections, 2, 4, and 5. Also, D(s) and N(s) at
node 4 represent the transfer function at node 4 for the subtree composed of
RLC section 4. Thus, after the recursion process terminates, the only relevant
parameters for the entire RLC tree are D(s) and N(s) across the capacitor
closest to the input (C, in the case of the tree shown in Fig. 5). The
denominators and numerators at all of the other nodes are incorrect. The
denominators at these nodes need not be corrected since these denominators
are the same as the denominator at the node closest to the input. However, the
numerators differ at each node and need to be corrected. According to rule 3,
all of the numerators in the left subtree have to be multiplied by D (s) and all
of the numerators in the right subtree have to be multiplied by D(s). This
process is repeated recursively starting at the root of the tree and advancing
towards the sinks.
Thus, the process of determining the transfer function at all of the nodes of an
RLC tree consists of two steps. The first step is to calculate the common
denominator of the RLC tree using the recursive equations in (12), (17), and
(13). The common denominator is the denominator at the node closest to the
input of the RLC tree after the recursion terminates. The second step is to
correct the numerators of the transfer functions at the nodes of the RLC tree.

a15)

C. Transfer Function Truncation and Approximation Order

The process of calculating the exact transfer functions at all of the nodes of an
RLC tree has been described in the previous subsection. However, calculating
the exact transfer function can be time consuming since n can be on the order
of thousands for typical large industrial RLC trees. In practice, there is no
need to calculate the thousands of poles characterizing an RLC tree since the
transient behavior can be accurately characterized by a few number of low
frequency dominant poles [15]-[21] (typically several tens of poles). Thus, a
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low frequency approximation is required that can correctly anticipate the set
of dominant poles without calculating the exact high order transfer function.
Assume that the exact transfer function at a specific node of the RLC tree is
given by
T(s)= 1+ a1s+a2522+...+ a,s”
1+bs+b,s” +..+b,s"
where b, — b, and a, — a,, are positive real constants. The system order n is
equal to the total number of capacitors and inductors in the tree. The order of
the numerator polynomial m is less than n and is dependent on the node at
which the transfer function is calculated. A ¢* order approximate transfer
function is found by direct truncation of the exact transfer function 7(s) in
(18) and is given by

T, (s)=

a8

1+a;5+a,s” +..ta,s"

a9
1+bs+b,s” +...+b,s*

where g < n. The numerator order x = m if m < g - 1, otherwise x = g - 1. The
order of the numerator has to be less than the order of the denominator for a
causal approximation. If s (or the frequency) is sufficiently small, the terms
with higher power of s in the denominator and numerator polynomials (b,,,s**'
-bs, a_s" ~ as") are negligible with respect to the lower power terms in
T(s) Thus, for low frequencies, T,(s) is an accurate replesentauon of T(s).
The range of frequencies for which T () is accurate increases as g increases.
The calculation of a ¢g” order appmxxmauon for the transfer functions at
all of the nodes of an RLC tree can be accomplished by an order limited
polynomial multiplication. To better understand this concept, assume that A
and B are two polynomials of orders n, and n,, respectively. The polynomial C
given by AeB has an order of n, = n, + n,. The polynomials A, B, and C are

given by
A= Zas B= st andC = ZC,s s (20)
respectively, whene the coefﬁcxems ¢, are =
¢=Sab, @

=0

Note that b, is equal to zero if i - j is out of the range of 0 to n,. For a g limited
polynoxmal multlphcat:on, the highest desired power of s in C is g rather than
n_ and the coefficients of higher powers of s do not need to be calculated.
Also, A and B can be limited by g since higher powers than s* in both
polynomials cannot produce powers of s in C less than or equal to ¢. Hence, if
a ¢” order approximation is sought, all of the polynomial multiplications of
the DTT method described in the previous subsection are ¢ limited. These ¢
limited polynomial multiplications are much less expensive than full
polynomial multiplications since g is typically much less than n.

Once the common denominator of order ¢, D (s), is determined as described in
the previous subsections, the first g dominant low frequency poles of the RLC
tree can be calculated as the roots of the polynomial D (s). A numerical
method for evaluating the roots of a polynomial can be used to determine the
RLC tree poles, p, - p,, e.g., [37), [38]. The residues corresponding to each
pole at a specific node’ can be efficiently calculated by direct substitution of
the poles into the numerator of the transfer function at this node and
calculating the partial fraction equivalent of the reduced order transfer
function.

