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Abstract—This paper investigates the application of simulta-
neous retiming and clock scheduling for optimizing synchronous
circuits under setup and hold constraints. Two optimization prob-
lems are explored: 1) clock period minimization and 2) tolerance
maximization to clock-signal delay variations. Exact mixed-integer
linear programming formulations and efficient heuristics are given
for both problems. When both long and short paths are consid-
ered, circuits optimized by the combined application of retiming
and clock scheduling can achieve shorter clock periods or demon-
strate greater tolerance to clock-signal delay variations than cir-
cuits optimized by retiming or clock scheduling. Experiments with
benchmark circuits demonstrate the effectiveness of the combined
optimization. In comparison with the best result obtained by ei-
ther of the two optimizations, the joint application of retiming and
clock scheduling increased operating speeds by more than 8% on
the average. It also increased tolerance to clock delay variations by
an average of 12% over a broad range of target clock frequencies.
Larger relative improvements were achieved for shorter clock pe-
riods, thus suggesting that simultaneous retiming and clock sched-
uling can play an important role in high-speed design.

Index Terms—Delay tolerance, digital circuits, optimization
delay variations, retiming, scheduling, timing.

I. INTRODUCTION

PERIODIC clock signals play a central role in the design
and performance of synchronous digital systems. They

provide a synchronization mechanism that enables the straight-
forward implementation of finite state machines. They also
determine the throughput of the computation performed by
these machines, since data propagation through a digital system
proceeds at the rate specified by the clock period. As clocking
rates increase, variations in the propagation delays of the clock
signals across a chip are becoming a significant fraction of
the clock period and begin posing a fundamental challenge
to the design of high-performance systems. Such variations
are typically due to process parameter variations, temperature
or environmental variations, and power supply variations and
become particularly pronounced in submicron design. Conse-
quently, in addition to clock period minimization, tolerance
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maximization to clock-signal delay variations has become
of paramount importance to the design of high-performance
digital circuits.

Retiming and clock scheduling are two elegant and pow-
erful approaches to digital circuit performance optimization.
Although completely different from an implementation stand-
point, they both improve circuit performance by redistributing
timing slack among the combinational paths of a circuit. Re-
timing decreases the critical delays of a circuit by relocating its
registers so that combinational path delays are evenly balanced
across the entire design. Instead of transforming a circuit, clock
scheduling increases the timing slack along critical paths by
introducing appropriate clock delays that differentiate, or skew,
the arrival times of the clock signals at the circuit registers.
Due to their common operating principle, retiming and clock
scheduling are often referred to as being “equivalent,” although
they do not always achieve the same clock period when applied
separately. Significant effort has been devoted to the individual
study of the two optimizations. The investigation of their
combined application has been limited, however.

This paper investigates the simultaneous application of
retiming and clock scheduling for digital circuit optimization
under setup and hold constraints. When both long and short
paths are considered, the combined application of the two
optimizations is more powerful than either of the two opti-
mizations by itself, resulting in faster circuits or circuits that
are more tolerant to variations in the delays of their clock
signals. Moreover, the combined application of retiming and
clock scheduling adds flexibility during circuit synthesis,
providing alternative ways for achieving a target performance
specification.

The effectiveness of simultaneous retiming and clock sched-
uling in minimizing the clock period of a digital circuit is
demonstrated in the example of Fig. 1. In addition to demon-
strating the speedup potential of simultaneous retiming and
clock scheduling, Fig. 1 shows that the shortest clock period
achievable by retiming and clock scheduling may not be ob-
tainable by an “intuitive” application of the two optimizations
in sequence, that is, first performing retiming for maximum
speed (under zero skew) and then applying clock scheduling.
In this figure, digital circuits are represented as directed graphs.
Each vertex denotes a block of combinational logic, and each
edge between a vertex pair denotes a wire between the corre-
sponding logic blocks. The rectangles represent edge-triggered
registers. The pair inside each vertex denotes the minimum
and maximum propagation delays of the signals through the
corresponding logic block.
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Fig. 1. Clock period improvement by simultaneous retiming and clock
scheduling. (a) Original circuit. (b) Fastest retimed circuit with zero skew. (c)
Fastest retimed circuit with nonzero skew.

When all clock skews are zero, the minimum period at which
the circuit can be clocked is the longest delay among its com-
binational paths. For example, the original circuit in Fig. 1(a)
achieves a clock period of tu (time units) with zero clock
skew. If nonzero clock skew is introduced, it is possible to op-
erate the circuit at a shorter clock period that equals the largest
difference between the maximum and minimum register-to-reg-
ister delays over all paths in the circuit. Accordingly, if register

“sees” the clock edge by 4 tu earlier than register, the cir-
cuit can function correctly with a clock period of tu.
This clock period is the shortest one that clock scheduling can
achieve without introducing any signal races, since the differ-
ence in the maximum and minimum propagation delays along
the pathBCD is 19 tu.

