
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 33, NO. 6, SEPTEMBER 2023 1304108

Josephson Junction Stuck-At Fault
Detection in SFQ Circuits

Abdelrahman G. Qoutb , Student Member, IEEE, Stephen Whiteley , Life Member, IEEE, Jamil Kawa,
and Eby G. Friedman , Fellow, IEEE

Abstract—High reliability is an important requirement for all
electronic integrated circuits including superconductive systems.
Reliability and yield can be categorized by the failure paths, se-
quence of faults due to a physical failure, and failure mechanism.
Determining the defects and faults is essential to enhance the
lifetime of superconductive systems. Josephson junctions (JJs) are
the base element of single flux quantum systems. The primary
contributions described in this article are a set of JJ-based fault
models followed by a methodology for developing high-level fault
models. Based on these models, test vectors can be generated to
detect the type and/or location of these JJ faults.

Index Terms—Design for testability (DFT), fault models,
single flux quantum (SFQ), superconductive digital electronics,
superconductive (SC) integrated circuits.

I. INTRODUCTION

THE challenge of achieving high performance with high
reliability is escalating due to dimensional scaling, novel

materials and devices, and operation in severe conditions (such
as extreme cryogenic temperatures and subterahertz frequen-
cies). These reliability challenges, combined with yield issues,
are exacerbated by exotic manufacturing technologies.

Single flux quantum (SFQ) logic is a superconductive (SC)
technology for low-power, high-performance cryogenic com-
puting. The development of SFQ technology has enabled com-
plex integrated circuits achieving over 11 000 Josephson junc-
tions (JJs) for digital signal processors [1] and similar complex-
ity prototype RSFQ microprocessors [2]. SFQ circuits with a
regular layout structure, such as an ac-biased SFQ shift register
have reached 800 000 JJs [3], operating at subterahertz clock
frequencies. The achievable frequencies and cryogenic environ-
ment make SFQ circuits difficult to control via external prob-
ing. Prototype evaluation of these circuits, therefore, requires
advanced testing methodologies.

Manuscript received 28 September 2022; revised 24 January 2023; accepted
6 February 2023. Date of publication 22 March 2023; date of current version
25 April 2023. This work was supported in part by the National Science
Foundation under Grant 2124453, in part by the Intelligence Advanced Research
Projects Activity (IARPA) under Grant W911NF-17-9-0001, and in part by the
Qualcomm and Synopsys. This article was recommended by Associate Editor
Masamitsu Tanaka. (Corresponding author: Abdelrahman Qoutb.)

Abdelrahman G. Qoutb and Eby G. Friedman are with the Department of
Electrical and Computer Engineering, University of Rochester, Rochester, NY
14627 USA (e-mail: a.qoutb@rochester.edu; friedman@ece.rochester.edu).

Stephen Whiteley and Jamil Kawa are with Synopsys, Inc., Mountain View,
CA 94043 USA (e-mail: whiteley@synopsys.com; jamil@synopsys.com).

Digital Object Identifier 10.1109/TASC.2023.3260144

Reliability and yield can be categorized by the failure paths
and failure mechanisms. Determining the defects and faults is
essential to enhancing the lifetime and testability of SC systems.
This capability is achieved by improving the fault coverage,
where the system is evaluated to identify the characteristics of
the faults, such as the quantity, location, and type. Understanding
the behavior of each failure mechanism and the development
of effective and reliable methodologies that exploit design for
testability (DFT) techniques prior to fabrication are vital to the
development of testable SC systems.

The basic elements of SFQ systems are JJs, resistors, induc-
tors, and interconnects [4]. In this article, high-level JJ-based
fault models are proposed, and the required test vectors are
described to detect the location and type of these faults [5], [6].

Several significant differences exist between conventional
transistor-based CMOS fault models and JJ-based SFQ fault
models beyond subterahertz clock frequencies and the cryogenic
environment. An SFQ signal is represented by the existence
of an SFQ pulse not as a voltage level (as in CMOS). In both
CMOS and SFQ device-based faults, it is challenging to identify
the location and type of faults within a system. The following
additional differences prevent the use of standard CMOS-based
DFT techniques [6], [7].

1) Only two states exist in SFQ logic, zero (the absence of
a pulse) or one (existence of a pulse). In CMOS logic,
output states, such as zero, one, and floating may exist.