The DTT method has a complexity linearly proportional to the order of
the tree n, which is twice the number of RLC sections in the tree since each
RLC section has one capacitor and one inductor. This linear complexity occurs
because the DTT method traverses each section in the tree only once as
illustrated in the previous section. At each section of the RLC tree, polynomial
multiplications are required to calculate the common denominator as given by
(12), (17), and (13). The number of scalar multiplications required for a ¢
limited polynomial multiplication is at most g(q+1)/2 when the polynomial
orders, n, and n,, are equal to gq. However, the actual number of scalar
multiplications performed by the DTT method is much less than the number
of multiplications anticipated using the g(g+1)/2 complexity of a polynomial
multiplication. The average number of scalar multiplications required per
section is almost linear with g for an RLC tree. This lower complexity is
because only two multiplications are required at each leaf of the tree
independent of g. Note that half the nodes of a binary tree are leaves and that
the percentage of leaves are higher with higher branching factors. Also, for a
single line (with no branching), there are no polynomial multiplications in
(12), (13), and (17). Thus, the DTT method has an almost linear complexity
with the approximation order g. This linear complexny is in comparison to the
complexity of AWE which is proportional to 4’. By analyzing the stability of
the DTT approximations, it can be shown that a DTT approximation with an
order less than five is guaranteed to be stable.



HI. Experimental Results

The DTT method is applied in this section to calculate the transient
response of several RC and RLC trees. The resulting transient responses are
compared to SPICE simulations to evaluate the accuracy of the DTT method.
The RC tree shown in Fig. 7 is simulated using the DTT method. The transient
response at two nodes of the tree are calculated based on the DTT method and
compared to SPICE in Fig. 8. A fourth order DTT approximation is used to
calculate the transient responses shown in Fig. 8. Note that a fourth order
approximation is accurate as compared to SPICE simulations. In general, a
fourth order approximation is sufficiently accurate for most RC trees. The
guaranteed stability of a fourth order approximation is therefore a valuable
feature for RC circuits.

The circuit shown in Fig. 9 represents an RLC transmission line with a
lumped source resistance and a load capacitance and is simulated using the
DTT method. Several simulations of the circuit shown in Fig. 9 are shown in
Fig. 10 with different line parameters and source and load impedances. Note
that an approximation order between 20 and 35 is required for an
underdamped response with second order oscillations to achieve SPICE-like
accuracy. Such high order approximations cannot be achieved by AWE [16]-
[20] due to the numerical instability of AWE with high approximation orders.
Other methods capable of calculating such high order approximations [22]-
[28] have 2 much higher computational complexity as compared to the DTT
method. The computational efficiency of the DTT method and the numerical
accuracy of DTT for very high orders of approximation makes DTT suitable
for accurately simulating RLC trees. :

7
| Ol
5 6 o.osI
0.1 %0. 5% ) .
0.03 II omIl
2 4 9 10
V 02 I 0.1 I j' 0.025F 0.01
o.osjf 12
7 0.01
1
031
.. I 4
38 0.03 Il

10

0.0II

Fig. 7. A general RC tree. The resistance values shown are in ohms and
capacitance values are in pF.
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Fig. 8. Transient response evaluated using the DTT method as compared to
SPICE simulations at different nodes of the RC tree depicted in Fig. 7. SPICE
simulations are represented by a solid line and the DTT simulations are
represented by a dashed line. A fourth order approximation is used.
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Fig. 10. Transient response evaluated using the DTT method as compared to
SPICE simulations for the circuit shown in Fig. 9 using different line
parameters. SPICE simulations are represented by a solid line and the DTT
simulations are represented by a dashed line. R, =40 Q, L, =7 nH, C,=1 pF,
R,=10Q, and C, = 0.1 pF, and approximation order = 35. (b)) R,=20Q, L, =
8nH, C,=1pF,R,=10%Q, C, = 0.4 pF, and approximation order = 25.



IV. Conclusions

The DTT method has been introduced to evaluate the transient responses
within RLC trees with arbitrary accuracy for any input signal. The DTT
method is numerically accurate for any order of approximation, permitting
solutions to be determined with a large number of poles appropriate for
approximating RLC trees with underdamped responses. The DTT method is
computationally efficient with a complexity linearly proportional to the
number of branches in the tree. A common set of poles is determined that
characterizes the responses at all of the nodes of an RLC tree, further
enhancing the computational efficiency of the proposed method. The stability
is guaranteed by the DTT method for low order approximations with less than
five poles, a useful characteristic when analyzing RC circuits.
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