IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 7, NO. 2, JUNE 1997)

3151

Functional Modeling of RSFQ Circuits Using Verilog HDL

Kris Gaj, Chin-Hong Cheah', Eby G. Friedman, and Marc J. Feldman
Department of Electrical Engineering, University of Rochester, Rochester, NY 14627

Abstract— Circuit level simulation is too slow to be
used for verification of function and timing of large
RSFQ circuits. The alternative, known from
semiconductor digital circuit design, is simulating at the
logic (gate) instead of the circuit (transistor or junction)
level. Using a hardware description language (HDL) such
as Verilog, it is lEmssible to write a functional model of
each of the RSFQ basic gates. A large RSFQ circuit
composed of hundreds gates and thousands Josephson
junctions can then be simulated wusing standard
semiconductor industry CAD tools. We have developed a
library of Verilog models for over 15 basic RSFQ gates.
We describe in detail our model for the DRO RSFQ cell.
We show how this model can be generalized for other
‘more complex cells. Our library has been verified by
employing it in the design of timing for three large
RSFQ circuits.

I. INTRODUCTION

RSFQ (Rapid Single Flux Quantum) superconductive
technology has become sufficiently matured to allow the
development of medium to large scale integrated circuits with
hundreds of RSFQ gates and thousands of Josephson junctions
[1]1-13]). Circuit level simulation, although indispensable for
accurate simulation and optimization of individnal RSFQ
gates, is too slow to verify the function and timing of large
RSFQ circuits [4], [5]. Large scale circuits must therefore be
simulated and optimized at the gate (logic) level rather then at
the junction (circuit) level. Unfortunately, tools for logic level
simulation of semiconductor circuits, which are based on a
voltage state logic convention, cannot be directly applied to
the pulse-based RSFQ logic.

The first attempt to calibrate standard CAD tools for logic
level simulation of RSFQ circuits is reported in [6]. It is
based on structural modeling of the RSFQ gates in which the
logic and timing of the RSFQ cells is achieved using the
appropriate combination of standard voltage state gates and
flip-flops. This approach, while viable, has clear
disadvantages: the development of the gate models is
cumbersome, the models lack accuracy, and the models are not
casily transferable to other CAD systems. These drawbacks
can be overcome by using a hardware description language
(HDL) for functional modeling of the RSFQ cells. In a
functional model, the behavior of the gate is described using
textual C-like notation, which is easy to edit, verify, and
transfer between systems, '

To our knowledge, standard HDLs have not been used in the
design of RSFQ circuits to date. Proprietary notation cailed
SFQHDL reported in [S] and [7] is not used for either logic
simulation or automated logic synthesis. It describes the

Manuscript received August 25, 1996

feurrently at Intel Corp.

Financial support for this research was provided in part by the University
Research Initiative at the University of Rochester, sponsored by the Army
Research Office under Grant No. DAAL03-92-G-0112.

behavior of the circuit at the junction level by defining the
correct order in which junctions switch, and is used primarily
to describe the circuit pass/fail criteria for the purpose of
optimization performed using a circuit level simulator [5].

Two standard HDLs coexist today: VHDL (Very high speed
integrated circuit Hardware Description Language) and Verilog
HDL [8]. VHDL became the IEEE standard in 1987; Verilog
in 1995. Both HDLs have been in use for a long time; in
fact, Verilog became the de-facto industrial standard years
before official recognition by IEEE. The entire top-down
design process of current large scale and very large scale
semiconductor digital circuits is based on the use of HDLs.
They are employed to describe the behavior and structure of
the circuit at all design levels for the purpose of simulation
and automated synthesis.

For logic level simulation of RSFQ circuits we chose to
use Verilog HDL over VHDL. We believe that Verilog is
more widely used today, and is easier to learn. Also, the
efficient and user-friendly Verilog simulator, Verilog-XL, is
available within our Cadence-based CAD environment [9].

