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DTT: Direct Truncation of the Transfer Function—An
Alternative to Moment Matching for Tree Structured
Interconnect

Yehea |. IsmailMember, IEEEand Eby G. Friedmarfellow, IEEE

Abstract—A method is introduced to evaluate time domain an RLC tree. However, AWE suffers two primary problems
signals within RLC trees with arbitrary accuracy in response to  [19]-[23]. The first problem is that the AWE method can lead
any input signal. This method depends on finding a low frequency to an approximation with unstable poles even for low-order
reduced-order transfer function by direct truncation of the exact . . .
transfer function at different nodes of an RLC tree. The method approximations _[19]_[23]' The secqnd problem is tha}t AWE
is numerically accurate for any order of approximation, which Pecomes numerically unstable for higher order approximations
permits approximations to be determined with a large number which limits the order of the approximations determined using
of poles appropriate for approximating RLC trees with under- ~ AWE to less than approximately eight poles (of which some
damped responses. The method is computationally efficient with a poles may be unstable and are discarded) [19]-[23]. This

complexity linearly proportional to_the numper of branches in an limited number of poles is inaporooriate for evaluating the
RLC tree. A common set of poles is determined that characterizes P pprop 9

the responses at all of the nodes of aRLC tree which further ~ transient response of an underdampdCtree which requires
enhances the computational efficiency. Stability is guaranteed by a much greater number of poles to accurately capture the tran-

the DTT method for low-order approximations with less than five  sjent response at all of the nodes. To overcome this limitation,
poles. Such low-order approximations are useful for evaluating 5 st of model order reduction algorithms has been developed
monotone responses exhibited bRRC circuits. . . h . .
to determine higher order approximations appropriateRfio€
Index Terms—Circuit simulation, inductance, interconnect, circuits based on the state space representation dRlaD
RLC, VLSI. network. Examples are Pade via Lanczos (PVL) [25], Matrix
Pade via Lanczos (MPVL) [26], Arnoldi Algorithms [27],
|. INTRODUCTION Block Arnoldi Algorithms [28], passive reduced-order inter-

connect macromodeling algorithm (PRIMA) [29], [30], and the

I T has become well accepted that interconnect delay dogpPVL Algorithm [31]. However, these model order-reduction

inates gate delay in current deep submicrometer VLS C'lréchniques have significantly higher computational complexity

cuits [1]-[8]. With the continuous scaling of technology and i han AWE. The complexity of PVL techniques is superlinear
creased die area, this situation is becoming worse [9]-[14]. In.. "\ non inductance is present, whereis the order of
order to properly design complex circuits, accurate charact & RLC tree and is equal to the t(;tal number of capacitors
ization and simulation of the interconnect behavior and signgid inductors in the tree. As for PRIMA, the complexity is
transients are required. This high accuracy is necessary for ’

. " adratic with the approximation order [25]-[31]. This
lyzing performance critical modules and nets and to accurat%gmplexity is much higher than the complexity of AWE which
anticipate possible hazards during switching. Also, increasi

P . has f d ducti fth linearly proportional to: andgq for an RLC tree [19]-[23].
performance r_eqwrements as lorced a re uction of the sa Elt(yte thatr can be on the order of thousands for a typical large
margins used in worst case design, requiring more accurate;jiy \c+iaIRLC circuit andg can be as high as 40

terconnect delay characterization. Thus, the process of char.—l.he moments of a transfer function of orderesults from

acterizing signal waveforms in tree structured interconnect @)Qpanding the transfer function into a Taylor series arourd
nearly tree structured) is of primary importance since most iﬂ'as given by

terconnect in a VLSI circuit is tree structured [15]-[17]. 5 m
_1+ais+azs” +1---+a,s™

Asymptotic waveform evaluation (AWE)-based algorithms T(s) = 5 —
[18]-[24] have gained popularity as a more accurate delay 1+bis+bas 2+I"'ngns
model as compared to the Elmore delay model. AWE uses =14 mys + mas” +mgs” + - 1)

moment matching to determine a set of low frequency dominaftie:** moment of the transfer function; is the coefficient of
poles that approximate the transient response at the nodes‘dh the series expansion. An explicit moment matching tech-
nigue such as AWE calculates a reduced-order transfer function
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and then the parameters f(s) ap — 4,1 and by — Eq are The poles with larger magnitudes are truncated when added to
determined such thdf;(s) have the same firskg moments the dominant poles with smaller magnitudes in higher order mo-
asT(s) [19]-[23]. By matching the firseq moments off’(s), ments due to the addition of poles raised to large powers. This
T,(s) represents a low frequency approximatioriZk) since behavior, in addition to the need to invert ill-conditioned ma-
if s is sufficiently small, the terms with higher powers af trices [18]-[21], renders AWE incapable of calculating higher
Mags?? + mog 41829+ + - -+, are negligible as compared toorder approximations to simulate complicated waveforms. As
the terms with the lower moments. The higher the number fofr DTT, larger magnitude poles are multiplied by smaller mag-
moments matched by (s) (or higherg), the higher the fre- nitude poles in all of the terms of the coefficients higher than
quencies for whicl¥,(s) accurately approximates(s). and hence information about larger poles is preseht in b,

This paper introduces another method by which a low-fréer much largeg, than in the case of the moments. This relation
guency approximation can be calculated. The new methodbistween the denominator coefficients and the poles permits the
based on directly truncating the higher powerss éfi the nu- poles to be determined with much larger magnitudes than AWE
merator and denominator of the original transfer function in (1is capable of determining through moment matching.

