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Abstract—Superconductive passive transmission lines (PTL) are
widely used for signal routing in large-scale rapid single flux
quantum (RSFQ) circuits. Due to the imperfect matching of the
transmission lines between the driver and receiver, single flux
quantum (SFQ) pulses are partially reflected. The round trip prop-
agation time of these reflections can coincide with the following SFQ
pulse, resulting in a decrease in bias margins or incorrect circuit
behavior. This resonant effect depends upon the length of the PTL
and the clock frequency of the signal. A methodology to reduce
and manage this effect is the focus of this article. A closed-form
expression describing the dependence of the resonance frequency
on the length of the PTL is presented. This expression describes a
set of forbidden lengths for PTL interconnect segments in RSFQ
circuits. The proposed methodology and algorithm insert active
PTL-based repeaters into long superconductive interconnect while
ensuring the length of the line segment is outside the forbidden
region and increasing bias margins.

Index Terms—Computer aided design, electronic design
automation (EDA), single flux quantum (SFQ), superconducting
integrated circuits, superconductive digital electronics.

I. INTRODUCTION

CONVENTIONAL integrated circuit technology is based
on complementary metal–oxide–semiconductor (CMOS)

devices and standard copper interconnects. The scaling of
CMOS technology, however, has significantly slowed in recent
years. Advanced nanoscale fabrication facilities have become
prohibitively expensive, and the energy consumption of CMOS
circuits has greatly increased. An attractive alternative to ad-
vanced semiconductor technologies for large-scale ultra-high
speed and ultra-low power digital applications is Josephson
junction (JJ) based digital superconductive circuits [1]. Super-
conductive IC technology has produced the highest performance
digital circuits [2]. Rapid single flux quantum (RSFQ) is a widely
used digital logic family within this promising superconductive
technology. In RSFQ, information is represented in the form
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Fig. 1. Energy versus interconnect length of 16-nm CMOS (dash line), SFQ
JTL (solid line), and SFQ PTL (dash-dotted line) for 10 kA/cm2 [6].

of single flux quantum (SFQ) pulses—picosecond wide voltage
pulses with a quantized area. Recent research efforts suggest the
use of this technology for high performance, energy-efficient
supercomputers to achieve Department of Energy exascale com-
puting objectives [3], [4].

Some primary advantages of RSFQ circuits are high speed
digital logic with low power dissipation, ideal (no DC resistance)
interconnects, quantum accuracy, scalability, and relatively low
manufacturing complexity [2]. SFQ circuits utilize two dis-
tinct types of interconnect—active Josephson transmission lines
(JTL) and passive transmission lines (PTL), composed of a
microstrip or a stripline with a matched driver and receiver
[5]–[7]. A comparison of the energy dissipated by point-to-point
interconnects for CMOS and SFQ is shown in Fig. 1. The energy
of a 16-nm CMOS interconnect technology is evaluated with
an RLC model [8]. The energy of the CMOS interconnect is
approximately six orders of magnitude greater than the energy
dissipated by a passive superconductive interconnect.

With only a modest number of researchers worldwide, signif-
icant progress in the design and manufacture of superconductive
electronics has resulted in device densities of over 600 000
JJ/cm2 [9]–[12]. Due to differences between SFQ and CMOS
technologies, many electronic design automation (EDA) tools
developed for CMOS cannot be used for SFQ technology; how-
ever, general synchronization principles and techniques com-
monly used in CMOS are applicable to SFQ technology [13],
[14]. Pulse-based logic in SFQ, different active and passive com-
ponents, certain interconnect structures, and subterahertz clock
frequencies present unique challenges in many stages of the SFQ
circuit design process. Quantitative guidelines are needed to
support the development of SFQ-based EDA tools. Due to recent
efforts to develop EDA tools for superconductive electronics
[15], [16], the complexity of RSFQ circuits is expected to greatly
increase.
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One of the primary concerns of automated routing methodolo-
gies in integrated SFQ circuits is the interconnect characteristics.
Specialized algorithms and guidelines in SFQ-based automated
routing tools are needed to determine the optimal interconnect
length for each line and driver/receiver configuration when
propagating a signal along a passive interconnect [5], [17]–[21].

Due to the imperfect match between the driver and receiver,
resonant effects occur in long PTL lines [22]–[24]. These effects
are caused by the coincidence of the input SFQ pulse with the re-
flection of the previous pulse in a transmission line, and depends
upon the characteristics of the PTL and the clock frequency of
the input signal. In this article, a methodology is proposed to
manage and mitigate these effects.