The retimed circuit in Fig. 1(b) is obtained by first retiming
the original circuit to minimize its clock period with zero skew
and subsequently adjusting its clock schedule to further reduce
its clock period. The new register locations result from a back-
ward shift of register across block D and a forward shift of
register across block B. With zero clock skew, this circuit is
optimally retimed and achieves a clock period of tu. If
the clock edge arrives at registerby 1 tu earlier than at register
, this retimed circuit can achieve an even shorter clock period

of tu. No further clock period improvements are pos-
sible, however, because the propagation delay difference along
pathDAB is 15 tu.

Fig. 1(c) shows another retimed version of the original circuit
that is obtained by shifting registeracross block B. For this cir-
cuit, the shortest clock period that results in no timing violations
under zero clock skew is tu. If the clock edge arrives at
register by 4 tu later than register, however, this circuit can
function correctly with a clock period tu. This clock pe-
riod is the minimum that can be possibly achieved by applying
both retiming and clock scheduling, since the total propagation
delay around the cycle is 28 tu and must be distributed between
two combinational paths.

The effectiveness of simultaneous retiming and clock sched-
uling in increasing the tolerance of a circuit to variations in the
propagation delays of its clock signals is demonstrated by the
example in Fig. 2. In this example, the clock skew between the
input/output registersand is assumed to be zero. The setup
and hold constraints along each of the two combinational paths
yield a range [ ] of permissible clock delays [18] for the ar-
rival of the clock signal at register. The permissible skew range
of is obtained by intersecting the two possible ranges.

For the original circuit in Fig. 2(a) and a target clock period
of 12 tu, the range of possible delays for the clock signal ar-

Fig. 2. Tolerance improvement by simultaneous retiming and clock
scheduling. (a) Original and (b) retimed circuit.

riving at is [ 2, 4]. When clock delay is centered at zero,
therefore, the permissible skew range ofis [ 2, 2], assuming
symmetric clock delay variations, and the tolerance of the cir-
cuit is 4 tu. When clock signals are designed to arrive atwith
a delay , however, the permissible skew range is [2,
4], and delay tolerance increases to 6 tu.

A retimed version of the original circuit that is obtained by
shifting forward is shown in Fig. 2(b). In this case, the inter-
section of the two skew ranges is [1, 7]. When clock skew is
zero, the permissible range ofis [ 1, 1], and tolerance drops
to 2 tu. When the arrival time of the clock signal atis de-
layed by , however, the permissible range becomes
[ 1, 7], and tolerance increases to 8 tu. This value is the max-
imum tolerance that can be achieved by simultaneous retiming
and clock scheduling for tu. An interesting observa-
tion about the retimed circuit in Fig. 2(b) is that when skews are
zero, the delay tolerance of this circuit is smaller than that in the
original one. Nevertheless, when clock skews are nonzero, this
circuit exhibits maximum tolerance to delay variations. It may
thus be impossible to compute a maximum tolerance configu-
ration by simply performing retiming for maximum tolerance,
followed by clock scheduling for maximum tolerance.

This paper investigates the simultaneous application of re-
timing and clock scheduling for increasing the performance of
a digital circuit. We first study theretiming and clock sched-
uling problem. In this problem, given a synchronous digital cir-
cuit, a target clock period, and a target tolerance on the varia-
tion of the clock arrival times at the circuit’s registers, we wish
to compute a retiming and a clock schedule so that the opti-
mized circuit meets its performance specification. We then turn
to the two optimization variants of the basic retiming and clock
scheduling problem. In theminimum-period retiming and clock
scheduling problem, given a synchronous circuit and a target
tolerance, we wish to compute a retiming and a clock schedule
such that the optimized circuit satisfies the tolerance constraints
while achieving the minimum possible clock period. In themax-
imum-tolerance retiming and clock scheduling problem, given a
synchronous circuit and a target clock period, we wish to com-
pute a retiming and a clock schedule such that the optimized cir-
cuit meets its clock period constraint while achieving the max-
imum possible tolerance to variations in the clock signal arrival
times.
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We give an exact mixed-integer linear programming (MILP)
formulation for the retiming and clock scheduling problem
under setup and hold constraints. Our program has
constraints, where is the number of wires in the circuit and
can be solved exactly using general MILP solvers. Although
MILP algorithms have worst case exponential complexity, our
MILP formulation is valuable from a number of standpoints.
Most notably, it gives a mathematically accurate set of neces-
sary and sufficient conditions for the problem, thus providing
a way for calculating the optimal solution. For relatively small
circuits, the MILP formulation is thus useful in evaluating the
effectiveness of heuristics. In addition to the MILP formulation
of retiming and clock scheduling, we give practical heuristics
for the minimum-period and the maximum-tolerance opti-
mization problems. Our heuristics run faster than MILP-based
optimization by several orders of magnitude with little or no
sacrifice in accuracy.