‘We have developed a library of over 15 functional models of
basic RSFQ gates in Verilog HDL. This library is
continuously updated as new RSFQ gates are designed and
implemented. It can be employed to simulate large RSFQ
circuits using standard CAD simulators. Such simulations
confirm the circuit function and timing, and may be used to
explore various design concepts and trade-offs. Three large
RSFQ circuits composed of several thousands Josephson
junctions have been simulated, redesigned, and verified using
our Verilog library and Cadence Verilog-XL. HDL simulator.
The simulation time for these circuits was found to be over
two orders of magnitude shorter compared to. circuit level
simulation with JSPICE [4].

II. MODELING TIMING PARAMETERS OF RSFQ GATES

The design of a functional model of an RSFQ gate requires
knowledge of the gate logic function, and the timing
characteristics of the gate. The logic function of the cell is
described using the cell state-transition diagram or the present-
state/next-state table. Knowledge of an internal structure of the
cell is not required. Models that represent only a logic
function of the cells are extremely easy to write, and may be
used to verify the function of a large circuit composed of basic
RSFQ cells. An example of such a model for a DRO
(Destructive Read-Out) cell is shown in Fig. 1.

Unfortunately, such models are not suitable for the
verification of the timing in the circuit. Most RSFQ gates
impose requirements on the minimum interval between the
clock and the data pulses at the inputs of the gate. In addition,
some cells impose requirements on the minimum interval
between two data pulses at the same or related inputs of the
cell. These requirements can be specified using timing
parameters such as the hold time (1_hold), the setup time

1051-8223/97$10.00 © 1997 IEEE

3152

Il Verilog HDL for "gates.lib"; "dro_cell" "_functional”
module dro_cell (d, clk, out);
input
d, clk;
output
out;
reg
out;
parameter
delay = 10,

reg
dstate; // internal state at the input d

always @(posedge d) // execute at positive edge of d
d_state <= d | d_state;

always @ (posedge clk) // execute at positive edge of clk
begin
out <= #delay d_state;
d_state <= 0;
end

Fig. 1. Functional model of the DRO cell without full timing information.

(t_setup), and the minimum separation time (¢_separation), as
shown in Fig. 2. The hold time is the minimum interval
between the clock pulse and the following data pulse; the
setup time is the minimum interval between the data pulse
and the following clock pulse {6]. The hold time and the setup
time bound the range of the data pulse positions (marked as

light dotted zones in Fig. 2) for which either the output is

logically incorrect or the output timing is incorrect.

The necessary and sufficient condition for correct operation

of most clocked cells is:

t_hold < data.position < Tcpg - t_setup, 1)
where data.position is the position of a data pulse within the
clock cycle, and Tcrx is the length of the clock period. For
certain cells, the minimum distance f_separation between two
pulses at the same or related inputs must be preserved. The
corresponding range of positions around the data pulse at the
first input that is forbidden for a data pulse at the second input
is marked in Fig. 2 as a dark dotted zone.

The functional description of each RSFQ cell must check
for timing violations, and thus include values of timing
parameters. The timing parameters are determined using
JISPICE simulations. This process is automated using our
custom designed software. Calculation of the hold and setup
times for synchronous RSFQ cells requires a sequence of
JSPICE simulations with the relative position of the data and
clock pulses changed according to a binary search algorithm.
The input test stimuli used in simulations must be chosen
carcfully to represent an exhaustive test sequence.

The clock-to-output delay in our models is assumed to be
independent of the position of the data pulses within the clock
cycle. Additionally, there is no clear distinction between

Tak
CLK t.separation:
DATA1
DATA2 : J
ot data.position

Fig. 2. Timing parameters- describing reqmrements on the position of the
data pulse within the clock cycle.

a t m\
b i 1 L_n) 1
clk fl IR it I
sum . B /N
carry] fl [y
0 T) 510 T ‘7160r N ‘L!SD”',' ”!bﬂ‘hl—r‘ 2&0 !

Fig. 3. Verilog-XL simulation of an RSFQ half-adder; sum=a@b, carry=a-b.

violating the setup time in a given clock cycle and violating:
the hold time in the next clock cycle. Thus, the whole interval |
between the time determined by the setup time in a’ given
clock cycle and the hold time in the next clock cycle is treated
identically. The occurrence of a data pulse within this interval
may lead to an undetermined output in a given clock cycle and |
an undetermined output in the next clock cycle. Timing
diagrams obtained from the Verilog-XL ‘simulator for an
RSFQ half-adder illustrate a violation of the timing con-
straints in Fig. 3. Undetermined outputs are represented on the
waveform display with shaded pulses.