In this article, different types of SFQ interconnects are dis-
cussed in Section II. A physical model of a PTL line is described
in Section III. The resonant effects of the PTL line that introduces
a forbidden region of length, and a closed-form expression for
the resonance behavior are presented in Section IV. In Section V,
an algorithm is introduced to avoid resonance effects in long
lines driven by a PTL repeater system. Finally, Section VI
concludes this article.

II. SFQ SIGNAL ROUTING

Clock and data signals are distributed within an SFQ circuit
to the SFQ sinks. To propagate a signal within the interconnect
between RSFQ gates, JTLs or PTLs are typically used [17]. The
JTLs in RSFQ interconnects consume power and add delay due
to the additional JJs. Furthermore, the JTLs are placed within the
standard cell layers, resulting in greater congestion. Although
not a significant issue in current MSI RSFQ circuits, the greater
power, delay, and area of a JTL pose a significant challenge in
future very large scale integration (VLSI) RSFQ circuits.

A PTL is another type of SFQ interconnect, consisting of
a superconductive microstrip [22], [25], [26] or a stripline,
connected to a matched driver and receiver. The SFQ pulses
ballistically propagate along a PTL at the speed of light within
the medium. Utilizing PTLs rather than JTLs for long lines in
VLSI RSFQ circuits reduces the output delay, power consump-
tion, and congestion [18]–[20].

Many models for interconnect routing and delay estimation
are utilized in conventional CMOS-based routing tools including
inductively resonant networks [27]. Multiple techniques exist to
reduce or increase the wire delay to achieve a target delay, such
as wire sizing [28] and wire snaking [29]–[32]. Since the delay
of a PTL with specific cross-sectional dimensions for a target
technology depends mostly on the line length, and the pulse
propagation speed of a PTL approaches the speed of light in
the medium, CMOS-like routing techniques are inappropriate
for superconductive VLSI circuits. If necessary, pulses can be
delayed by inserting JTL stages within the signal and clock lines.
Impedance matching is required for both CMOS RF, microwave,
and RSFQ transmission line interconnects. The unavoidable
presence of reflections in SFQ transmission lines, however, is of
greater concern than in CMOS due to the nonlinear behavior of
JJs and the large impedance mismatch between a transmission
line and the load JJ. The purpose of this article is to introduce a

Fig. 2. Lossless superconductive transmission line. (a) Microstrip. (b) Equiv-
alent circuit.

routing methodology to mitigate the effects of these reflections
on superconductive microstrip lines.

III. SFQ INTERCONNECT MODEL

A superconductive microstrip is a standard SFQ transmission
line due to the simple geometry, adjustable size, and scalability.
Based on the phase velocity of the transmission line, a resonance
behavior occurs in a microstrip when the roundtrip time of the
reflections coincides with the clock period of the signal. This
behavior is related to the impedance characteristics of the line.
The impedance characteristics and phase velocity of a microstrip
are discussed in this section.

The structure of a superconductive microstrip is depicted in
Fig. 2(a). The line consists of a superconductive strip on a
dielectric substrate placed above a ground plane. Due to the
London penetration depth λ of the superconductive material,
the propagation of an SFQ signal slows, causing a delay of up
to several percent of the speed of light [33]. The interconnect
is represented by a lossless distributed LC transmission line,
which depends upon the interconnect length. L and C are,
respectively, the inductance and capacitance per unit length.

An equivalent circuit of a superconductive transmission line is
shown in Fig. 2(b).Lm is the magnetic inductance per unit length
due to the magnetic flux within the superconductive line, and Lk

is the kinetic inductance per unit length due to the motion of the
paired electrons. The total inductance per unit length due to the
contribution of the inductances, Lm andLk, and the capacitance
of a superconductive microstrip is [34], [35], respectively, given
as follows:

L =
μ0h

Kw

[
1 +

λ1

h
coth

(
t1
λ1

)
+

λ2

h
coth

(
t2
λ2

)]
(1)

C =
ε0εrw

h
(2)

where w is the width of the superconductive microstrip, and
t1, t2, and h are, respectively, the thickness of the microstrip,
ground plane, and dielectric, λ1 and λ2 are, respectively, the
penetration depth of the microstrip and ground plane, and K is
the fringing field factor [34], [36], and [37]. The total inductance
of a transmission line is proportional to the penetration depth; a
deeper penetration depth produces a larger inductance.
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Fig. 3. Resonance effect in a lossless superconductive transmission line at
20 GHz (for the 10 kA/cm2 technology [6]).