To complement our analysis, we present extensive experi-
mental results on modified LGSynth93 and ISCAS89 bench-
mark circuits that demonstrate the speed and tolerance improve-
ments which can be achieved by combining retiming and clock
scheduling. Our results also indicate the circuit structures that
are more amenable to speed-up by retiming and clock sched-
uling. In our experiments, clock periods improve by 8% on the
average and by as much as 42% in the best case over separate re-
timing or clock scheduling. Sequential application of retiming
and clock scheduling is found to be effective for most bench-
mark circuits when optimizing for speed. For about a quarter of
the circuits, however, simultaneous retiming and clock sched-
uling can further improve the clock frequency by up to 28%.
With respect to delay variations, our heuristic outperforms the
best of retiming, scheduling, or sequential retiming and sched-
uling by an average of 12% across a broad range of target clock
periods. In certain cases, improvements of up to a multiplica-
tive factor of 3 are achieved. In our experiments, the effective-
ness of retiming and clock scheduling in improving tolerance
to clock signal delay variations generally increases with the
target operating frequency. Such a property is especially desir-
able in high-performance design, since it provides flexibility in
achieving high operating speeds with high tolerance to delay
variations.

The remainder of this paper has six sections. Background
material is given in Section II. In Section III, we present a set
of necessary and sufficient conditions for correct timing in a
digital circuit that is optimized by retiming and clock sched-
uling. A novel MILP formulation for the retiming and clock
scheduling problem is given in Section IV. In Section V, we de-
scribe a heuristic scheme for retiming and clock scheduling that
can be adapted to solve the minimum-period and maximum-
tolerance variants of the basic retiming and clock scheduling
problem. The results of extensive experiments using LGSynth93
and ISCAS89 benchmark circuits are presented in Section VI. A
summary of our contributions and directions for future research
are given in Section VII.

II. BACKGROUND

Section II-A presents the circuit and delay models we assume
in this paper. Background material for retiming and clock sched-

uling is given in Section II-B and Section II-C, respectively. Pre-
vious research related to retiming and clock scheduling is dis-
cussed in Section II-D.

A. Circuit and Delay Model

An edge-triggered circuit is modeled as a directed multigraph
. The vertices correspond to the com-

binational logic elements in the circuit. The directed edges
model the interconnections between the combinational blocks.
Each edge corresponds to a wire that connects an output
of a combinational block to the input of another combinational
block, possibly through one or more globally clocked, edge-trig-
gered registers. For each edge , the register count of
the corresponding wire is given by a nonnegative, integer edge-
weight . To avoid races, every directed cycle ofincludes
an edge with strictly positive register count.

Throughout this paper, we assume a data-independent delay
model that considers timing constraints on long and short
paths. Specifically, each vertex is associated with a
pair of nonnegative weights and which give the
longest and shortest propagation delay, respectively, through
the corresponding combinational logic block. All registers are
assumed to have the same propagation delay, setup time
and hold time , regardless of their positions in the circuit.
Given a target clock period, we say that a circuit achieves

if all setup and hold constraints in hold. Intuitively,
contains no setup violations if for every combinational path
from a register to a register in , data have sufficient time to
propagate along before the arrival of the latching clock edge
at register . Moreover, contains no hold violations (also
known as races) if the propagation of clock signals between
and occurs faster than data propagation along. A precise
mathematical formulation of the setup and hold constraints that
must hold to ensure correct timing is given in Section III.

B. Retiming

A retiming of an edge-triggered circuit
is an integer-valued vertex-labeling that denotes
a transformation of the original circuit into a functionally
equivalent circuit . For each edge
in , is defined by

(1)

The retiming transformation for a vertex in is shown in
Fig. 3. The output of ’s computation in is generated
clock cycles later than in . The retimed circuit is well
formedif for all edges , we have

0 (2)

Equation (1) implies that for every vertex pair in , the
change in the register count alongany path depends
solely on its two endpoints

(3)



LIU et al.: RETIMING AND CLOCK SCHEDULING FOR DIGITAL CIRCUIT OPTIMIZATION 187

Fig. 3. Retiming of a vertexu by r(u) = 1.

where . Thus, the maximum decrease in the

register count of any path is

(4)

Accordingly, given a retiming , the number of registers along
all paths with is

. The only paths that can become combina-
tional (and possibly lead to a timing violation) in are those
for which in . For each of the vertex
pairs in , the quantities

(5)

(6)

where , represent the
longest and shortest propagation delays along the path. There-
fore, with zero skew, the clock period of any retimed circuit
is always some element in the -size set of .

