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Abstract—RSFQ circuits require a DC bias current to oper-
ate properly. The bias current in conventional RSFQ circuits is
supplied to each gate, resulting in large current requirements in
VLSI complexity SFQ systems, on the order of tens to hundreds of
amperes. These high currents are difficult to supply and distribute.
Superconductive input/output pins and bias lines support this lim-
ited current. Large currents however require significant metal and
input pin resources. In addition, large currents can inductively
couple to sensitive superconductive inductors, degrading circuit
operation and producing errors. Current recycling is a well known
technique to reduce these bias currents. RSFQ circuits with similar
bias current requirements can be placed on separate ground planes
and serially biased. The inputs and outputs of these circuits are
galvanically decoupled and require drivers and receivers between
connections. In this paper, a methodology for automated parti-
tioning of complex RSFQ circuits into blocks with similar bias
currents is described, where the number of connections among
the blocks is minimized. Blocks with a significant difference in
bias current are balanced using dummy padding structures. These
blocks are biased in series, reducing the total bias current by
the number of partitions. The Fiduccia-Mattheyses algorithm is
modified with RSFQ specific enhancements to partition the sys-
tem. A geometric partitioning approach, optimized by simulated
annealing, is also proposed. These algorithms are integrated into
the circuit placement process, and the methodology is evaluated
using several modified ISCAS’89 sequential benchmark circuits
and the AMD2901. The proposed partitioning methodology is in-
tended for use within an automated EDA flow to enable current
recycling for arbitrary (non-uniform, irregular) VLSI complexity
RSFQ circuits, drastically reducing overall bias current and input
requirements

Index Terms—Automated place and route, current recycling,
single flux quantum, superconducting integrated circuits,
superconducting logic circuits.

I. INTRODUCTION

ADVANCES in the fabrication [1] and electronic design
automation [2] of superconductive electronics have re-

sulted in increasing complexity of rapid single flux quantum
(RSFQ) [3] circuits. Current research efforts in this area are pri-
marily aimed at developing EDA tools to enable the automated
design of RSFQ circuits.

One of the distinctive properties of RSFQ circuits, as com-
pared to other superconductive logic families, is the DC bias
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supply. Each Josephson junction (JJ) is biased at a specific level
by a DC current. A bias current is supplied to each individual
cell within a circuit. These DC bias currents are sourced from
off-chip. Multiple techniques exist to distribute these currents
throughout a superconductive IC to minimize bias variations
and power dissipation [4].

Existing and prospective fabrication technologies enable
VLSI complexity SFQ circuits with a complexity of over a
million JJs per die, approximately several hundred thousand
gates [5]. Assuming each gate requires a bias current of several
hundred microamperes, the total estimated bias current is on the
order of tens to hundreds of amperes. These high currents are
difficult to efficiently supply and distribute [6]. Supplied from
off-chip, these currents also require a large number of input pins.
As each input has a current limit of 200 to 300 mA, the total
number of inputs required to supply the bias system can exceed
hundreds. In addition, the bias current is distributed on-chip
though thin superconductive lines, which are necessarily wide to
support these high currents, expending limited metal resources.
Furthermore, the high currents produce large magnetic fields
which can couple to sensitive RSFQ gates, introducing errors.
It is therefore imperative to reduce on-chip bias currents within
complex RSFQ circuits.

In this paper, a methodology to apply current recycling to
arbitrary (non-uniform or irregular) large scale RSFQ circuits
is proposed. This paper is organized as follows. In Section II,
current recycling (serial biasing) in RSFQ circuits is briefly
introduced, and existing challenges are described. In Section III,
a methodology for partitioning RSFQ circuits into blocks with
similar bias current requirements during the placement process
is presented. Some conclusions are offered in Section IV.