2) SFQ logic gates are inherently clocked and latched within
at least one storage loop, where several clock cycles are
required to produce an output [8]. Unlike CMOS, in SFQ
systems, additional information, such as the number of
cycles, is required by a test controller.

3) Limited fan-out of SFQ gates and flip flops [9]. Splitters
are required to provide additional outputs [9].

The previous work on enhancing the testability of SC elec-
tronics, emphasizing process variations, defects, and structural
testing, has been considered in [6], [10], [11], and [12]. In [10],
a methodology is proposed to test timing violations due to
process variations. This methodology is achieved by charac-
terizing logic cells due to process variations and identifying
the delay excitations [10]. Hence, test patterns are generated
that guarantee to excite the worst case delay along each target
multicycle path [10]. In [11], fault models are produced based
on a large number of simulations. These models are based on
variation-induced failures by varying the value of the inductors,
resistors, and critical currents [10]. Kerkhof and Speek [12]

1051-8223 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on May 18,2023 at 22:06:09 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6934-3322
https://orcid.org/0000-0002-4173-0566
https://orcid.org/0000-0002-5549-7160
mailto:a.qoutb@rochester.edu
mailto:friedman@ece.rochester.edu
mailto:whiteley@synopsys.com
mailto:jamil@synopsys.com

1304108 IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 33, NO. 6, SEPTEMBER 2023

Fig. 1. SFQ fault mechanisms. Component-based faults are attached to a specific SFQ component. High-level models detect the faults associated with resistively
shunted JJs. Other SFQ fault mechanisms include faults associated with the physical layout, faults due to connectivity between the devices, and faults due to
limitations in the manufacturing process.

suggested defect-oriented testing by introducing possible de-
fects, such as shorts in the same layer, bridges between layers,
opens in layers and vias, and pinholes in the thin oxide layer.
Hence, elements are inserted to detect these defects (as an
example, inserting large and small capacitors to detect pinholes).
Based on statistical information from detecting these defects,
a model is presented to measure the quality of the fabrication
process. From a literature survey, fault models that target specific
defect mechanisms are missing. More research in this area is re-
quired to produce more efficient SFQ-based test methodologies.

A methodology is proposed here to include DFT within SFQ
systems. To the best of our knowledge, this work is the first
to describe JJ-based stuck-at faults. This objective is achieved
by developing high-level fault models that target JJ-based faults,
such as stuck-at in a SC state or an open state. These fault models
can be exploited to develop a fault simulation algorithm. The
required test vectors to identify the type and location of these
sets of faults are generated based on a high-level fault model. A
summary of the quality measures of each fault model is discussed
in this article. The fault coverage of open-circuit (OC) and short-
circuit faults and the location of each logic cell are identified.

Potential faults within SFQ systems are categorized by device-
based faults, fabrication-based faults, and dc bias network faults,
as shown in Fig. 1. JJ-based fault models are evaluated to gen-
erate the required test vectors to determine the location and/or
type of defect.

The primary contribution of this article is a test methodology
for SFQ systems. High-level JJ-based fault models are described
followed by a methodology for developing a fault model to target
a specific block or type of fault.

The rest of this article is organized as follows. JJ-based fault
mechanisms and related fault models are discussed in Section II.
These proposed JJ-based fault models are validated in Section
III. The required test vectors to detect and allocate JJ-based faults
within an SFQ system are presented in Section IV. The fault
coverage of the proposed models are presented in Section V.
A methodology to develop a block-level JJ-based fault model
to generate the required test vectors is described in Section VI.
Finally, Section VII concludes this article.

II. JJ-BASED HIGH-LEVEL FAULT MODELS

Multiple types of JJs exist within SFQ systems, such as
unshunted, self-shunted, resistively shunted, and π junctions.
Resistively shunted JJs are the most advanced fault type within
state-of-the-art high-performance SFQ circuits. Faults associ-
ated with resistively shunted JJs are the focus of this article.

A faulty resistively shunted JJ has four modes of operation,
stuck-at SC, stuck-at resistive, OC, and noisy switching. Further
simplifications are necessary to develop JJ-based fault models
that support complex testability mechanisms considering mil-
lions of JJs.

The great majority of physical failures results in stuck-at
shorts and opens [13]. In this article, two JJ-based fault modes
are considered, stuck-at SC state and stuck-at OC state.