The kinetic inductance is an important factor reducing the
phase velocity in a microstripline. For a lossless line, the relative
phase velocity is

vphase =
1√
LC

. (3)

The phase velocity can change since the internal inductance is
inversely proportional to the Cooper pair density [38].

IV. FREQUENCY DEPENDENCE OF PTL INTERCONNECT

An important property of a superconductive PTL is the reso-
nance effects produced when the reflections of the SFQ signal
from the receiver or driver coincide with an input SFQ pulse. The
effects of the frequency of the SFQ signals on the optimal length
of a microstrip transmission line are discussed in this section.

An analysis of the lower bias margin of a PTL including the
driver, transmission line, and receiver is presented in Fig. 3. At a
specific frequency, a lower bias margin of the PTL receiver is de-
termined for different interconnect lengths. A PTL is evaluated
as a lossless transmission line with a characteristic impedance of
8 ohms. In this figure, the dependence of the bias margins of the
receiver [5] on the PTL length is depicted. The set of resonance
lengths of a PTL system depends on the clock frequency of
the applied SFQ signal, which peaks at the lowest margins (see
Fig. 3). When the effective line length is a multiple of half of
a wavelength, a resonance occurs. The relationship between the
resonant frequencies and the length of an interconnect line is

fresonance =
nvphase

2Ll
(4)

which is directly related to the phase velocity of the interconnect.
Ll is the physical length of the PTL interconnect, and n is an
integer multiplier that determines the harmonic of the resonance
frequency.

By considering an applied frequency as the resonance fre-
quency for an imperfectly matched transmission line, a closed-
form expression for the resonance length of a PTL line is
determined. The resonance frequency and resonance length for
a given impedance depend upon the fabrication characteristics
and are an integer multiple of the primary resonance frequency.
The resonance effect in a PTL with a single JJ receiver [5] is

Fig. 4. Resonance effect in a lossless superconductive transmission line at 20
and 40 GHz (for the 10 kA/cm2 technology [6]).

depicted in Fig. 3. The impedance of a lossless transmission
line for the 10 kA/cm2 technology is based on the MIT Lincoln
Laboratory SFQ5ee fabrication process [6], [7]. The resonance
behavior of the interconnect at 20 GHz occurs at 2.9 mm (see
Fig. 3).

To determine the harmonics of the resonance frequency, the
Fourier transform of an SFQ pulse is required. An SFQ pulse
can be approximated by a Gaussian pulse [39]

V (t) = V0exp

(
− t2

2s2

)
(5)

where s is the standard deviation. The Fourier transform of this
pulse is

V (ω) = (2π)
1
2 sV0exp

(
−1

2
ω2s2

)
. (6)

Note that the frequency spectrum of an SFQ pulse is also Gaus-
sian. Harmonic frequencies of the SFQ pulse are derived from
(6), which correspond to the resonant frequencies and lengths,
as described by (4).

The dependence of the lower bias margins of the receiver [5]
on the length of the PTL line is shown in Fig. 4 for two different
frequencies of the input SFQ signal: 20 and 40 GHz. The first
sharp decrease in bias margins at 40 GHz (the dashed line)
occurs at 1.35 mm, a second decrease occurs at 2.9 mm. The first
resonance length is approximately half of the second resonance
length. The second resonance length at 40 GHz occurs at the
same length as the first resonance effect at 20 GHz, consistent
with (4). These resonance behaviors affect the bias margins
and can cause a circuit to not function properly. Changing the
impedance of the PTL line slightly shifts the resonance peak,
but preserves the general trend.

The dependence of frequency on the first forbidden length
of a PTL is shown in Fig. 5. The precise resonance length
depends upon the fabrication technology and PTL impedance,
and the trend is consistent with experimental results [40]. At
low frequencies, the resonance occurs in extremely long lines.
In these cases where the lines are supplied with a low-frequency
signal, correct operation is preserved as the resonance peak
occurs in longer lines. For high-frequency lines due to the shorter
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Fig. 5. Dependence of resonance frequency on the length of a PTL.

Fig. 6. SFQ interconnect. (a) No repeater. (b) With repeaters.

resonance length, additional constraints on the PTL interconnect
exist.