II. CURRENT RECYCLING

A well known technique to reduce the total bias current
is current recycling, also known as serial biasing [7], [8]. In
this technique, the circuit is partitioned into multiple segments
(or islands) with approximately the same bias current. These
segments are galvanically isolated from each other and the rest
of the circuit. The partitions use different ground planes and are
serially biased, with the ground of each partition acting as a bias
supply for the next partition. The inputs and outputs of these
serially biased islands are connected to the rest of the system
through special pulse transfer circuits, requiring inductive or
capacitive coupling [9]. These couplers (driver-receiver pairs)
typically consist of a few JJs and coupling elements, and occupy
significant area [10]. It is therefore desirable to reduce the
number of these couplers.
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Serial biasing was first proposed in 1989 [11] and is widely
used in complex RSFQ circuits [12]. This approach however
requires manual ad hoc designation of repetitive blocks within
a circuit – a process difficult to automate and reuse. Unlike
highly regular, specialized circuits typically used to demonstrate
current recycling (e.g., shift registers), a limited number of
repetitive structures exists in general VLSI circuits. The benefits
of current recycling in this case are applicable to only a small
portion of a system. Moreover, automated design tools for RSFQ
circuits, in particular, automated place and route (APAR) tools,
need to be aware of these current recycling features, as the
placement and routing process changes with the introduction
of separate ground planes and driver-receiver pairs.

To date, current recycling has not been applied to general
RSFQ circuits. In this paper, a methodology is proposed to miti-
gate these issues by automatically partitioning arbitrary logic to
support current recycling [13]. A similar methodology has been
simultaneously and independently proposed in [14], where the
ground plane is partitioned after the circuits have been placed
(post-placement). The primary distinctive feature of this work is
that partitioning is performed during the first steps of the coarse
placement process, when the location of the gates has yet to
be finalized. In addition, different partitioning and optimization
algorithms are used.

III. PARTITIONING OF ARBITRARY RSFQ CIRCUITS DURING

PLACEMENT

In this section, a methodology for partitioning RSFQ cir-
cuits during placement is proposed and demonstrated. In Sec-
tion III-A, serial biasing of partitions with slightly different
bias currents is reviewed. In Section III-B, partitioning during
placement is introduced and the advantages and disadvantages
of this approach are discussed. In Section III-C, the quadratic
placement algorithm used here for coarse placement is briefly
introduced. In Section III-D, partitioning RSFQ circuits with the
Fiduccia-Mattheyses (FM) algorithm is discussed, and results
are presented for a number of benchmark circuits. In Section III-
E, geometric partitioning with simulated annealing is described,
and results are presented and compared to partitioning with the
FM algorithm.

A. Unbalanced Partitioning of RSFQ Circuits With Padding

In existing RSFQ circuits utilizing serial biasing, all of the
partitions exhibit identical bias currents [12]. This condition,
however, is not a strict requirement. While different bias currents
for each island degrades the bias margins, resulting in over- or
underbiasing of the entire island, certain small differences in
the bias current can be tolerated. The balance conditions for the
partitioning algorithm therefore depend upon the robustness of
the circuit to changes in the bias current.

RSFQ technology provides a means to mitigate any imbalance
among the different islands. Dummy gates, for example, a chain
of JTL stages or individual JJs, can be added to those islands
with a smaller bias to equalize the bias current among islands. A
padding JTL can be placed anywhere within an island and only
needs to be connected to a bias line within this island, not a signal

line. This JTL does not need to be operational or efficient. The
total bias current of these elements can therefore be arbitrarily
chosen to equalize the bias currents among the islands while
reducing the added area.

In ERSFQ circuits [15], it is desirable to connect a dummy JTL
to a clock line. In this case, due to the properties of ERSFQ bias
networks [16], padding elements do not dissipate static power.
Furthermore, ERSFQ circuits utilize a feeding JTL (FJTL) as a
voltage regulator [17]. In an ERSFQ circuit with current recy-
cling, the FJTL sets the bias voltage for each island. Each island
therefore requires a separate FJTL [18]. Alternatively, a single
FJTL can be located within the island with the highest ground
voltage. In this way, the FJTL provides a reference for the highest
voltage in the circuit, although dissipating additional dynamic
power. The current regulation capability of a FJTL also provides
additional robustness to small variations in bias current. If the
circuit is slightly over- or underbiased, the FJTL compensates
for these small changes, maintaining the bias current in the
corresponding circuit close to the design target [4].

B. Partitioning During Placement

Any complex circuit can be represented as a hypergraph,
with vertices corresponding to the gates and hyperedges cor-
responding to the connections between the gates. Hypergraph
partitioning algorithms and heuristics are both widely used
in CMOS EDA placement tools [19]. These algorithms are
included within the coarse placement process to minimize the
number of connections to the different parts of a circuit, thereby
reducing the total wire length and overall wiring congestion. Bal-
anced partitioning of a hypergraph is an NP-hard problem [19].
A variety of heuristics have therefore been developed to enable
the partitioning and placement of VLSI circuits.