Multiple physical defects can lead to a JJ stuck in the SC
state, such as a JJ with a higher critical current than the expected
value. Typical margins for a bias network are 20% to 30% of
the critical current [14], [15]. If the critical current of a JJ is
above this margin, the device behaves as a stuck-at SC state.

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on May 18,2023 at 22:06:09 UTC from IEEE Xplore. Restrictions apply.

QOUTB et al.: JOSEPHSON JUNCTION STUCK-AT FAULT DETECTION IN SFQ CIRCUITS 1304108

Fig. 2. Configuration of the logic cell under test where a Josephson trans-
mission line is placed at the primary inputs and outputs of the logic cell under
test.

Fig. 3. JTL faults, (a) model of a JTL, and (b) simulation of a JJ stuck-at SC
or OC state, indicating additional failure behaviors (circled). The squared JJ is
the faulty JJ. Out_ref is the output of a JTL with a reference cell (without faults).
Out_SC and Out_OC are, respectively, the output of a JTL with a JJ stuck-at SC
state and OC state.

A JJ stuck in the OC state can occur if a break exists in the
tunneling barrier or interconnect. In this article, a JJ stuck in the
SC state is modeled as a JJ with a high critical current (5 mA)
to ensure the operation is in the stuck-at SC state, whereas a JJ
stuck-at in the OC state is modeled as an OC.

A. Fault Simulation and Analysis

To develop a high-level fault model of a logic cell with a faulty
JJ, the response of a circuit is considered to be only due to one
fault type in a single JJ at a time. The logic cells within an SFQ
cell library are based on the configuration shown in Fig. 2. A
JJ-based fault model is presented for the following SFQ cells:
Josephson transmission line (JTL), splitter, DFF, OR, and AND
gates.

The simulation environment to model JJ-based faults within
a JTL is illustrated in Fig. 3(a). The output of a JTL due to a JJ
stuck-at SC state is zero. The output of a JTL with a JJ stuck-at
OC state is challenging to detect. This output exhibits a small
difference in delay from a reference JTL without faults, as shown
in the circled areas depicted in Fig. 3(b).

Two types of JJs exist within a splitter, the driver JJ and the
branch JJ. The simulation environment to model JJ-based faults
within a splitter cell is shown in Fig. 4. The faulty output of a
splitter with the driver JJ stuck in the OC state [see Fig. 4(a)]
is similar to a reference output (without JJ faults), as illustrated
in Fig. 4(a). In this condition, a stuck-at OC fault in the driver
JJ is undetectable. The output of a splitter cell with a branch JJ

Fig. 4. Splitter faults, (a) splitter cell, and (b) simulation of J2 stuck-at SC or
OC state.

stuck in the SC state depends upon the location of the faulty JJ,
as shown in Fig. 4(b). The output of a splitter cell, attached to a
faulty JJ (stuck in the SC state), exhibits a single pulse followed
by zeros, as depicted in Fig. 4(b).

The same procedure is followed to model other SFQ cells,
such as DFF, AND, and OR gates. These logic cells have mul-
tiinput and multioutput ports, including an input clock signal.
To provide a fault model for these gates, the cell under test is
analyzed for all input conditions with the clock signal enabled
or disabled. Testing all input cases is essential to determine the
location and type of faulty JJs within a cell.

At least one storage loop exists in these logic gates. The
location of a JJ within these logic gates sets the dependence
of the cell function on the clock signal or latching operation.
For the example shown in Fig. 5(a), a fault in J2 influences the
clock signal, whereas a fault in J1 or J3 affects the storage loop.
At least two test vectors are required to detect faults within these
clocked logic gates, as discussed in Section III.

As previously discussed in Section II, high-level fault mod-
els are based on different cell behaviors caused by JJ-based
faults. The fault models of a JTL, splitter, and DFF cell are,
respectively, tabulated in Table II(a)–(c). These fault models are
independent of technology and/or manufacturing process. As
listed in Table II, the output of each logic cell due to a fault in a
JJ is compared with a reference cell (without faults). The faulty
output is highlighted as a gray cell.

As shown in Fig. 5(b), an OR cell is composed of eight JJs with
four control JJs and one DFF, whereas, as illustrated in Fig. 5(c),
an AND cell is composed of 11 JJs, forming two DFFs and three
control JJs. To provide a high-level JJ-based fault model of both
an OR cell and an AND cell, the output is evaluated with and
without the clock signal. As an example, when the clock signal is
ON, a clock pulse is inserted after each input. High-level JJ-based

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on May 18,2023 at 22:06:09 UTC from IEEE Xplore. Restrictions apply.