When only setup constraints are considered, a retimed cir-
cuit that achieves a given clock periodcan be computed in

. A retimed circuit that achieves the minimum possible
clock period can be computed in steps [11].

C. Clock Scheduling

In synchronous digital circuits, a clock signal provides a
global time reference that synchronizes the flow of data be-
tween storage elements. Clock signals are delivered throughout
the circuit by a clock distribution network which introduces
delays in their propagation [8].

A clock scheduleof an edge-triggered circuit
is a real-valued edge-labeling .

This labeling gives the propagation delay of each clock signal
from the global clock source to the corresponding wirein .
Timing violations can be fixed (or created) by adjusting these
delays. For example, consider the path , where
and are wires with registers, andis a path of combinational
logic blocks. The difference is referred to as the
clock skewbetween the registersand . If ,
then the time available for the propagation of data fromto

decreases by . This adjustment may causeto
become a critical path in or eliminate a race condition along
. Conversely, if , then the time available

for data to propagate from to increases by .
This increase may remove a long path violation or introduce a
short path violation. In theclock scheduling problem, we wish
to adjust the clock skews by appropriately selecting a clock
schedule so that no setup or hold violations exist in the circuit.
Furthermore, in theclock scheduling optimization problem,

clock skews are adjusted to implement the optimal circuit
performance, for example, minimal clock period, without any
setup or hold violations.

A variety of factors, including differences in interconnect
delay, parasitic impedances, process parameter variations, and
temperature variations, affect the delays in the propagation
of the clock signals to their registers in the circuit. After
fabrication, therefore, the actual delay of a clock signal with
nominal propagation delay varies within a “range” around

. For every value of the clock signal delay in this range, a
correctly designed circuit should meet all its timing constraints.
The minimum and the maximum delays for the propagation of
each clock signal to the corresponding wirein are denoted
by labelings and , respectively.
For each wire , the values and define arange

for .
Given a clock period , we say that a circuit achieves

with tolerance to the propagation delays of its clock signals if
and only if there exist labelings and such that is timed
correctly with clock period and for all wires , we have

(7)

Themaximum tolerance of is defined as

such that achieves and Inequality (7) holds (8)

Given and , it is possible to compute a clock schedule
with tolerance if the distribution of the delay variations is

known. Throughout this paper we assume that delay variations
are distributed symmetrically. In this case, for each edgein ,
the quantity can be computed straightforwardly by setting

.

D. Previous Research

Retiming has been investigated for a variety of clocking
disciplines [9], [11], [14], [20], delay models [10], [21], and
optimization objectives [2], [6], [17], [19]. In the context of
edge-triggered circuits, a linear programming formulation of
the clock scheduling problem was first described in [7], and a
graph-theoretic approach to clock scheduling was presented
in [5]. In both papers, the relative placement of the storage
elements was assumed to be fixed. Algorithms for scheduling
local clocks to improve the tolerance of an edge-triggered
circuit to process parameter variations were described in [18].

The combined application of retiming and clock scheduling
was first discussed in [16]. A mathematical framework for
retiming and clock scheduling for maximum tolerance to clock
delay variations under setup and hold constraints was investi-
gated in [13]. A two-step procedure for minimizing the clock
period of a synchronous circuit by combining retiming and
clock scheduling was proposed in [3]. That work considered
only setup violations. When both setup and hold constraints
are considered, however, the solution space expands. The
optimization of clock period in this broader solution space is
discussed in [12].

Level-clocked circuits have the potential to achieve greater
tolerance than edge-triggered ones with the same clock period.
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Fig. 4. A two-phase level-clocked implementation of the circuit in Fig. 2.

Algorithms for maximizing the tolerance of level-clocked cir-
cuits to clock signal delay variations were investigated in [1] and
[15]. The work in [1] investigates clock period minimization and
tolerance maximization using clock scheduling with fixed latch
locations. In that paper, the timing slacks of all existing datap-
aths and the tolerance of all clock tree paths are improved by as
much as possible, without using retiming to relocate registers
and balance the timing slacks of different paths. On the other
end of the spectrum, the work in [15] applies retiming with fixed
clock skew values that are assumed to be given and are not free
parameters to be optimized. Moreover, clocking schemes are
constrained to avoid hold violations. In our proposed method,
both register locations and clock skew values are variables that
are adjusted to optimize circuit performance.