Hence, a*" order approximate transfer function is given by ~ The objective of this paper is therefore to describe the DTT

1 2 © method [32] for evaluating the transient response at the nodes of

+a1s+asst+1---+azs s . .
Ty(s) = o . (3) ageneraRLCtree which is capable of determining high-order
Ltbrs+bos® +4- 4 bys approximations appropriate for underdampRiC trees in a
whereg < n. The numerator order is = m if m < ¢ —1; computationally efficient manner (complexity linear wit).
otherwisex = ¢ — 1. Hence, this method in a sense matche5 single line as a special case of a tree with only one output
the firstq coefficients ofs in the numerator and denominator of(or sink) is covered by this tree analysis methodology. This new
the transfer functiorf'(s) instead of the moments. ¥ (or the method also has improved pole stability properties for low-order
frequency) is sufficiently small, the terms with higher powers afpproximations as compared to AWE, a useful feature Rith
s in the denominator and numerator polynomidis, s?™* —  trees which do not require higher order approximations. The rest
b,s", a,415° Tt — a,,s™) are negligible with respect to theof the paper is organized as follows. A description of the DTT
lower power terms irf; (s). Thus, for low frequencies;(s) method is provided in Section II. In Section IlI, the complexity
is an accurate representation(s). Note that the coefficients and stability characteristics of the DTT method are discussed.
ap — a, andb; — b, are exactly the same ifj,(s) andZ'(s). The transient responses based on the DTT method for several

The direct transfer function truncation (DTT) model order reRC andRLC trees are compared to SPICE simulations in Sec-
duction method has much better numerical stability at highgon IV. Finally, some conclusions are offered in Section V. Pseu-
approximation orders as compared to moment matching teclocode describing the DTT method is provided in the Appendix.
niques due to the relation between the coefficiénts b, and
the poles of the transfer function given by

IIl. THE DTT METHOD

"1

by =-— Z pi The concepts used to develop the DTT method are explained
N i=1n in this section. The rules governing the poles and zeros in an

by :2 ~ 1 RLCtree are defined in Section II-A The method used to cal-

e 2 2 culate the exact transfer functions at the nodes dRb@ tree

n n " is introduced in Section II-B The use of transfer function trun-
by = — Z Z 1 ;e (4) cation to determine a reduced-order approximation is discussed

i1 jmitl kejt1 DiPiPE in Section 1I-C. The process of determining the set of common

les describing the transient response oR& tree and the
rresponding residues at each node of the tree is described in
&ktion 11-D.

To illustrate the relation between the moments, poles, agg
residues of the transfer function, (1) can be expressed ag
partial fractions sum given by

k k ky,
_1 + 2 +

+
s—p1 s — P2 §— DPn

H(s) = (5) A. Pole-Zero Behavior in RLC Trees

. ” . . The poles and zeros of &L Ctree maintain specific relations
wherep; is thei"* pole of the transfer function arid is the cor-  to the poles and zeros of the subtrees forming R€ tree.
responding residue. By expanding each term in (5) into poweffese rules are established in this subsection and are used in the

of s, the moments of{(s) can be expressed as following subsection to develop an algorithm to dete rmine the
ki ko k, poles and zeros of a geneRILCtree by recursively subdividing
mo =" + PR + p_n) the tree into smaller subtrees.
N k, Rule 1: The poles of an RLC circuit are zeros of the
my = — ( 2 + o + 17) impedance seen at the input of the circuit

This rule can be understood by referring to Fig. 1 and noting
that the transfer functions describing the capacitor voltages and
inductor currents have a common denominator (the character-

man-1 == (gn + an +o o) ©) istic equation of the tree) [33]-[37]. Thus, the transfer function
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Fig. 1. A generaRLCcircuit. Zin2

Fig. 3. A generaRLC circuit composed of twdrLC subcircuits connected
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Fig. 2. SimpleRLCcircuit. ; = | ) ; =

atan arbitrary npdé of anRLCtree and the inDUt admittanCeFig. 4. AladdemRLCcircuit composed of twiRLCsections in series.
of the tree are given by

Vi(s) :Ni(s) @ L,C,s%. The transfer functions at nodeand the output node
Vin(s) — D(s) arevm (&)
0 =32 = By R CON

14+ RyCos + LCss?

+ [R1(Ch + Co) + RaChls
Ll Cl + 02) + LQCQ + RlclRQCQ]S
RlclLQCQ + RQCQLlcl]S + [LlclLQCQ]S

dent on the circuit structure arfd(s) is the common denomi-
nator of the circuit. The input impedance is

respectively, wher&V;(s) andNy;, (s) are functions of depen- (
v

" Iin(s)  Nrin(s) out (
Thus, the common denominator of Bh Ccircuit is the numer- Vin(s )
ator of the input impedance which proves rule 1. 1
As an example, consider the single secti@hC circuit 14 [R1(C1 + Cy) + RoCs]s
shown in Fig. 2. This circuit has a transfer function and an | +[L1(C1 + C2) + LaCa + ROy RyOh]s*
input impedance given by + [R1C1LyCy + RyCy Ly Ch]s® + [L1C1 Ly Cols*
Vout(s) 1 (13)
Vin(s) TS2LC + sRC +1 (10)  Note that the numerator at nodés the same as the denominator
Vi (s 1 210 + sRC + 1 of the disconnected subcircuit 2 in _accprdgnce with rule 2.
7 ((S)) sL+R+ ol J;é + (1D Rule 3: The poles of an RLC circuit driven at nodeare

zeros of the transfer functions at all of the nodes of parallel RLC
respectively. Note that the denominator of the transfer functiaircuits driven at the same node
is the numerator of the input impedance. Another way to in- This rule can be explained by referring to Fig. 5. TReC

terpret Rule 1 is that aRLC circuit has a short-circuit input subcircuits2, 3, ..., k are driven byRLCsubcircuit 1 at node

impedance whea is equal to the poles of the circuit. x. Applying rule 1,Z;,,, is a short-circuit at frequencies equal
Rule 2: The poles of an RLC circuit driven at nodeare to the poles of circuit 2. Henc#,(s) is equal to zero and all of

zeros of the transfer function at node the current supplied by circuit 1 is sunk to ground4yy» when