1304108 IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 33, NO. 6, SEPTEMBER 2023

TABLE I
HIGH-LEVEL JJ-BASED FAULT MODELS, (A) OR CELL, AND (B) AND CELL

Fig. 5. Circuit structure of (a) DFF, (b) OR cell, and (c) AND cell.

fault models of OR gate and AND gate are, respectively, listed
in Table I(a) and (b). Note that a fault in the JJs forming the
DFFs within the OR and AND gates may exhibit a different
behavior when the clock signal is ON or when it is OFF. However,
a fault in the control JJs can only be identified when the clock
signal is ON.

III. VALIDATION OF PROPOSED JJ-BASED FAULT MODELS

The benchmark circuit shown in Fig. 7 is used here to validate
the proposed JJ-based fault models. This validation process
identifies the logic paths of JJ-based faults within an SFQ system.
As an example, one fault is inserted at J2 within the AND_1
gate. As listed in Table I(b), when J2 is stuck in the SC state
within an AND gate, the faulty output is one when A = 1 and
B = 0. As shown in Fig. 6(a), the faulty and reference AND
gates produce a correct output when A = 1 and B = 1. When
A = 1 and B = 0, output AND_1 is one when J2 is stuck in the
SC state. This faulty output propagates to the second stage of the
benchmark circuit, as shown in Fig. 6(b). Out_Ref is the result of
an AND operation between AND_1 and C_1. The second-stage
AND gate is free of faults. Hence, the source of the fault is only
from AND_1.

Based on these validation results the following: 1) the pro-
posed JJ-based high-level fault models describe the operation
of a cell with JJs stuck-at in either the OC or the SC state; 2)
the influence of JJ-based stuck-at faults is localized within the
gate where the fault exists. Hence, a JJ stuck-at fault in a specific
gate does not cause additional faults in other gates. Based on
these characteristics, the proposed technique for developing
high-level fault models can shift JJ-based faults from a gate-level
model to a block-level model. This technique can be used to
develop a fault simulation tool for JJ-based stuck-at faults.

IV. TEST VECTOR GENERATION

The required test vectors that identify the location and/or type
of JJ-based fault are based on the proposed fault models. As an
example, consider a JJ-based fault model of a JTL, as listed
in Table II(a). OC faults cannot be identified since the output
of a faulty JTL with J1 stuck-at in the OC state is similar to
a reference cell. The output of a faulty JTL with a JJ stuck in
the SC state can be identified by detecting zero when a one is

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on May 18,2023 at 22:06:09 UTC from IEEE Xplore. Restrictions apply.

QOUTB et al.: JOSEPHSON JUNCTION STUCK-AT FAULT DETECTION IN SFQ CIRCUITS 1304108

Fig. 6. Validation of the proposed JJ-based fault models where a single JJ fault is inserted at AND_1 gate. J2 is stuck-at SC, as shown in Fig. 7. Output of the
reference cell without any faults, (a) at the first stage, faulty output AND_1_F is one when either A = 1 and B = 1 or A = 1 and B = 0, whereas the true operation
AND_1 is one only when A = 1 and B = 1. (b) At the second stage, where no faults exist, but the faulty output of the first stage propagates to the second stage.
This behavior exemplifies that JJ-based stuck-at faults are localized faults that only affect the operation of a specific cell (the cell with the faulty JJ).

TABLE II
HIGH-LEVEL JJ-BASED FAULT MODELS, (A) JTL, (B) SPLITTER, AND (C) DFF

inserted at the JTL. Another example, listed in Table II(b), is
the location of stuck-at SC faults, which can be identified by
detecting the two outputs of a splitter. If a one is inserted into a
splitter and a zero is detected at the two outputs, a stuck-at SC is

identified at the driver JJ. If a one is inserted into a splitter and
a one is detected in one branch and a zero in the other branch, a
stuck-at SC is detected at the JJ located in the other branch.

A complete list of test vectors to detect the location and/or
type of JJ-based fault within an SFQ system is listed in Table III.
Based on this list, different types of test vectors can be applied,
given as follows.

1) Test vectors can be applied to detect a specific fault at a
specific location. For example, detecting if J1 (at a specific
location) is stuck-at SC (for a specific fault) within a
splitter cell or if J3 is stuck-at OC within a DFF cell.