A direct comparison between our approach and the methods
described in [1] and [15] is not possible because the quality of
the results obtained with those methods can vary significantly
depending on thegivenconditions, that is, the fixed locations of
the latches in [1] and the fixed skew values and clocking scheme
in [15]. Depending on the values of these parameters, our ap-
proach can outperform [1] and [15]. For example, Fig. 4 shows
a two-phase level-clocked implementation of the edge-triggered
circuit from Fig. 2(a). For the edge-triggered version of this
circuit, combined retiming and clock scheduling can achieve a
target clock period 12 tu with a tolerance of 8 tu, as shown in
Section I. The clock scheduling algorithm in [1] cannot achieve
a tolerance greater than 6 tu, however, since the timing con-
straints in that paper provide an upper bound of

for the tolerance. For tu, the upper bound of
6 tu is obtained for and with tu
and tu. Furthermore, the retiming algorithm in
[15] cannot achieve tolerance greater than 5 tu. Specifically, to
achieve a clock period of 12 tu, retiming must place a latch
on an edge other than the interface, since

and [15] constrains the two clock phases to be nonover-
lapping. Such a latch cannot have tolerance greater than

tu, however. In general, retiming and
clock scheduling with level-clocked circuits is at least as effec-
tive as with edge-triggered circuits, assuming no skew variations
among latches on the same wire. The combined application of
the two optimizations on level-clocked circuits has yet to be
investigated, however, and constitutes an interesting future re-
search direction.

III. RETIMING AND CLOCK SCHEDULING CONSTRAINTS

In this section, we give a set of necessary and sufficient con-
ditions for correct timing in a digital circuit that is optimized by
retiming and clock scheduling. We first give the setup and hold
constraints that must be satisfied by a correctly timed circuit
when the placement of its registers is given and all clock skews
are zero. We also give the constraints for correct timing with

nonzero clock skew and a lower bound on the circuit’s toler-
ance. The conditions for correct timing with retiming and clock
scheduling are then derived by adapting these constraints to in-
clude the relocation of registers. For simplicity, we assume that
register propagation delays are zero. It is straightforward to ex-
tend our analysis to encompass registers with nonzero propaga-
tion delay .

When all clock skews are zero, the arrival times of the clock
signals at the registers are all equal. In this case, the maximum
time allowable for the propagation of data along every combi-
national path between any two registers in the circuit is equal
to the clock period minus the register setup time. The
shortest clock period that will not result in setup violations is
thus bounded from below by the sum of the register setup time
and the delay of the longest combinational path in the circuit.
To avoid races, the minimum data propagation time should not
be shorter than the register hold time. The following propo-
sition gives a mathematical description of these setup and hold
constraints that must hold for correct timing.

Proposition 1: Let be an edge-triggered
circuit, and let be a constant. Then, can be correctly timed
by a zero-skew clock with period if and only if for every edge
pair , in such that , , and

, we have

(9)

(10)

When clock scheduling is introduced, the arrival times of
the clock signals can be adjusted to balance the maximum al-
lowable propagation times between different register pairs. The
following theorem from [7] gives setup and hold con-
straints that must hold for a circuit to be correctly timed with a
clock schedule and a target clock period.

Theorem 2: Let be an edge-triggered
circuit and a constant. Moreover, let be a clock
scheduling function. Then, the circuit is timed correctly if and
only if for every edge pair , in such that ,

, and , we have

(11)

(12)

Inequalities (11) and (12) can be rewritten as difference con-
straints in the form of a shortest paths problem [4]. A clock
schedule that satisfies these constraints can be computed ef-
ficiently in time by solving a shortest paths
problem on an appropriately constructed edge-weighted graph

. For each edge , the set includes a
vertex . For each inequality (11), the set includes an edge

with weight . Moreover, for
each inequality (12), includes an edge with weight

.
Due to variations in the physical parameters of a circuit, the

delay values of its clock signals may change. In deep-submi-
cron VLSI technologies, where interconnect delays dominate,
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such variations can be significant compared with gate delays. A
correctly designed circuit should be able to tolerate this varia-
tion, which means, when the clock scheduling variable as-
sumes any value in the interval , the constraints
in Theorem 2 should always hold. Therefore, they should also
hold under the worst case assumptions, as stated in the following
lemma.

Lemma 3: Let be an edge-triggered cir-
cuit, and let be a given constant. Moreover, let
and be assignments of minimum and maximum
clock delays, respectively. Then,is timed correctly if and only
if for every edge pair , in such that ,

, and , we have

(13)

(14)

where and are hold and setup time, respectively.
Proof: We will show that (13) holds if and only if all setup

constraints in the circuit hold. The proof for the hold constraints
is similar.