This rule can be explained by referring to Fig. 3. Note that theis equal to the poles of circuit 2. Sing&(s) is equal to zero
RLCcircuit 2 is driven by th&RLCcircuit 1 at noder. Applying and no current is supplied to the subcircdits . . , £ whens is
rule 1, Z;,.» is a short-circuit between nodeand the ground at equal to the poles of circuit 2, the voltages at all of the nodes of
frequencies equal to the poles of circuit 2. Heriég s) is equal subcircuits3, ..., k are equal to zero. Alternatively, the poles
to zero whers is equal to the poles of circuit 2, i.e., the poles obf circuit 2 are zeros of the transfer functions at all of the nodes
circuit 2 are zeros of the transfer function at nade of the parallel subcircuits driven at nodeThe same is true for

As an example, consider the circuit shown in Fig. 4. Notihe poles of subcircuit3, ..., & which are zeros of the transfer
that theRLC subcircuit 2 is driven at node and that if not functions at all of the nodes of the parallel subcircuits driven at
connected, subcircuit 2 has a denominator giveh-by.C>s+ nodez.
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Fig. 7. GeneraRLCtree.

Fig. 5. A generaRLCcircuit composed of aRLC subcircuit driving several

subcircuits connected in parallel. transfer function at node showing that the poles of subcircuits

2 and 3 are zeros of the transfer function at the driving noithe
accordance with rule 2. Note also that the poles of subcircuit 2
are zeros of the transfer function at node 3 and vice versa, which
verifies rule 3.

B. Calculating the Transfer Functions at the
Nodes of an RLC Tree

Itis illustrated in this subsection how to recursively calculate
the transfer functions at the nodes ofRInCtree using the con-
cepts developed in the previous subsection. Consider the general

Vm
RLCtree shown in Fig. 7. The current sunk to ground by a ca-
pacitor k is given byCy.duy(t)/dt wherew,(¢) is the voltage
acros. Thus, the current passing through the resistdiice
and the inductancé; is given by
dvk(t)
= Cp——— 17
>0 (7)
where the summation indéxoperates over all of the capacitors
Fig. 6. AnRLCtree composed of threRLC sections. in the tree. The voltage drop acroBs andL; is given by
Ny dii(t)
As an example, consider tHL.Ctree shown in Fig. 6. The vin(t) = vi(t) =Ruia(t) + Ly dt
RLC of section 1 drives the two parall®LCin section 2 and dvk
section 3. The transfer functions at node®, and 3 are given =k Z Ch
b
y d Uk
Vo(s) (14 RoChs + LyCos?)(1 + RaCss + L3zCss?) + L, ch dt2 . (18)
Vin(s) D

(14) Inthe frequency domain, this relatlon transforms to

Va(s) (1 + R3Css + L3C3s”) (15) Vin(s) = Vi(s) = (sRy +5°Ly) Y CiVi(s). (19)

Vin(s) B D k

Va(s) (14 RyChs + LyCys?) (16) Dividing (19) by V;,,(s), the following relation results:

Vin(s) D 1-Ti(s) = (sRy + 5°L1) > CTi(s) (20)
respectively, wher® is the common denominator and is a poly- k

nomial in s of order six. The specific form ab is not of in- whereT;(s) is the transfer function at node 1 afffi(s) is the
terest here. The denominators of subcircuits 2 and 3lare transfer function at nodg. Note that determining the transfer
R,Cys+ LyCss? andl + R3Cys + L3 Cys2, respectively. Note function at node 1 is sufficient to determine the poles of the
that both denominators are multiplied in the numerator of thentire circuit since the transfer functions at all of the nodes of
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Ny (s) @ D,.(s). Similarly, Nyo(s) = Nypao(s) @ Di(s). Thus,
() Left RLC (25) can be reconfigured as

subtree
L }4 1 _E M, =C1N.(s) + <Z Ckllel(s)> e D.(s)

. WV\—/\/\:T + <Z Ok2N7k2($)> ODI(S). (26)
k2

I Right RLC

- subtree Note that the two summations above afg andM,. of the dis-
J: connected left and right subtrees, respectively. Heftecan

1 be fully calculated in terms of the disconnected left and right
- subtree parameters as

Fig. 8. Building block of a gener&LCtree.
My = C1N1(s) + M;(s) @ D,.(s) + M,.(s) @ Di(s). (27)

anRLCtree have a common denominator (as was mentionedry, ;o by knowing the parameters of the left and right sub-
previously). . - i _ trees,Mi(s), Di(s), M,.(s),andD,.(s), (22), (27), and (23) can
Now consider the structure shown in Fig. 8 which depici§a ;sed in that order to determing (s), M, (s), andD(s), re-
anRLC section driving left and right subtrees. Without loss °§pectively. The parameters of the left and right subtr&&ss),
generality, a binary branching factor is used here since a gen Als), M,.(s), and D, (s), can be determined in tumn in terms
tree with an arbitrary branching factor can be transformed inf@ iheir left and right subtrees by using the structure shown in
a binary tree by inserting zero impedance branches [38], [3919_ 8 and (22), (27), and (23). This process is repeated recur-