2) Test vectors can be applied to detect if a specific location
has a JJ-based fault (stuck-at SC or OC); for example,
detecting if J4 is stuck-at SC or OC fault within an OR
gate by applying A=10 and B=00.

3) Test vectors can be applied to detect if a JJ-based stuck-at
fault occurs within a cell (without identifying the type or
location of the fault); for example, applying A=X and
B=X to an OR cell, where X means any value.

V. FAULT COVERAGE OF JJ-BASED FAULTS

A summary of JJ-based faults within an SFQ system is listed
in Table IV. Considering specific logic cells, 100% of OC faults
and 64% of SC faults can be detected within an AND cell; 100%
of JJs stuck in the SC state within a splitter cell can be identified
and located. It is, however, challenging to determine the type
and/or location of all JJ stuck faults within JTL, DFF, and OR
cells.

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on May 18,2023 at 22:06:09 UTC from IEEE Xplore. Restrictions apply.

1304108 IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 33, NO. 6, SEPTEMBER 2023

TABLE III
TEST VECTORS TO DETECT THE LOCATION AND/OR TYPE OF JJ-BASED FAULTS WITHIN AN SFQ CELL

TABLE IV
FAULT COVERAGE OF JJ-BASED FAULTS WITHIN MULTIPLE SFQ CELLS WHERE

THE NUMBER OF JJS WITHIN EACH CELL, TOTAL NUMBER OF JJ FAULTS THAT

MAY EXIST, NUMBER OF TOTAL FAULTS THAT CAN BE DETECTED, NUMBER OF

ONLY OC OR ONLY SC FAULTS THAT CAN BE DETECTED, AND NUMBER OF

SPECIFIC OC OR SC FAULT THAT CAN BE DETECTED AT A SPECIFIC LOCATION

A total of 72% of JJ faults can be identified within an SFQ
cell library composed of JTL, splitter, DFF, OR, and AND cells.
Only 70% of OC faults can be identified, and 74% stuck-at SC
state faults can be determined. The location of only 19% of
stuck-at SC state faults can be identified, whereas the location
of 7% stuck-at OC faults can be determined.

These numbers do not directly reflect a fault coverage of a
logic cell but do reflect an estimate of the fault coverage of JJ-
based faults. As an example, for the benchmark circuit presented
in Fig. 7, the circuit is composed of two AND gates and one DFF

Fig. 7. Benchmark circuit to evaluate JJ-based fault models. A single JJ fault
is inserted in a two-level logic cell. The output is compared with the predicted
output based on the fault model.

with a total of 25 JJs with a possibility of 50 JJ-based faults.
Assuming the ability to detect and observe the primary input
and output of all of the logic gates, the following fault coverage
can be achieved: 80% of JJ-based faults, 96% of OC faults, and
64% of SC faults.

These low fault coverage results are due to the response of
SFQ cells to stuck OC faults. In most cases, JJs stuck-at OC
fault pass an SFQ pulse without interruption, such as the JJs
within a JTL, as illustrated in Fig. 3(b). In these scenarios, it is
challenging to detect stuck-at OC faults through the proposed
high-level functional model.

One method to enhance the fault coverage of stuck-at OC
faults can be achieved by applying a test methodology to detect
and distinguish a transition failure between a faulty output of a

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on May 18,2023 at 22:06:09 UTC from IEEE Xplore. Restrictions apply.

QOUTB et al.: JOSEPHSON JUNCTION STUCK-AT FAULT DETECTION IN SFQ CIRCUITS 1304108

Fig. 8. Block diagram of proposed algorithm to generate test vectors to identify
JJ-based faults within an SFQ system.

stuck-at OC fault and a reference cell. As illustrated in Fig. 3(b),
a small delay is detected between the faulty output of a JTL with a
stuck-at OC fault and a reference cell. Depending upon the loca-
tion of a JJ, a different delay is detected. Transition faults have
been widely used to model stuck-open faults for determining
transistor-based faults in CMOS systems [16]. These on-chip
transition-based testing mechanisms are challenging to design,
require significant power, and increase the test time [16].

It is difficult to identify stuck-at faults at the device level. In
CMOS systems, gate-level or node-level stuck-at faults are pre-
ferred over transistor stuck-at faults since it is easier to detect and
locate faults with high fault coverage [17]. CMOS-based node
or gate stuck-at faults simultaneously affect several transistor
terminals [13]. High fault coverage is to be expected. For most
CMOS stuck-at fault models, the coverage of a transistor-level
stuck-at fault is significantly less than the fault model of gate-
level stuck-at faults [17]. A higher coverage is obtained for node
stuck-at faults than gate stuck-at faults.