( ) Assume (13) holds. For any clock schedule
, we have

since , , and (13) holds. From (11)
it follows that there are no setup violations.

( ) if (13) is violated, then the setup constraint between the
edges and is violated.

The setup and hold constraints for correct timing under
nonzero clock skew and a specified tolerance to the variation
of clock delays follow immediately from Lemma 3.

Corollary 4: Let be an edge-triggered
circuit. Moreover, let and be given real constants. Then,
achieves a clock period with tolerance if and only if there
exist functions and such that for
each edge

(15)

and for every edge pair , in such that ,
, and

(16)

(17)

By relying on Corollary 4 we can give a precise mathematical
formulation for theretiming and clock scheduling problem. In
this problem, we wish to compute a retiming, a clock schedule

, and , so that the optimized circuit achieves a clock period
with no timing violations and with tolerance. The following

theorem formulates this problem as a set of constraints.
Theorem 5: Let be a synchronous cir-

cuit, and let and be given constants. Moreover, let
be a retiming function, let be an assignment of

maximum clock delays, and let be an assignment
of minimum clock delays. Then the retimed circuit is well
formed and achieves a clock periodwith tolerance if and
only if for every edge , we have

(18)

(19)

and for every pair of edges , we have

or or (20)

or or (21)

where and
for the setup

and hold constraints, respectively.
Proof: Inequality (18) follows from (7) and ensures that

the tolerance of is . Inequality (19) follows from (1) and
(2) and, therefore, the resulting circuit is well formed.

It remains to show that the timing constraints are satisfied.
We will prove that (20) holds if and only there are no setup
violations in . The proof for the hold constraints is similar.

( ) We show that if the setup constraints hold then (20)
holds. The proof will be by contradiction. Assume that for every
vertex pair and in , (13) holds. Moreover, let
be two edges in such that

, , , and .
It follows that for and , we have

, which contradicts (13).
( ) We now show that if some setup constraint in

is violated then (20) does not hold. The violation of (13)
implies that for some edge pair , in such
that , , and , we have

. By the definition of
and a straightforward algebraic manipulation, it follows that

. Therefore,
(20) does not hold for the edges and in .

IV. EXACT MILP FORMULATION

The constraints in the statement of Theorem 5 do not appear
to be amenable to efficient algorithmic solutions. In this sec-
tion we recast them in the form of an equivalent exact mixed-in-
teger linear program, thus enabling the application of powerful
MILP solvers to the retiming and clock scheduling problem. We
express the retiming and clock scheduling problem as a set of

linear inequalities with integer and real unknowns. This
set is obtained by restricting the solution space of the constraints
in Theorem 5 while maintaining their feasibility.

First, for each , we introduce two new integer variables
and such that

(22)

0 (23)

0 (24)

1 (25)

(26)
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The parameter in (26) is the maximum number of registers
that retiming can place on any edge in and equals

(27)

where , and
, and PI and PO are

the sets of the primary inputs and outputs, respectively, in.
This upper bound follows directly from the fact that retiming
does not change the register count of cycles or I/O paths in a
circuit graph.

The following lemma proves that is an indicator variable
for . Intuitively, maps each edge to the set
0 1 , indicating whether the retimed register count is

positive or not. Accordingly, gives the number of registers
on in excess of 1, after retiming.

Lemma 6: Assuming that the conditions in the statement of
Theorem 5 hold, we have

0 0 (28)

Proof: ( ) Since and are nonnegative and their
sum equals , if then .

( ) If , (26) and (24) yield . Therefore,
their sum, , is zero.

Using and , (20) and (21) can be simplified by elim-
inating the implication and reducing the number of disjunctions
it includes. The following lemma gives equivalent relations with
only one disjunction.

Lemma 7: Assuming that the conditions in the statement of
Theorem 5 hold, (20) and (21) are equivalent to the disjunction

or (29)

or (30)

where and
for the setup

and hold constraints, respectively.
Proof: Since the predicate is equivalent to ,

(20) and (21) can be rewritten in the equivalent form

or

or or (31)

or

or or (32)

Therefore, to prove the equivalence of relations (20) and (21)
with relations (29) and (30), it remains to show that

1 or 0 or 0 (33)

holds if and only if

1 (34)

holds.
( ) Assuming that (33) holds, we prove that (34) holds by a

straightforward case analysis on the values of , ,
and .

Let . Since and . Therefore

1 1

1

and (34) holds.
Now, assume that . From Lemma 6, we have

. Since and , we have

0 1

1

and therefore (34) holds. The proof for the case is
similar.