An unsafe region X for a given resonance length is the region
of line length in which the circuit operates incorrectly and
resonance behavior occurs. This unsafe region is determined by
the width of the resonance peaks (see Fig. 4), width and shape of
the reflected pulse, technology characteristics, and overlap of the
SFQ data pulse with the reflected pulse. In high-frequency PTLs,
multiple reflected pulses gradually accumulate. The shape of the
accumulated reflections in a microstrip is uncertain, and depends
upon the shape of the reflected SFQ pulse, round trip length of
the PTL, and time of the reflections. The width of the unsafe
region also depends upon the expected target margin for a PTL.
A lookup table is therefore used for the bias margins for each
PTL length and frequency for each receiver and driver pair in a
cell library. Based on a margin analysis of a lossless transmission
line, the forbidden region in this article is approximately +10%
of the length due to the additional reflection delay of the JJ in
the receiver.

For any frequency of an applied SFQ signal, a set of forbid-
den PTL lengths is produced, which corresponds to the main
resonant length and harmonic multiples of this length. This
set of forbidden lengths should be avoided. To prevent this
resonance effect from affecting circuit operation, the length of
a PTL segment is constrained to be shorter than the resonant
length. Similar to conventional CMOS circuits, repeaters are
inserted into these long transmission lines to partition the lines
into shorter sections [41], [42]. A superconductive transmission
line with and without repeaters is shown in Fig. 6. The repeaters

Fig. 7. H-tree with n wires. The possible repeater positions are represented
by the dashed rectangles.

are located to ensure that the length of each interconnect segment
is outside the forbidden region.

V. ALGORITHM FOR REPEATER INSERTION IN SFQ
INTERCONNECT

An algorithm is presented here to insert repeaters within PTL
interconnect to prevent resonance effects in long PTL lines.
The repeater insertion process is described in Section V-A. An
algorithm for inserting repeater in PTL interconnect is discussed
in Section V-B.

A. Problem Definition

The problem of inserting repeaters in SFQ interconnect to
minimize a target cost function is described in this section. An
H-tree interconnect topology is shown in Fig. 7. The tree consists
of h interconnect segments with multiple fanout. Each segment
is connected between a driver and a receiver. The interconnect
has n leaves, each leaf corresponds to one of the sinks of the
tree. At each sink 1 ≤ i ≤ n , the propagation delay tdi is the
path delay from the source to the sink i of the tree. The delay
of a PTL consists of the propagation delay of the PTL line and
the input-to-output delay of the receiver and driver. Increasing
the number of repeaters increases tdi. Within a tree, there are m
interconnect segments that may require a repeater, where 0 ≤
m ≤ h and the repeaters are inserted to minimize a target cost
function. An example of possible repeater positions for a long
line is represented by the dashed rectangles shown in Fig. 7.

The repeater insertion process determines the number of
repeaters j and length of partitions lm(j+1) that minimize a
cost function C ( l11, l12, l1(j+1), l21, l22, l2(j+1),..., lm1, lm2,
lm(j+1)). lm(j+1) is the length of each interconnect partition
within an interconnect segment m. The length of the partition is
in the range lmin < ljm < lintm , where lintm is the length of the
original interconnect segment without repeaters. The minimum
length lmin of a PTL interconnect is the length where a PTL is
faster than a JTL [5].

B. Repeater Insertion Algorithm

The objective is to determine the optimal number of repeaters
and length of segments in an interconnect by minimizing a target
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cost function with different weights for the metrics, such as the
area, power, and delay. Pseudocode describing the algorithm is
shown in Pseudocode 1. The algorithm starts with zero repeaters,
jh= 0, in each of the interconnect segments, corresponding to an
initial tree without repeaters. To determine the m possible posi-
tions of the repeaters, the length of the interconnect segments is
compared to the first resonance length and the related forbidden
region. If the length of an interconnect segment is longer than the
first resonance length, this segment is a possible position for a
repeater; otherwise, no repeater is required in this segment. The
first resonance length longer than the length of an interconnect
segment determines the largest number of harmonics N . From
(4) and the lookup table, a set of resonance interconnect lengths
lrN and frequency harmonics of the interconnect frN are deter-
mined forN ≥ 1. If lrN ≤ lmaxm ≤ XlrN , repeaters are inserted
into this interconnect segment. Otherwise, no repeaters are in-
serted within this segment. An interconnect segment without
repeaters provides the lowest cost, and the number of repeaters
remains zero. These interconnects are labeled to indicate that no
repeaters should be inserted.

If the number of harmonicsN is odd, the interconnect segment
is split into two parts with equal lengths. If the number of
harmonicsN is even, the interconnect section is divided into two
parts corresponding to the length outside the forbidden region,
and the number of repeaters is jm = 1. In this article, 30% and
70% of the total length of a segment are arbitrarily selected to
demonstrate the algorithm. For these harmonics, the halfway
length falls within the forbidden region. The algorithm iterates
until all m possible repeater positions are evaluated. During
each iteration of the algorithm, the length of the interconnect
segments and resonance lengths are scanned to determine the
number and position of the repeaters that decrease a target
cost function. The iterations are repeated until there is no
change in the number of repeaters as compared to the previous
iteration.