VI. JJ-BASED TARGETED TESTING

A test vector generation algorithm is required to target a
specific cell and fault. The objective of this algorithm is to
provide a block-level fault model to generate test vectors to
detect faults and determine the fault coverage within a block,
as illustrated in Fig. 8.

To increase the fault coverage of JJ-based faults within an
SFQ system, a test methodology is necessary that generates the
required test vectors to detect only stuck-at SC faults or only
OC faults. As an example, within an OR cell, J1, J2, J3, and J4
stuck-at SC faults can be detected by applying two test vectors
(A=10 and B=01) with a clock pulse applied after each of the
test vectors.

Pseudocode describing the algorithm generating test vectors
to target a specific fault type or specific fault location is shown in
Algorithm 1. The time complexity of the proposed algorithm for
different benchmark circuits is O(N), where N is the number
of gates. The proposed algorithm generates the required test
vectors, given as follows.

1) The block under test is evaluated for all possible fault
scenarios. A fault is inserted. Each JJ is modeled as either
stuck-at SC or OC. A stuck-at OC JJ is modeled as an OC,
whereas a stuck-at SC JJ is modeled as a JJ with a high
critical current (such as 5 mA).

Algorithm 1: Pseudocode of Algorithm for Generating Test
Vectors to Identify JJ-Based Faults.
Input: Number of gates N , number of input conditions C,

JJ-based fault models of all logic cells LM with JJ
number JJn under JJ-based fault f of 0 for SC or 1 for
OC fault, target testing requirements

Output: Block JJ-based fault model BM , test vector of
target testing Test_V ector, undetected faults DF , and
detected faults DF

1: Evaluate the behavior of the netlist with reference cells
under all input conditions Out_Ref

2: For k ← 1 to N do � Evaluate each logic cell
3: For i← 1 to JJn do �Evaluate each JJ-based fault

within the logic cell
4: For j ← 1 to C do �Evaluate each input condition
5: Evaluate the behavior of the netlist with LMk

under a fault in JJ i with fault type f under input
condition j,

6: BM ← (Out, k, i, f, j)
7: if (Out) = Out_Ref then
8: UF ← (k, i, f, j) �Undetected fault in K

cell, i JJ, fault f , and input condition i
9: uf = uf + 1

10: else
11: DF ← (Out, k, i, f, j) �Detected fault in

K cell, i JJ, fault f , and input condition i
12: df = df + 1
13: end if
14: end for
15: end for
16: end for
17: Extract DF with f = 0 to group stuck-at SC faults

BMSC

18: Extract DF with f = 1 to group stuck-at SC faults
BMOC

19: Extract DF regardless f to group a stuck-at a fault
BMU

20: Generate the test vector for each group
Test_V ectorSC , Test_V ectorOC , Test_V ectorU

2) The output of each fault scenario is compared with a
reference output (where no fault is inserted). Undetected
faults are those faults where the faulty output is similar to
the reference output.

3) All identical faulty outputs due to the same input combina-
tion(s) are grouped together. These faults share the same
test vectors.

VII. CONCLUSION

Advanced testing methodologies are required to support com-
plex digital SFQ systems. In this article, JJ-based fault models
are proposed for specific gate types. A faulty JJ has four modes
of operation, stuck-at SC, resistive, OC, or noisy switching. In
total, two JJ-based fault modes are considered in this article,
stuck-at SC state and stuck-at OC state. A JJ stuck in the SC state

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on May 18,2023 at 22:06:09 UTC from IEEE Xplore. Restrictions apply.

1304108 IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 33, NO. 6, SEPTEMBER 2023

is modeled as a JJ with a high critical current, whereas a JJ stuck
in the OC state is modeled as an OC. A high-level JJ-based fault
model is presented for the following RSFQ cells: JTL, splitter,
DFF, OR, and AND. Test vectors to identify the type and location
of a set of faults are generated based on these high-level fault
models. The fault coverage of the OC and SC faults and the
location of each logic cell are identified; specifically, 72% of
JJ-based faults (OC, SC, or both) can be detected within an SFQ
system. The fault coverage of a JJ-based fault is 74% of SC faults
and 70% of OC faults. While it is challenging to identify the
location of OC faults within an SFQ system, all SC faults within
a splitter cell can be identified, and the location of 18% of the SC
faults within an AND cell can be determined. A methodology is
also proposed to develop a block-level fault model to produce
the required test vectors to identify the type and location of JJ
faults within SFQ systems.