The primary advantage of partitioning during placement is in-
tegration into existing EDA flows. The placement tools perform
partitioning and can be modified to consider the bias current
of the cells during the placement process. In addition, empty
space can be reserved by the placement tools to place and
route driver-receiver pairs between islands. The number and
area of these structures depend upon the number of connections
between different partitions, and is not known in advance. This
approach also avoids complex irregular shapes for the ground
planes, which can be difficult to characterize. With the additional
constraints of balancing the bias currents among partitions,
partitioning during placement can increase the average wire
length [20].

Unlike partitioning during placement of large scale CMOS
circuits, a small number of partitions for current recycling in
RSFQ provides significant benefits. The total bias current of a
circuit separated into N partitions is reduced by N. The number
of connections between islands also increases with the number
of islands. The total number of partitions for current recycling
can therefore be small (up to a few tens of partitions). An advan-
tage of recursive bipartitioning is that each pair of partitions is
balanced by the bias current, enabling reuse of the same padding
elements.

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on August 31,2021 at 18:43:49 UTC from IEEE Xplore.  Restrictions apply. 



KRYLOV AND FRIEDMAN: PARTITIONING RSFQ CIRCUITS FOR CURRENT RECYCLING 1301706

Multiple modifications are necessary to apply existing parti-
tioning algorithms to the problem of RSFQ current recycling.
The reduced number of connections between partitions produces
fewer driver-receiver pairs. Moreover, due to the limited fanout,
RSFQ circuits can be represented as a regular graph rather than
as a hypergraph, where each net (edge) is a one-to-one con-
nection between two gates. In CMOS, the balance optimization
condition is typically related to the area of the gates [21]. For
current recycling in RSFQ circuits, the bias currents are the
primary issue within the balance condition, as each gate requires
a specific bias current.

C. Coarse Placement

Many algorithms exist for the automated placement of stan-
dard cells [22]. The partitioning methodology presented here is
embedded into the first stages of the coarse placement process.
During this stage, an approximate location is determined for
each cell based on wire length constraints. These locations often
significantly overlap. This issue is later resolved in the placement
process during the legalization step.

The quadratic placement (QP) algorithm is used here to
produce a coarse placement for the proposed methodology.
QP is a well known and relatively old algorithm for analytic
placement [23]. Among the primary advantages of QP is low
computational complexity and global minimization of the wire
length. Although many cells are frequently placed at the same
coordinates, this placement procedure produces a high fidelity
representation of the approximate gate locations. In this section,
the QP algorithm is briefly described.

The primary objective of quadratic placement is to minimize
the wire length. A connectivity matrix C = [cij ] is produced,
where cii = 0 and cij represents the weight of the connection
between different nodes (gates or standard cells) [24]. Different
models exist for the nets connecting multiple nodes [23]; for
RSFQ logic, all nets can be treated as one-to-one nets. The cost
function to minimize the wire length is

F =
1

2

n∑

i,j=1

cij((xi − xj)
2 + (yi − yj)

2). (1)

An auxiliary diagonal matrix D is introduced, where dii =∑n
j=1 cij is the sum of all of the connection weights for a target

node [24]. The objective function (1) is rewritten in the form,

F = xTQx+ yTQy, (2)

where Q = D − C, and x and y are the coordinates for each
gate. This problem is reformulated as two linear systems in x
and y coordinates (only x is shown here for brevity) [24],

Qccxc = −Qcfxf , (3)

where Qcc and Qcf are submatrices of Q corresponding to
the connections, respectively, between the nodes and between
the nodes and immovable pads. xc and xf are, respectively,
the coordinate of the nodes and pads [23]. The coordinates can
be determined using any method for solving a system of linear
equations. As each node is connected to only a few other nodes,
Q is sparse, resulting in high computational efficiency of QP

even for a large number of nodes. The QP algorithm is used here
to produce a high fidelity model of the initial coarse placement.

D. Partitioning Using Fiduccia-Mattheyses Heuristic

In this section, the Fiduccia-Mattheyses algorithm [25], an
improvement on the earlier Kernighan-Lin algorithm [26], is
used for bipartitioning. The number of connections between
partitions is minimized, while the balance conditions for the
partitions are modified to consider the bias currents of different
nodes (gates/cells).