The functional view of each cell in Verilog HDL is verified
using the Cadence Verilog-XL simulation environment for an
exhaustive set of test sequences. These sequences includg
correct input stimuli and input stimuli with timing violations
(e.g., a violation of the hold time or setup time). For the
purpose of testing, timing parameters are set -to differen
arbitrary values, and the circuit function is verified for each se
of timing parameters. The only constraints assumed in ou
models on the values of timing parameters are described by th
following equations:

[RN

delay 2.0 (2
t_hold + t_setup 20 - (€)]
t_hold <delay ®

These constraints come directly from the definition of ummg
parameters in RSFQ cells [6]. s.
As a result, the same model can be used to represent vanoqs
specific implementations of a given RSFQ cell. When
circuit parameters. of a gate are changed to improve igs
operation, or to adapt it for use as.a.component of some othﬁzr
circuit, the HDL model iis updated simply by changmg the
values of the timing parameters.

IIL. VERILOG MODELS FOR CLOCKED RSFQ GATES

All functional models of RSFQ gates have been -designed
using the same. structure. We discuss this structure by
describing in detail the Verilog model of the simplest RSEQ
clocked gate - DRO. A functional model of the DRO celllin
Verilog HDL is shown-in Fig. 4. ,

Lines (2)-(8) define the DRO interface; d and clk are deela;ed
as the inputs to the cell, and out is declared as the output frém
the cell. The timing parameters of the cell, the hold . titne
(t_hold), the setup time. (f_setup), and the delay (delay) are
specified in lines (9)-(12). Their values may be overwritten; in
a higher-level module to make them - specific for a given
instance of the cell. A multichannel descriptor warning_file
specifies where to direct the warning messages. The

~aoxiliary signals in the circuit are defined as registers, and

the auxiliary variables - as integers in lines (15)-(25).
In our model, the DRO cell is treated as composed df a
simpler dummy cell DRO' and three delay lines data_delay,

/I Verilog HDL for "gates.lib", "dro_cell" "_functional”
module dro_cell (d, clk, out);
input
d, clk;
output
out;
reg
out;
parameter
t_hold =
t_setup =
delay =9,

.3,
8,

warning_file=3; // multichannel description of a warning file

reg

d_internal, clk_internal,
d_state, // internal state at the input d
d_set; // signal determining the moment when
// the state of the d input changes to "1"
integer

data_delay, // delay between d and d_internal
clk_delay, // delay between clk and clk_internal
out_delay, // delay between clk_internal and out
out_value, J// output value in a given clock cycle

last_clk_time; // time when the last clock pulse appeared

initial
begin
if(t_hold<0)
begin
data_delay = -t_hold;
clk_delay =0;

out_delay = delay;
end
else
begin
data_delay = 0;

clk_delay = t_hold;
out_delay = delay-t_hold;
end

d_internal = §;

clk_internal = 0;

last_clk_time = 0;

d_state = 0;

d_set = 0;

out = 0;

end

always @(posedge d) // execute at positive edge of d
d_internal <= #(data_delay) d;

always @(posedge clk) // execute at positive edge of cik
clk_internal <= #(clk_delay) clk;

always @(posedge clk_internal)
begin
if (clk_internal === 1’bXx)
out_value = 1'bx;
else
out_value = d_state;
out <= #(out_delay) out_value;
out <= #(out_delay+2) 0;
d_state <=0;
clk_internal <= 0;
last_clk_time = $stime;
end

always @(posedge d_internal)
begin
d_state <= d_state | 1'bx;
if (d_internal === 1)
d_set <= #(t_hold+t_setup) 1;

d_internal <= 0;
end

always @(posedge d_set)
begin
if ($stime - last_clk_time >= t_hold+t_setup)
d_state = 1;
else
begin
d_state = 1'bx;

S$twrite(warning_file, "Violation of timing in module %m.\n");

end

d_set <= 0;
end

endmodule

Fig 4. Functional model of the DRO cell in Verilog HDL.