The structure shown in Fig. 8 can be used recursively to fu,lgfvely until the left and right subtrees are nonexistent. If the left
represent anjRLC tree since the left and right subtrees can i ,piree does not exist théd; (s) = 0 and Dy(s) = 1. If the
turn be represented by the same structure. The transfer functigh\; subtree does not Zexist thé#,.(s) = 0 andD,.(s) = 1.

atnode 1 of Fig. 8 is given by (20), which can be reformulated st this recursion process terminates, the denominator and
by using the rational representations of the transfgr fu”Ct'OrPﬁJmerator across each capacitafigein the tree represent the
Ti(s) = Nu(s)/D(s) andTi(s) = Ni(s)/D(s), and is transfer function for the subtree rooted at RieCsectionk. For

D(s) — Ni(s) = (sRy + s>Ly) Z Cr Ni(s). (21) example, for the tree shown in Fig. P(s) and N(s) at node

& 1 represent the transfer function at node 1 for the entire tree.

Assume that the transfer functions at all of the nodes of the I&fPwever,D)(s) andN(s) at node 2 represent the transfer func-
and rightRLC subtrees (when the trees are disconnected) 4@ at node 2 for the subtree composed of e sections, 2,
known and are given b1 (s) = N1 (s)/Dy(s) at nodek; 4 and 5. Also,D(s) andN(s) at node 4 represent the transfer
of the left subtree anl};2(s) = N,x2(s)/D.(s) at nodek, function atnode 4 for t_he subtree comppseRbCSectlon IV.
of the right subtree. The numerator at nodeVl(s) of Fig. 8, Thus, after the recursion process terminates, the only relevant

can be directly calculated by applying rule 2 described in ti@rameters for the entifRLCtree areD(s) and N (s) across the
previous subsection and is capacitor closest to the input’( in the case of the tree shown

in Fig. 7). The denominators and numerators at all of the other

Ni(s) = Di(s) ® Dr(s)- (22) hodes are incorrect. The denominators at these nodes need not

The “o” operator above represents a polynomial multiplicatiolpe corrected since these denominators are the same as the de-
The denominatoP(s) can be determined from (21) as nominator at the node closest to the input. However, the numer-
ators differ at each node and need to be corrected. According to

— 2
D(s) = Nu(s) + (sl + 5" L)My @3 e 3, all of the numerators in the left subtree have to be mul-
where M is defined as tiplied by D,.(s) and all of the numerators in the right subtree
M, = Z CrlNi(s) (24) h_ave to be_multlplled byD;(s). This process is rep_eated recur-
k sively starting at the root of the tree and advancing toward the

and characterizes the summation of the numerators of tH Ks.

transfer functions across the capacitors in the tree multipliegthhus’ Lhe prfoc;isctzf determ!n;ng ft?e tratnsfer_llil;ncft.lo? e:t all
by the corresponding capacitances. The summatiod/in ofthe nodes of a ree consists ortwo steps. 1he irst step

operates over all of the capacitors in the tree and can be divid%do calcul_ate the common _denommator Of_ REC tree and
into three components Is accomplished by the function Cal_Denominator presented as

pseudocode in the Appendix which uses the recursive equations
M, =C1N:i(s) + Z Cr1Ne1(s) + Z CralNi2(s)  (25) in(22),(27), and (23). The common denominator is the denom-
k1 k2 inator at the node closest to the input of ReCtree after the
wherek; covers the capacitors in the left subtree &adovers recursion terminates. The second step is to correct the numera-
the capacitors in the right subtree. By applying rule 3, the nters of the transfer functions at the nodes of RieCtree. This
merators in the left subtree can be described in terms of the pesk is achieved by the function Correct_Numerators which is
rameters of the disconnected left and right subtreégaés) =  also described as pseudocode in the Appendix.
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C. Transfer Function Truncation and Approximation Order < RC transmission line
The process of calculating the exact transfer functions at a " . C)
of the nodes of aRLCtree has been described in the previous * *
subsection. However, calculating the exact transfer function ca '—_'_j\/\/\/—_—'__/\/_\/_\/—__
be time consuming since can be in the order of thousands for
typical large industriaRLC trees. In practice, there is no need " ” ' Vs

to calculate the thousands of poles characterizin@RB@ tree
since the transient behavior can be accurately characterized |
a few number of low-frequency dominant poles [18]-[24] (typ- ~ -

ically several tens of poles). Thus, a low frequency approxima — e

tion is required that can correctly anticipate the set of dominant

poles without calculating the exact high-order transfer functiohig: 9. An RC transmission line with a source resistance and a load
Assume that the exact transfer function at a specific node §pP2¢"ance:

theRLCtree is given by
Note thatb;_; is equal to zero if — j is out of the range of 0

28) tony,. For aq limited polynomial multiplication, the highest de-
sired power ofs in C'is ¢ rather tham, and the coefficients of
higher powers of do not need to be calculated. Alsé,and B

whereb; — b, anda; — a,, are positive real constants. The . . . )
system order: is equal to the total number of capacitors ang?" be limited by since higher powers thas in both polyno-

inductors in the tree. The order of the numerator polynomial mlanlcs;ecaifnr;otthp(r)cr)gg::z porvc\)’;rrifégrﬁsle;suthﬁn :SI: (;?;?; t@d 5
is less tham and is dependent on the node at which the transflé||e ce, Tag™ order app gnt, a e poly
function is calculated. A** order approximate transferfunctionn.Omlal multiplications of the DTT method described in the pre-

is found by direct truncation of the exact transfer functic(s) ;/ilOIiljzsazggzz(;telzorzjgflllrensltseg;(-rgr?;?/]elI{Egﬁdfuﬁflﬁrllorzglrili;%u|ti
in (28) and is given by P p poly

plications sincey is typically much less than. The number of
14+ a8+ a8+ + a,s® scalar multiplications required foralimited polynomial mul-
Ty(s) = 14 bys + bs? + -« + byst (29) tiplication is at mosty(¢ + 1)/2 when the polynomial orders,
n, andny, are equal ta;. As is explained in Section Ill, the
whereq < n. The numerator ordet = m if m < ¢ — 1, actual number of scalar multiplications performed by the DTT
otherwisez = ¢ — 1. The order of the numerator has to benethod is much less than the number of multiplications antici-