C. Application of Algorithm to Long PTLs

Repeaters can be inserted into an SFQ interconnect composed
of PTL lines and splitters, such as a clock network. An example
structure of a clock network is depicted in Fig. 7. The topology
of the clock distribution network is an H-tree network.

Assuming a lower margin for the receiver, the algorithm is
applied to a PTL line with different lengths and frequencies
to determine the minimum number of repeaters. Any reso-
nance effects in the PTL interconnect at 20 and 40 GHz (for
a 10 kA/cm2T technology) are depicted, respectively, in Figs. 8
and 9 without (dashed line) and with repeaters (solid line).

A lower margin of the receiver for different lengths is listed in
Tables I and II. The results of the algorithm are compared with
interconnect without repeaters and depict the improvement in
bias margins of an interconnect due to the inserted repeaters.

The first resonant length of the interconnect occurs at 1.35
and 2.9 mm at, respectively, 40 and 20 GHz. The resonant
behavior of the interconnect results in incorrect operation, where
an SFQ pulse cannot pass through the interconnect. Since N

Pseudocode 1: Pseudocode of Algorithm for Inserting Re-
peaters into an Interconnect Line.

Input: Number of interconnect segment h, length of
interconnects, frequency, number of repeater j = 0 ,
inductance and capacitance of a superconductive micro
stripline,

Output: Definition file
1: Calculate phase velocity in microstrips by

vphase =
1√
LC

2: Calculate a set of resonance length of interconnect by
lrN =

nvphase

2f ;
3: Determine number of repeater in m possible position

of interconnect;
4: Determine largest number of harmonics N ;
5: INT = Write (lm)
6: for lm in lrN ≤ lm ≤ XlrN do
7: if N is odd then
8: lm1,2 =

lm
2

9: INTlm = Write (lm1,2)
10: if N is even then
11: lm1 = 0.3lm , lm2 = 0.7lm;
12: INTlm = Write (lm1,2);
13: j = j + 1;
14: if XlrN ≤ lm ≤ XlrN+1

then Go step 15
15: Determine delay and margin;
16: Cost = Write ( delay, margin)
17: Definitionfile← j, INT,Cost

Fig. 8. Effect of resonance on the bias margins of a receiver in a lossless PTL
at 20 GHz with (solid line) and without (dashed line) repeaters.

is an odd number, this interconnect is divided into two equal
parts, improving the bias margins to approximately 25%. This
improvement is obtained for all odd harmonics, as listed in
Tables I and II.

A 6-mm PTL line exhibits a resonance behavior at both 20
and 40 GHz. This forbidden region corresponds to the second
and fourth harmonic of the resonance frequency at, respectively,
20 and 40 GHz. When one repeater is inserted, splitting the
interconnect segment into two equal length PTLs, the length of
these lines is within the forbidden region. When the interconnect
section is divided into two parts, corresponding to 30% and 70%
of a 6-mm line, correct functionality with wide bias margins
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Fig. 9. Effect of resonance on the bias margins of a receiver in a lossless PTL
at 40 GHz with (solid line) and without (dashed line) repeaters.

TABLE I
TRADEOFFS AMONG CONFIGURATIONS FOR DIFFERENT INTERCONNECT

SEGMENTS AT 20 GHZ

and low delay is observed. The advantages of the algorithm
(improved functionality with wider margins) are demonstrated
on multiple examples of resonant frequency harmonics (see
Tables I and II).

VI. CONCLUSION

Interconnects for prospective large-scale RSFQ circuits are
a significant issue in the automated routing of high speed in-
tegrated SFQ circuits. The interconnect and clock frequency
produce resonance effects in superconductive transmission lines.
A methodology for inserting PTL-based repeaters into supercon-
ductive interconnects is proposed to prevent resonance effects

TABLE II
TRADEOFFS AMONG CONFIGURATIONS FOR DIFFERENT INTERCONNECT

SEGMENTS AT 40 GHZ

in long PTL lines. These resonance effects produce constraints
on the length (forbidden regions), which should be avoided.
The proposed repeater insertion methodology improves bias
margins while slightly increasing the area and delay of the
interconnect. The proposed algorithm provides guidelines for
EDA tools and enables routing of robust, long superconductive
interconnects.
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