REFERENCES

[1] H.-D. Hahlbohm and H. Lübbig Eds., SQUID ’85 Superconducting Quan-
tum Interference Devices and Their Applications. Berlin, Germany: De
Gruyter, 1986.

[2] O. A. Mukhanov et al., “Superconductor digital-RF receiver systems,”
IEICE Trans. Electron., vol. E91-C, no. 3, pp. 306–317, Mar. 2008.

[3] V. K. Semenov, Y. A. Polyakov, and S. K. Tolpygo, “AC-biased shift
registers as fabrication process benchmark circuits and flux trapping
diagnostic tool,” IEEE Trans. Appl. Supercond., vol. 27, no. 4, Jun. 2017,
Art. no. 1301409.

[4] T. Jabbari, G. Krylov, S. Whiteley, E. Mlinar, J. Kawa, and E. G. Friedman,
“Interconnect routing for large-scale RSFQ circuits,” IEEE Trans. Appl.
Supercond., vol. 29, no. 5, Mar. 2019, Art. no. 1102805.

[5] G. Krylov and E. G. Friedman, Single Flux Quantum Integrated Circuit
Design. Cham, Switzerland: Springer, 2022.

[6] G. Krylov and E. G. Friedman, “Design for testability of SFQ circuits,”
IEEE Trans. Appl. Supercond., vol. 27, no. 8, Dec. 2017, Art. no. 1302307.

[7] M. Bushnell and V. Agrawal, Essentials of Electronic Testing for Digital,
Memory and Mixed-Signal VLSI Circuits. New York, NY, USA: Springer,
2004.

[8] G. Krylov and E. G. Friedman, “Globally asynchronous, locally syn-
chronous clocking and shared interconnect for large-scale SFQ systems,”
IEEE Trans. Appl. Supercond., vol. 29, no. 5, Aug. 2019, Art. no. 3603205.

[9] T. Jabbari, G. Krylov, J. Kawa, and E. G. Friedman, “Splitter trees in
single flux quantum circuits,” IEEE Trans. Appl. Supercond., vol. 31, no. 5,
Aug. 2021, Art. no. 1302606.

[10] F. Wang and S. K. Gupta, “An effective and efficient automatic test
pattern generation (ATPG) paradigm for certifying performance of RSFQ
circuits,” IEEE Trans. Appl. Supercond., vol. 30, no. 5, Jan. 2020, Art.
no. 1300711.

[11] M. Li, F. Wang, and S. Gupta, “Data-driven fault model development for
superconducting logic,” in Proc. IEEE Int. Test Conf., 2020, pp. 1–5.

[12] H. G. Kerkhoff and H. Speek, “Defect-oriented testing of Josephson
logic circuits and systems,” Physica C: Supercond., vol. 350, no. 3/4,
pp. 261–268, Feb. 2001.

[13] J. Galiay, Y. Crouzet, and M. Vergniault, “Physical versus logical fault
models MOS LSI circuits: Impact on their testability,” IEEE Trans. Com-
put., vol. 29, no. 6, pp. 527–531, Jun. 1980.

[14] A. F. Kirichenko et al., “ERSFQ 8-bit parallel arithmetic logic unit,” IEEE
Trans. Appl. Supercond., vol. 29, no. 5, Aug. 2019, Art. no. 1302407.

[15] G. Krylov and E. G. Friedman, “Design methodology for distributed large-
scale ERSFQ bias networks,” IEEE Trans. Very Large Scale Integr. Syst.,
vol. 28, no. 11, pp. 2438–2447, Nov. 2020.

[16] S. D. Millman and E. J. McCluskey, “Detecting stuck-open faults with
stuck-at test sets,” in Proc. IEEE Custom Integr. Circuits Conf., 1989,
pp. 22.3/1–22.3/4.

[17] P. Liden and P. Dahlgren, “Coverage of transistor-level and gate-level
stuck-at-faults in CMOS checkers,” in Proc. IEEE Int. Symp. Circuits Syst.,
1995, pp. 2124–2127.

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on May 18,2023 at 22:06:09 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