Iess_ than the order of the deqomingtpr for a causal approgited using the(q + 1)/2 complexity of a polynomial multi-
mation. If s (or the frequency) is sufficiently small, the termgyjication.

with higher power ofs in the denominator and numerator poly-

nomials b,41s9tt — b, 8", az415°T — a,,s™) are negligible D. Determining the Poles, Residues, and the Transient
with respect to the lower power termsfy(s). Thus, for low Response

frequencies;(s) is an accurate representation®fs). The
range of frequencies for whick,(s) is accurate increases as
increases.

1+ a5+ azs? + -+ aps™
T(s) =
14+ b1s+bas? 4+ bys?

Once the common denominator of ordgrD,(s) is deter-
mined, as described in the previous subsections, the fitsini-
nant low frequency poles of thRL_Ctree can be calculated as the

i th imati
¢ Tk;_e CaIC;JIallltlofrlr(])f 4 dordirgfgrtoxmatlog for the tr?.n‘;fec;roots of the polynomiaD,(s). A numerical method for evalu-
unctions atafl of the nodes o rée can be accomplishe ating the roots of a polynomial can be used to determin®tt@
by an order limited polynomial multiplication. To better under:

. . tree polesp; — py, €.9., [40], [41]. The residues corresponding
stand this concept, assume thkend 5 are two_poly.nomlals to each pole at a specific node can be efficiently calculated by
of ordersn, andn,, respectively. The polynomial' given by

. direct substitution of the poles into the numerator of the transfer
A :jg has an orclj)er Ok = nq + ny. The polynomialsd, B, ¢\ tion at this node. The residues corresponding to thegpole
andc- are given by at nodej of anRLCtree can be calculated as

2  Nj(s=p)

= gt o= S Y
A= z_: ;s (30) k? DE. (34)
s where
B=> bs (31) g
=0 DF; = b, [] i =) (35)
C=>¢s' (32) oty
_ Zfo_ whereb, is the coefficient 0k? in D, (s). Note thatDF, is inde-
respectively, where the coefficientsare pendent of the node at which the residues are evaluated. Thus,
. DP; can be evaluated once and used to calculate the residues
¢ = Z ajbi—;. (33) atany number of nodes, which reduces the computational com-
—0 plexity when the transient response is required at many nodes.
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(V"g;ts) example, for a unit step input, the output response at ode
' T s
// .
2 - h q kj
/ ej(t) =1+ Z —tePit], (37)
// = | P
S Fourth order L
L / approximation _ For an exponential input of the form
/
/ vin(t) =1 — 7 (38)
/ the transient response at ngdis given by
% slo } 1Ioo 1lso 200 e ko L %) 1
Ti ej(t)y=14¢t7 —— | + —+ Pt
ime (ps) (8 ;pﬂ—i-l ; pi pit 4 1
Fig. 10. Transient response evaluated using the DTT method as compared to (39)

SPICE simulations for the circuit shown in Fig. 9 using different approximatiowherer is the time constant of the input signal. Some of the
orders. SPICE simulations are represented by a solid line and the D966|ES determined using the DTT method can be unstable due to
simulations are represented by a dashed line. The circuit shown in Fig. tfilse truncation of the denominator polvnomial as discussed in the
simulated withR, = 50 §2, C, = 1 pF, R,, = 25 2, andC; = 0.05 pF. : _ poly : _
following section. These unstable poles can be simply discarded
from the summations in (37) and (39). However, all of the poles

The poles of the circuit and the corresponding residues gHould be included when calculating the residues using (34) and
node; of anRLCtree can be used to characterize the transfess)

function at node/ as
q 7 [ll. COMPLEXITY AND STABILITY OF THE DTT METHOD

Ii(s) = Z m (36) The DTT method has a complexity linearly proportional to
=1 the order of the tree, which is twice the number dRLC sec-
This transfer function can be used to calculate the time domaions in the tree since eadRLC section has one capacitor and
response at nodg¢ for an arbitrary input by multiplying the one inductor. This linear complexity occurs because the DTT
Laplace transform of the input b¥;(s) and calculating the method traverses each section in the tree only once as illustrated
inverse Laplace transform of the resulting expression. Fan the previous section and in the Appendix. At each section of
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Fig. 12. Transient response evaluated using the DTT method as compared to SPICE simulations at different noB&trgetdepicted in Fig. 11. SPICE
simulations are represented by a solid line and the DTT simulations are represented by a dashed line. A fourth-order approximation is used.
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Fig. 13. AnRLCtransmission line with a source resistance and a load capacitance.
the RLCtree, polynomial multiplications are required to calcu- M, =C1N1(s) + M(s) (41)
late the common denominator as given by (22), (27), and (23). D(s) =Ni(s) + (sRy + s°Ly)M, (42)