( ) We prove the contrapositive. Suppose that (33) does not
hold. Then, from (2), (25), and (28), we have

0 and 1 and 1 (35)

It follows that , and
therefore (34) does not hold.

In the following lemma we show how (29) and (30) can be
replaced by two linear inequalities, thus paving the way for the
formulation of the retiming and clock scheduling problem as a
mixed-integer linear program. To obtain these bounds, we as-
sume that the parameterand are bounded from above by
some known constant that depends on the chip die size
and physical constraints on the chip realization.

Lemma 8: Assuming that the conditions in the statement of
Theorem 5 hold, (29) and (30) are equivalent to

(36)

(37)

where and
for the setup

and hold constraints, respectively, and is an upper bound
on and

Proof: ( ) We first prove that (29) implies (36).
Inequality (36) follows by a straightforward case analysis on

the value of the parameter . If , since is
well formed,

. If , then (29) implies that

1

2

since the sum is integer and
. Therefore, (36) holds. The proof for (37) is

similar by replacing with .
( ) We now prove that (36) implies (29) by a case analysis

on the value of . If , then (29) trivially holds.
If , then . Since

is an integer, (36) yields ,
and therefore Relation (29) holds. Similarly, we can prove (37)
implies (30).

Based on Lemmas 7 and 8, the problem of retiming and clock
scheduling problem can now be recast as a mixed-integer linear
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program with linear inequalities, integer un-
knowns, and real unknowns. The complete statement of
this program is given in the following theorem.

Theorem 9: Let be an edge-triggered
circuit, and let and be given constants. Then there exists a
retiming function and clock schedules
and such that the retimed circuit is well
formed and achieves clock periodwith tolerance if and only
if there exists a retiming function , clock schedules

and , and functions and
such that for every edge , we have

(38)

0 (39)

0 (40)

1 (41)

(42)

for every edge , we have

(43)

and for every pair of edges , we have

(44)

(45)

2 (46)

2 (47)

where and
for the setup

and hold constraints, respectively.
Proof: This theorem follows directly from Theorem 5 and

Lemmas 7 and 8. Relation (38) and inequalities (39)–(42) en-
sure that is well formed and is an indicator of .
Inequality (43) ensures that the resulting schedule has tolerance

. Inequalities (44) and (45) enforce the upper bound of the pa-
rameters and . Inequalities (46) and (47) enforce the setup
and hold constraints for the clock period. The unknowns are
the integers , the integers , the integers

, the reals , and the reals . (Note that
the variables are not independent, since (38) can be elim-
inated by substituting into
the left-hand sides of (40) and (42).) All inequalities are linear
in their unknowns.

V. HEURISTIC OPTIMIZATION

In this section we describe a heuristic approach for solving
the minimum-period and the maximum-tolerance optimization
versions of the retiming and clock scheduling problem. Even
though the MILP constraints presented in Section IV can be
used to compute an exact solution to the problem, the worst case
exponential runtime of MILP solvers becomes evident even for
circuits of relatively small size. Our heuristics run substantially
faster than the exact MILP solvers. They rely on a common
procedure that identifies critical paths based on clock sched-

uling information and generates a retimed circuit with improved
clock period or tolerance to delay variations. To obtain an op-
timal circuit, this scheduling-guided retiming procedure is ap-
plied iteratively until a local optimum of the solution space is
reached. Section V-A describes our Procedure SGR for sched-
uling-guided retiming. Section V-B proves that SGR correctly
identifies and removes timing bottlenecks. Section V-C gives
our heuristics for the problems of minimum-period retiming and
clock scheduling and maximum-tolerance retiming and clock
scheduling.

A. Scheduling-Guided Retiming

The scheduling-guided retiming procedure we describe in
this section relies on three auxiliaryslack graphsto encode
and manipulatetight path constraints, that is, timing and
tolerance constraints that hold with equality for givenand

. Specifically, a graph is used to encode the tight
setup constraints, a graph is introduced to capture
the tight hold constraints, and a graph is constructed
to encode both the setup and the hold constraints in a single
representation.

The three slack graphs are constructed as follows. For each
edge in such that , a vertex is introduced in all
three graphs. Each vertex is associated with a weight equal to
the register count of its corresponding edge. For sim-
plicity, we overload to denote in each slack graph the vertex
of a corresponding edgein . Similarly, we use to de-
note the corresponding vertex weight. All edges connected to a
primary input or output of are assumed to have a register and
are represented in each slack graph by a single vertexwith

. The register on the edge serves as the I/O
interface of the circuit and is not relocated by retiming.