For partitioning using FM, a few important terms need to be
introduced. A cut is an edge connecting vertices in different
partitions. In RSFQ circuits with current recycling, each cut
corresponds to a connection between different serially biased
blocks. Each cut therefore requires a coupler (driver-receiver
pair) circuit. For each vertex, a gain corresponds to a change
in the number of connections, resulting from the movement of
this vertex into a different partition. If all neighboring vertices
of a given vertex are already in the updated partition, the gain is
maximum. The vertex with the highest gain represents the best
possible move.

The FM algorithm consists of multiple passes. Each pass
consists of multiple iterations (moves) and operates as follows.
The graph is initially separated into two random partitions. The
gain is calculated for each vertex. The move with the highest
gain is selected. The corresponding vertex is moved to the other
partition. The gain values for the neighboring nodes are updated,
and the vertex is locked – it can not be moved again during
this pass. This procedure is repeated until all of the vertices
are locked. The best partition during a specific pass is used as
the initial partition for the following pass, and all nodes are
once again unlocked. The algorithm terminates when no further
improvement in the solution is produced. The balance conditions
are introduced to avoid moving all gates into one partition. The
vertex is only moved if the resulting partitions are balanced.

RSFQ technology can also provide certain benefits to the FM
algorithm. Most RSFQ gates exhibit a fanout of one, and most
cell libraries contain only two input logic gates. Including the
clock signal, the highest/lowest gain is bounded by ±4 (number
of inputs and outputs). Unlike CMOS, no nodes exist with a
larger gain including the clock input.

Partitioning during the placement process is illustrated in
Fig. 1. The initial circuit netlist, in graph representation, is placed
using the QP algorithm, as shown in Fig. 1(a). The circuit is
bipartitoned using the FM algorithm. When partitioning RSFQ
netlists for current recycling, the primary balance condition
is the bias current. In addition, the gain of the node can be
modified to consider the relative imbalance among partitions
and the approximate coordinates determined by the coarse
placement algorithm. Coarse placement is performed on each
of the resulting partitions, where the connections to the nodes
in another partition are represented by immovable pads, as
shown in Fig. 1(b). As the QP algorithm aims to minimize wire
length, the connected nodes within different islands are visibly
“pulled” toward each other. The space between the partitions
in the layouts, shown in Fig. 1(b) and (c), is exaggerated. As
discussed in Section III-B, this spacing can be adjusted based on
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Fig. 1. Coarse placement and partitioning with FM heuristic of a benchmark circuit, (a) initial placement, (b) bipartitioning and placement, and (c) four way
partitioning and placement. Different shaded circles (nodes) correspond to individual cells in different partitions, while the lines (edges) represent signal connections.

TABLE I
RESULTS OF FM PARTITIONING ON MODIFIED ISCAS’89 BENCHMARK CIRCUITS AND THE AMD2901 ALU

the number of driver-receiver pairs. This procedure is recursively
repeated on subsequent partitions, as shown in Fig. 1(c), until the
target number of partitions is reached. In a standard cell design
flow, the nodes are placed within the corresponding cell rows at
later stages of the placement process.

This partitioning methodology is implemented in Python
and has been evaluated on CMOS industry standard ISCAS’89
benchmark circuits [27] and the AMD2901 – a 4 bit slice ALU.
The benchmark circuits have been modified to better consider
RSFQ circuits. The netlist characteristics for these circuits –
the bias current and the number of nodes (gates) and edges
(nets) – are listed in Table I. Splitters are included for multiple
fanout [28]. Multiple fanin gates are replaced by gates with only
two inputs. NAND/NOR gates are divided into AND/OR and
NOT gates, and the clock inputs are included in each logic gate.
A clock distribution network composed of a large splitter tree
is also introduced [29], as clock splitters comprise a significant
fraction of the total bias current. Two different AMD2901 ALUs
are used – the AMD2901f which includes the necessary path
balancing D flip flops, and the AMD2901s which does not
include these extra flip flops.