Although polynomial multiplication has an apparent complexi(ti/ velv. N hat the DTT hod h | il mul
proportional tog? for a ¢"* order approximation, the averag espectively. Note that the method has no polynomial mul-

number of scalar multiplications required per section is mudff/ication ata node of a tree driving only one branch. The DTT

lower thang? for anyRLCtree. To better explain this argumentmethod is therefore particularly efficient for single lines and in
consider the following caseé A node of RLC tree with the those cases where branches of a tree can be subdivided into sev-

right subtree nonexistent hag, = 0 andD, = 1. Thus, (22), _eral seriesRLC sections to model the distributed nature of the
(27), and (23) become interconnect impedance.
A binary tree (such as the tree illustrated in Fig. 7 with a total
Ni(s) =Dy(s) (40) of r branches has/2 leaves. These/2 leaves are driven by/4



ISMAIL AND FRIEDMAN: DTT: DIRECT TRUNCATION OF THE TRANSFER FUNCTION—AN ALTERNATIVE TO MOMENT MATCHING 139

5 T T T T T 5 T T T T T
Vout(t) e ng(l)
(volts) S (volts)
4= ! T a . 7
TN [t
) o
3 i \ SR 3 I : 7
‘ [‘»\ ‘I ; \\ / ;
!‘ Fourth order / 15" order
= ; approximation 1 th approximation 7
/] J
gl i 1 L 1 ol ! L ! !
[} 100 200 300 400 500 600 0 100 200 300 400 500 600
Time (ps) Time (ps)
5 T T T T T s T T T T T
Voud£) Voull)
(volts) {volts)
4~ - o _
P TN
\/«'V At \
i V x
3 ’;‘ \ -~ 3 } { -
: \ e | PR
;{ L / \ -
N e —— / _l . ‘/'\’/%\,\v\lhwv/ -
j ' 25" order 35™ order
F ; approximation - - X approximation -
0 / | 1 ! i L PN /] L 1 ! !
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Time (ps) Time (ps)

Fig. 14. Transient response evaluated using the DTT method as compared to SPICE simulations for the circuit shown in Fig. 13 using different orders of
approximation. SPICE simulations are represented by a solid line and the DTT simulations are represented by a dashed line. The circuit showis in Fig. 13
simulated withR?, = 40 Q, L, = 7nH,C; = 1 pF, R = 10 Q, andC;, = 0.1 pF.

branches, which are in turn driven by8 branches, and so on.constitute a larger fraction of the total number of branches with
DeterminingN (s), M(s), andD(s) at ther /2 leaves requires higher branching factors. For example, a tree with a branching
only two scalar multiplications independent of the desired afactor of ten has almost 9/10 of its branches as leaves. For a
proximation order since for leaf N(s) = 1, M(s) = C;, and general tree with a random branching factor at each node, the
D(s) = 1+ R;C;s + L;C;s%. Applying these values at the average number of scalar multiplications per node is much less
next level withr /4 branches, the number of scalar multiplicathan theq? model.
tions required to determin¥ (s), M(s), andD(s) isten mul-  The above analysis demonstrates that the complexity of cal-
tiplications for a fourth-order approximation or higher. Thus;ulating the transfer functions at all of the nodes oRArCtree
for a binary tree, the average number of scalar multiplicatiorsalmost linear with the desired order of approximatigrihis
required by the DTT method is much less thgnmultiplica- feature greatly decreases the expense of calculating higher order
tions per polynomial multiplication. For example, calculating approximations. Also, the method depends on simple polyno-
fourth-order approximation at all of the nodes of a binary tremial multiplications, which are numerically accurate for very
requires a total number of scalar multiplicatio§9y/, given by high orders of approximation [42]-[44].
7 7 7 An analysis of the stability of the approximations calculated
SMy=2.-5+10- 7 +25- - =975 (43)  using the DTT method shows that a DTT approximation with

Thus, the average number of scalar multiplications per brarﬁqﬂ order less than five is guaranteed to be stable. Assume that

of the tree is 9.75. The number of scalar multiplications calc 1e exact common denominator of BhCtree is given by
lated based on the? polynomial multiplication complexity is D(s) =1+4bis+bys® +14--- 4 b,s™. (44)
62r yvhif:h greatly overestimates the complexity. The overestie common denominator of&* order approximation is there-
mation is even worse for higher values pfFor ¢ = 60, the e given by

actual number of scalar multiplications is X6@ultiplications ) .

while the ¢*> model would predict 11 000multiplications. As Dy(s) =1+ bus +bas™ 4. 4 bys?. (45)

the branching factor of aRLCtree increases, the overestimakor a second-order approximation, the condition for stability is
tion by theg? model increases. This trend occurs because ttaty, andb, are positive [33]. Sincé, andb, are the coeffi-
leaves of the tree (which require only two scalar multiplicationgjents ofs ands? in the exact common denominatbx(s), b;



140 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 2, FEBRUARY 2002

andb, are guaranteed to be positive. This behavior occurs k ¢ f f ' '
cause a passi\RLCtree is guaranteed to be stable [33]-[37] an Voul?) A
stability requires that all of the coefficients sfin the denom- (volts) / \
inator are positive. Therefore, a second-order approximation i / A 7]
always stable. For a third-order approximation, the Routh—Ht e e
witz criterion for stability [33] requires thali; b, > b3. The / S

coefficientsby, b2, andbs are given by

Y
T
{

1 z
bi=—> — (46) b i

i Pi !
n n 1 )’,
by = 47 : P | | !
2 Z Z DDk 47 s 200 400 600 800 1000
J=1k=j+1 ;
n  n n 1 Time (ps)
==Y 3 ) @) @
=1 jmitl kemj1 DiPiPk s . T T T
; Voul?)
respectively, where, ps, ..., p, are the poles of the exact (volts) '
common denominator and have negative real parts due to T ) 7]
stability of a passiv&RLC circuit. Thus, the quantity; bs — b3 /
is given by e SN .
/ P o

n n n

, , , 1 n n n 1 B \\\ //' ' \\\:
biby — b3 =— Z Z Z + Z Z Z P / \\;\\ 7

im1 =1 kg1 PPIPE T T kD
n 7 n 1 = / ]