3153

DRO (delay, t_hold, t_setup) U cik

——— e e [

| |
[clk_delay |

l
{ clk_internal l

data_del ;
ata_delay DRO out_delay
A delay’ =0 | R
d ‘ d_internal t hold' =0 out_internal |out

L t_setup' =t _hold+t_setup| J

if (t_hold 2 0) then
data_delay =0
clk_delay =t_hold
out_delay = delay - t_hold

if (t_hold < 0) then
data_delay = - t_hold
clk_delay =0
out_delay =delay

. Fig. 5. The abstract structure of the DRO cell assumed in the Verilog HDL

model.

clk_delay, and out_delay as shown in Fig. 5. The DRO has
arbitrary values of timing parameters (z_hold, ¢_setup, and
delay). The DRO' has zero delay (delay’) and zero hold time
(t_hold’); its setup time (¢_setup’) is equal to the sum of the
hold time and setup time of the original gate. The input and
output delays data_delay, clk_delay, and output_delay are
chosen such that the timing parameters of both gates match.
The formulas describing the input and output delays depend on
the sign of the DRO bold time ¢_hold, as shown in Fig. 5.
When t_hold is positive, the DRO is modeled using DRO'
with the delay in the clock path equal to _kold, and no delay
in the data path. When t_hold is negative, the DRO is
modeled using DRO' with the delay in the data path equal to
-t_hold, and no delay in the clock path. In Fig. 6, we show
the positions of the clock pulses and the timing violation
intervals for the DRO (clk and d inputs) and the DRO'
(clk_internal and d_internal inputs), for positive (Fig. 6a) and
the negative (Fig. 6b) value of ¢_hold.

The variables describing the input and output delays are
declared in lines (21)-(23), and initialized in lines (29)-(40).
Lines (49)-(50) and (52)-(53) describe the propagation of the
pulse through the data and the clock delay lines, respectively.

a) _t_holgl t_setup

clk

t_hold'=0 t_setup'=t_bold+t_setup
i —————i
clk_internal

b)

clk

. t_hpld‘:O t_setup =t__l;old%—t_setup

clk_internal

Fig. 6. The positions of the clock pulses and the timing violation intervals for
the DRO and DRO' for two cases a) positive hold time, b) negative hold
time.

3154

t_setup'=t_hold+t_setup

t_hold'=0

clk_internal
)
d_internal ﬂ
I
d_state E;Z%
out_internal ﬂ
b)
d_internal N '|' d_set
Lstate B727). V7R
out_internal H E—
9 d_set
d_internal £l ﬂ S *d set
d _state M
I B

out_internal

Fig. 7. Data input, output, and internal state of the DRO' for various
positions of the data pulses within a clock period.

The rest of the code describes the operation of DRO'. When

“the clock pulse arrives at the clk_internal node, the code from

lines (56)-(66) is executed. If the clock pulse is not an
unknown-state (shaded) pulse, an internal state of the DRO'
d_state ‘is transferred to the output of the DRO after the
oui_delay, and the internal state of the DRO' is reset. Finally,
the variable last_clk_time is set to the current simulation
time. Notation 1’bx used in the Verilog model in Fig. 4
denotes a single-bit constant of the value unknown.

The remaining part of the code is used to set the internal
state of the DRO' and to check for violations of the hold and
setup times. The violation of the setup time of the DRO'
appears when a clock pulse appears less than _sefup’ after any
data pulse (which is equivalent to a data pulse appearing less
than z_setup’ before a clock pulse). This condition can be
detected by setting the internal state of the DRO' d_state to
unknown for a period t_setup’ (t_hold+t_setup) after a daa
pulse arrives at d_internal. When a clock pulse arrives within
this period, the unknown state of DRO' will result in the
unknown-state (shaded) pulse at the DRO output. If the clock
pulse does not arrive within this interval, the internal state of
the cell is set to one, and the next output of the DRO. will be
a correct pulse irrespective of further timing violations. All
this is implemented in lines (68)-(88).