The results of applying recursive bipartitioning and placement
to these benchmark circuits using this methodology are listed in
Table I. Note that the FM algorithm utilizes an initial random
or semi-random partitioning, and is therefore nondeterministic–
each run produces slightly different results. This methodology
minimizes the number of connections among islands while satis-
fying the required balance constraints. These results emphasize

balancing the bias current among the islands. The number of
connections among the islands can be further reduced if this
objective is prioritized within the partitioning algorithm. As
listed in Table I, this methodology produces a reasonable number
of connections between partitions for complex, highly irregular
circuits. For two way partitioning, the fraction of cut nets is
approximately 5% to 15%, depending upon the structure of a
particular circuit. With a larger number of partitions, the number
of cut nets increases. Approximately 20% of all connections
are cut for four way partitioning. The resulting partitions can
be serially biased, reducing the total bias current required by
the system. For small differences in bias current, as listed in
Table I, dummy padding structures for bias balancing may not
be necessary, particularly in ERSFQ circuits.

Although this FM heuristic produces highly balanced par-
titions with a small number of cut nets, it is computationally
hard. The time required to partition a large circuit using the FM
algorithm can become impractical. Clustering steps are typically
added before partitioning to reduce the complexity [19].

E. Geometric Partitioning With Simulated Annealing

A major drawback of this partitioning process using the
FM algorithm is the introduction of multiple steps into the
design flow. Although APAR tools include multiple partitioning
steps as part of the placement process, integration of additional
constraints related to equalizing the bias current can increase
the total wire length and runtime of the placement process. A
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Fig. 2. Coarse placement and geometric partitioning of a benchmark circuit, (a) simple geometric partitioning with equal area, and (b) geometric partitioning
with partition boundaries optimized by simulated annealing.

TABLE II
RESULTS OF GEOMETRIC PARTITIONING ON MODIFIED ISCAS’89 BENCHMARK CIRCUITS AND THE AMD2901 ALU

simpler technique, less intrusive within established EDA flows,
is geometric partitioning [30]. In this partitioning approach,
coarse placement of a circuit is divided into multiple blocks
based only on the cell (node) coordinates, as shown in Fig. 2(a).

As described in Section III-C, the initial placement process
aims to minimize the total wire length. Dividing this placement
into partitions of equal area based only on the coordinates can
produce severely unbalanced partitions with a large number of
cut nets, as listed in Table II for the same benchmark circuits (as
described in Section III-D). If the slightly modified coordinates
of the partition boundaries consider the bias currents of the re-
sulting islands, as shown in Fig. 2(b), the balance characteristics
are improved. Any optimization technique can be used to select
these modified coordinates.

Simulated annealing is used here to select the preferable
boundary for the geometric partition, producing a smaller bias
imbalance and fewer cut nets. For bipartitioning, only one
boundary is considered, while for four way partitioning, three
boundaries are considered (one for the initial bipartition and
one for each resulting partition). The results of geometric par-
titioning with simulated annealing are also listed in Table II.
As with FM partitioning, described in Section III-D, the cost
function for simulated annealing emphasizes a balance of the
bias currents among different islands. Fewer cut nets with a
higher bias imbalance can be produced by changing the cost
function of the optimization process.

As seen from a comparison between Tables I and II, geometric
partitioning generally produces a greater bias imbalance be-
tween islands with more cut nets as compared to FM partitioning.

This approach, however, is computationally more efficient, and
is less difficult to integrate into an established design flow. This
approach also greatly reduces the maximum bias current of a
system due to serial biasing, while requiring minimal changes
to the circuit at the cost of increased area.

IV. CONCLUSIONS

A methodology for current recycling in large scale RSFQ
circuits is described in this paper. The methodology enables
current recycling in complex irregular RSFQ circuits by parti-
tioning these circuits into islands with a similar total bias current.
The partitioning step is integrated into the first stages of the
coarse placement process. Islands with a significantly different
bias current are balanced using dummy padding structures.
These structures may not be necessary for highly balanced
partitions. A modified Fiduccia-Mattheyses algorithm is used
for balanced partitioning to reduce the number of galvanically
isolated drivers/receivers in an RSFQ circuit with serial biasing.
Approximately 5% to 15% for bipartitioning and approximately
20% for four way partitioning of the nets require a driver-
receiver pair, while the differences in bias current are on the
order of a few per cent. An alternative partitioning technique,
geometric partitioning with optimization, is also described.
This approach produces more unbalanced partitions, requiring
additional driver-receiver pairs. It is however computationally
more efficient and introduces fewer modifications into the place-
ment process while enjoying the benefits of current recycling.
This partitioning methodology can be integrated into standard
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CMOS-like EDA design flows for RSFQ circuits by including
bias weighted partitioning during the placement process.
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