- Z Z PiDiPk ' (49)

[§]

i=1 j=1 k=j+1 N | | ! !
0 200 400 600 800 1000
Note that the quantity,b, — b3 is positive sincepy, p2, ..., Time (ps)
p, have negative real parts. Thus, a third-order approximation )

is also guaranteed to be stable. The same procedure can be re- _ _
peated for a fourth-order system. It can be shown that stabilffg 1> _Transent response evaluated using the DTT method as compared
! SPICE simulations for the circuit shown in Fig. 13 using different line
is also guaranteed for a fourth-order system. These low-or¢i@fameters. SPICE simulations are represented by a solid line and the DTT
approximations are useful f6tCtrees since the signals withinsimulations are represented by a dashed lineR@a)= 30 €}, L, = 7 nH,
anRCtree can typically be approximated with a few dominarff: = 1 PP fer = 20K, €z = 0.5 pF, and approximation orde: 20.

SO R; =209Q,L, =8nH,C;, = 1pF, Ry, = 108,C, = 04 pF, and
poles due to the monotone nature of the response. Approxirggnroximation order= 25.

tions of order five or higher are not guaranteed to be stable.

However, since the DTT method is numerically stable for an L
y mpared to SPICE in Fig. 10. Note that a second-order ap-

order of approximation and since the computational complexi imation h licibl i the t ent
increases slowly with the approximation order, high order a roximation nas a negligibie error in the transient response as

proximations can always be determined using the DTT meth 8mpared to SPICE and that the third and fourth order approx-

: .Imations are practically exact.
to correctly detect all of the poles in the frequency range of iln'> AR . .
terest y P q yrang The second circuit simulated using the DTT method iRfe

tree shown in Fig. 11. The transient response at several nodes of

the tree are calculated based on the DTT method and compared
IV. EXPERIMENTAL RESULTS to SPICE in Fig. 12. A fourth-order DTT approximation is used

The DTT method is applied in this section to calculate th® calculate the transient responses shown in Fig. 12. Note that

transient response of seveRC andRLC trees. The resulting a fourth-order approximation is accurate as compared to SPICE
transient responses are compared to SPICE simulations to esahulations. In general, a fourth-order approximation is suffi-
uate the accuracy of the DTT method. The DTT method is apiently accurate for mosRCtrees. The guaranteed stability of
plied first to evaluate the transient response of Rt@circuit a fourth-order approximation is therefore a valuable feature for
shown in Fig. 9. The circuit is composed of a distribule@ RCcircuits. Note that despite the fact thatR€ circuit cannot
transmission line driven by a lumped resistafte (which rep- produce complex poles [34]-[37], a reduced-order approxima-
resents the output impedance of the driving gate) and a Idémh based on the DTT method can result in complex poles for
capacitance&’;, (which represents the input capacitance of thenRCcircuit. However, the resulting complex poles RE€ cir-
driven gate). The line has a total resistanceRpfand a total cuits always produce accurate stable monotone responses.
capacitance of”;. The transient response based on the DTT The circuit shown in Fig. 13 representsRhCtransmission
method with approximation orders of two, three, and four aftime with a lumped source resistance and a load capacitance and
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TABLE |
A GENERAL RLCTREE THE TREE HASSEVERAL RLC SECTIONS, EACH SECTION OFWHICH COMPRISES A ROW OF THE HAS AND NUMBER. THE ID NUMBERS OF
THE LEFT AND RIGHT RLC SECTIONS DRIVEN BY AN RLC SECTION ARE GIVEN IN THE FIFTH AND SIXTH COLUMNS. A ZERO IN
THESE COLUMNS IMPLIES THAT THE LEFT ORRIGHT SECTIONS DO NOTEXIST

RLC section R () L (nH) C (pF) Left section | Right section
number number number
1 2 0.07 0.2 2 0
2 4 0.06 0.1 4 3
3 7 0.04 0.3 6 7
4 5 0.05 0.1 5 0
5 6 0.03 0.05 12 11
6 6 0.06 0.03 10 9
7 3 0.06 0.06 8 0
8 8 0.04 0.1 15 16
9 12 0.05 0.01 0 0
10 9 0.04 0.02 14 0
11 2 0.05 0.03 13 0
12 7 0.03 0.08 0 0
13 11 0.07 0.02 20 0
14 10 0.03 0.01 19 0
15 7 0.04 0.03 17 18
16 10 0.02 0.01 0 0
17 12 0.02 0.01 0 0
18 3 0.04 0.1 24 0
19 15 0.04 0.02 22 23
20 5 0.06 0.07 21 0
21 5 0.06 0.07 0 0
22 5 0.05 0.05 0 0
23 8 0.04 0.03 27 26
24 8 0.05 0.02 25 0
25 8 0.06 0.02 30 0
26 2 0.04 0.02 0 0
27 7 0.03 0.04 28 29
28 16 0.02 0.06 0 0
29 5 0.05 0.06 0 0
30 8 0.04 0.02 0 0