In Fig. 7, we show the data input, output, and intemal state
of DRO' for three varied positions of data pulses within 4
clock period. In case a), the data pulse arrives in the middle of
the clock period and no timing violation appears. In case b) a
single data pulse arrives close to the end of the clock period
violating setup time in the given clock period and/or hold
time in the next clock period. This results in the shaded pulses
at the DRO outpat for two consecutive clock periods. In case
c), one data pulse arrives close to the middle of the clock
period, and the other violates setup and/or hold time. As a
result, correct output appeats at the end of the first clock
period, and a shaded pulse at the end of the next clock period.

More complex logic gates can be modeled accordmgly For ?
example, the only difference between the models of a DRO

cell and an inverter cell is line (60). This line changes from
out_value <= d_state
in a DRO model to
out_value <= ~d_state.
in an inverter model.

For gates with two inputs such as AND gate, each daIa mput

is treated as was the data input d of the DRO. States at the |

inputs a and b are recorded using two distinct variables a_state |

and b_state, and the output is generated with the instruction:
out_value <= a_state & b_state.

V. SUMMARY

We have developed functional models in Verilog HDL forg
most of the currently known RSFQ gates. Our models;

accurately describe the timing characteristics of basic RSF

gates, and are used for simulation and timing analysis of largei
RSFQ circuits. The simulation can be performed using

standard semiconductor-industry logic level ‘simulators. Our

models are not limited to any particular simulator and can be
easily transferred between various CAD systems.
The Verilog models are easy to update, modify and extend
The models for more complex RSFQ ‘gates can be easily
created using models for simpler gates such as DRO, -
All our models have been exhaustively verified using

Cadence Verilog-XL simulation environment. The library of
these models is -currently being used for the design of thre¢

large scale digital and mixed-signal RSFQ circuits developed i

at the University of Rochester. The accuracy of modeling
obtained with Verilog HDL appears to be satisfactory for the
purpose of design of the clock distribution network in these
circuits, whereas the simulation speed is over two orders of

magnitude faster with Verilog-XL compared to JSPICE. F@r :

example, the simulation of a four-bit multiplier accumulat@r
took 30 seconds in Verilog-XL. compared to 4 hours in
JSPICE. The logic simulation of large RSFQ circuits w1th
Verilog HDL can therefore significantly increase the efficiency
of the clocking design for medium to large RSFQ circuits.

REFERENCES

[1] ~O. A. Mukhanov, P. D. Bradley, S. B. Kaplan, S. V. Rylov, and A.F.
Kirichenko “Design and operation of RSFQ circuits for digital sighal
processing,” Proc. ISEC’95, pp.-27-30.

[2] V.K.Semenov, Yu. Polyakov, and D.:Schneider, “Preliminary results
on the analog—to—dlgltal converter based on RSFQ logic,” CPEMI96
Conf. Digest, Braunschwelg, Germany, June 1996.

[31 Q. P. Herr et al., “Low-speed operation of a four-bit RSFQ multiplier-
accumulator,” this conference. 3

{41 S. R. Whiteley, “Josephson junctions in SPICE3,” IEEE Trans. jon
Mag., vol. 27, pp. 2902-2905, March 1991.

[s1 S.V. Polonsky et al., “PSCAN 96: New software ‘for- simulation &nd
opimization of complex RSFQ circuits,” this conference.

{6] A. Krasniewski, “Logic simulation of RSFQ circuits,” IEEE Trans.
Appl. Supercond., vol. 3, pp. 33-38, March 1993.

[71 A. V. Rylyakov and S. V. Polonsky, “All' digital 1-bit RSFQ
autocorrelator - for = ‘radioastronomy . applications: design and
experimental results,” IEEE Trans. Appl. Supercond., vol. 7, 1997,

[8] D.J. Smith, “VHDL & Verilog compared & contrasted - plus modeled
example written in VHDIL, Verilog and C,” Proc. 33rd Design
Automation Conf., 1996.

[9] V. Adler, C.-H. Cheah, K. Gaj, D. K. Brock, and E. G. Friedman, “A
Cadence-based design environment for single flux guantum circuits,”
this conference. - .