is simulated using the DTT method. The transient responsedMOS IBM technology. The tree has 673 capacitors and 673
calculated based on the DTT method with approximation arductors. The transient responses based on the DTT method
ders of 4, 15, 25, and 35 and is compared to SPICE in Fig. #hd SPICE are compared in Fig. 17. Note that the DTT method
Note that an approximation order between 25 and 35 is requitiedtapable of accurately characterizing the transient response of
for an underdamped response with second-order oscillationdame industriaRLC trees with complicated nonmonotone un-
achieve a SPICE-like accuracy. Such high-order approximatiotesrdamped responses.
cannot be achieved by AWE [19]-[23] due to its numerical insta-
bility with high approximation orders. Other methods capable
of calculating such high-order approximations [25]-[31] have a
much higher computational complexity as compared to the DTTThe DTT method has been introduced to evaluate the tran-
method. The computational efficiency of the DTT method arslent responses withiRLC trees with arbitrary accuracy for
its numerical accuracy for very high orders of approximatioany input signal. The DTT method is numerically accurate for
makes it suitable for accurately simulatiRy.C trees. Several any order of approximation, which permits approximations to
simulations of the circuit shown in Fig. 13 are shown in Fig. 1Be determined with a large number of poles appropriate for ap-
with different line parameters and source and load impedancpsximatingRLCtrees with underdamped responses. The DTT
The DTT method accurately characterizes the waveform detait®thod is computationally efficient with a complexity linearly
as compared to SPICE. proportional to the number of branches in the tree. A common
The transient response at several nodes oRib@tree char- set of poles is determined that characterizes the responses at all
acterized in Table | are evaluated based on the DTT methofthe nodes of aRLCtree, which further enhances the compu-
and compared to SPICE in Fig. 16. A 40th-order approximéational efficiency of the proposed method. The stability is guar-
tion is used and is highly accurate as compared to SPICE.aAteed by the DTT method for low-order approximations with
45th-order approximation is used to evaluate the transient tess than five poles, which is useful for efficiently analyzikRG
sponse of a large copper interconnect tree based on gMn25<ircuits.

V. CONCLUSION
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Fig. 16. Transient response evaluated using the DTT method as compared to SPICE simulations at different ndtle€ wétheharacterized in Table |. SPICE
simulations are represented by a solid line and the DTT simulations are represented by a dashed line. A 40th approximation order is used.

Cal_Denominator (section* w)
/* there is no right section driven by w */

3 T T
Voult) 7 if(right(w)=0)
(volts) e T (D~ M=03)
T else /* there is a right section driven by w */
2 2 — {Cal_Denominator(right(w)); D,=right{w)->D; M,=right(w)->M;}
J’/ if(left(w)=0) /* there is no left section driven by w */
I {DF1; M=0;}
else /* there is a left section driven by w */
| {Cal_Denominator(left(w)); D=left(w)->D; M=left(w)->M;}
w->N = DpD,;

w->M = w->C*w->N + MpD, + MeDy,
w->D = w->N + (w->M)e[(w->R)*s+(w->L)*s"];

/,
L

20 40

Time (ps)

0
Fig. 17. Transient response evaluated using the DTT method as compagdldof the capacitors in thRLCtree. The function to calculate
to SPICE simulations at a particular leaf node of a large copper interconnggb common denominator of aRLC tree rooted at th&®LC
tiomy; is Cal_Denominator and uses the DTT algorithm as

t
50
Fig. 18. Pseudocode for calculating the common denominator R &tree.

RLCtree based on an IBM 0.26m CMOS technology. SPICE simulations are
represented by a solid line and the DTT simulations are represented by a dastfet g X . _ -
explained in Section Il. A pseudocode that performs this task is
described in Fig. 18.
The function is initially called by Cal_Denominatar{) and
recursively calculates the common denominator. The structure

line. A 45th approximation order is used.
“section” has the elemeni® L, andC, which represent the re-

APPENDIX
THE DTT ALGORITHM
A generalRLC tree is composed of several connecRIdC  sistance, inductance, and capacitance &G section, respec-
sections. EacRRLC section has a series resistance, inductand&ely. The structure also has the arrays M, and D, which
and capacitance with the capacitance grounded as showrrepresent the polynomials of the numerafir,in (27), and the
Fig. 2. The objective is to calculate the transfer functions acrodsnominator of the transfer function across the capacitor of the
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Correct_Numerators(section *w, Poly F,)

{
if(right(w)=0) /* w drives a right section */
{F, = F#Dy, Correct_Numerator(right(w), F;);}
if(left(w)=0) /* w drives a left section */
{Fy= F;,eD,; Correct_Numerator(left(w), F7);}
w->N = w->NeF,;
3

[15]
[16]

[17]

(18]

[19]

Fig. 19. Pseudocode for correcting the numerators of the transfer functions §0]

all of the nodes of aiRLCtree.

RLCsection, respectively. The operatef tepresents a polyno-
mial multiplication. An efficient limited order polynomial mul-
tiplication function should be used as discussed in Section
The functions, left{y) and right (), return pointers to the left
and right sections driven hy, respectively. If no left (right) sec-
tion is driven byw, left (w) = 0 (right (w) = 0). The function

[21]

(22

(23]

24]

uses (22), (27), and (23) and the recursion termination condi-

tions described by the DTT method in Section II-B.

The second step is to correct the numerators of the transfé&!

functions at the nodes of tiLCtree. The function performing

this task is described in Fig. 19. The function is initially called [26]

by Correct_Numerators.;, 1) and recursively corrects the nu-
merators at all of the nodes of tRt_Ctree as described in Sec-

[27]

tion II-B. Note that the Correct_Numerators function has to be

called after the Cal_Denominator function has been called.
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