The directed edges of the slack graphs correspond to combi-
national register-to-register paths infor which both the timing
and the tolerance constraints are satisfied with equality. Specifi-
cally, for each pair of edges , in such that
, , and , an edge is introduced in

if

(48)

Equation (48) is derived by combining (15) and (16) and re-
placing the inequality by equality. Whenever (48) holds, the cor-
responding setup constraint is said to betight and gives rise to a
timing bottleneck. Similarly, an edge is added to
if

(49)

This equation is derived by combining (15) and (17) and signi-
fies a timing bottleneck due to a hold constraint between regis-
ters on and .

The graph is the union of and with
all the edges in inverted. This inversion is a mere con-
venience that enables the uniform handling of both the setup and
the hold constraints. As it can be verified by bringing (17) into
the form

(50)
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Fig. 5. Circuit graph and associated slack graphs.

Fig. 6. Algorithm SGR for scheduling-guided retiming.

and subsequently comparing it with (16), from a mathemat-
ical standpoint the hold constraint fromto is equivalent to
a setup constraint from to with path delay and
setup time . Thus, when the direction of the hold edges is
inverted in , timing bottlenecks due to combinations of
tight setup and tight hold constraints appear as directed paths,
and timing optimality can be verified by identifying a directed
cycle in . A formal proof of this statement is given in
Theorem 10.

Fig. 5 gives an example of how slack graphs are constructed.
When tolerance is set to 1 tu, the original circuit in Fig. 5(a) can
be correctly timed with a minimum clock period of 20 tu. The
ranges [ ] of the optimal clock schedules are indi-
cated next to each register, assuming that bothand are zero.
Fig. 5(b) shows the corresponding slack graphs20 1 and

20 1 . The path from register to register in the original
circuit satisfies both (48) and (49). An edge is therefore added
between the corresponding vertices in20 1 and 20 1 .
The graph 20 1 combining 20 1 and 20 1 is shown
in Fig. 5(c). The directed cycle in this graph indicates that for
the specified tolerance and register placement, the given clock
schedule is optimum and achieves the minimum possible clock
period.

Our algorithm SGR for scheduling-guided retiming is given
in Fig. 6. The inputs to this procedure are a circuit graph,
clock schedules and , a clock period , and a tolerance

. The input graph may be an original or a retimed circuit. If
the procedure succeeds in identifying and eliminating a timing
bottleneck in by generating a retimed graph , it returns

. Otherwise, it returns False. Initially, algorithm SGR con-
structs the slack graphs , , and . It then
proceeds to detect timing bottlenecks by identifying directed cy-
cles in and . Once discovered, a bottleneck is re-
moved by retiming the original input graph. Thefor loop in
lines 2–4 searches for the special case of timing bottle-
necks comprising only setup constraints. If an edge with register
count greater than 1 participates in such a constraint, one of its
registers is shifted to a register-free edge along the bottleneck.
A tight setup constraint is thus removed, creating the potential
for a shorter clock period or greater tolerance. Thefor loop in
lines 5–11 searches for timing bottlenecks comprising
both setup and hold constraints. In lines 6–8, the procedure dis-
covers a tight setup and a tight hold constraint that start from
the same register. By shifting that register forward, it decreases
the maximum delay of the long path and eliminates the corre-
sponding setup constraint. It also broadens the range of clock
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schedules that satisfy the hold constraint along the short path,
thus creating opportunities for further clock period or tolerance
optimization. In lines 9–11, a pair of tight setup and hold con-
straints leading to the same register is detected, and the register
is shifted backward to relax them. If no register can be moved,
line 12 reports the failure to build a new .

The runtime of algorithm SGR is dominated by its three
loops. Each loop iterates times, since each slack graph
has edges. The runtime of each loop body execution de-
pends on the implementations of the shifting transformations in
lines 3, 7, and 10. A straightforward implementation of register
shifting that propagates the perturbation to adjacent edges until
no edge has a register deficit takes time. In this case,
the total runtime of each loop is steps. More elaborate
shifting schemes that also consider constraints on the register
counts of specific edges require the solution of single-source
shortest-paths problems with negative edge-weights. The con-
struction of the three slack graphs in line 1 takes time,
since may have edges with nonzero register counts.
In lines 2 and 5, the detection of all edges that participate in
some directed cycle of or can be performed
in steps by running a breadth-first search that proceeds
until it discovers levels. Algorithm SGR runs very fast
in actual circuits because the number of vertices in the slack
graphs equals to the number of registers in the circuit at most,
which is usually far less than .

B. Timing Bottleneck Elimination

In this section we prove that algorithm SGR correctly iden-
tifies timing bottlenecks in a circuit , given a specified clock
schedule, a clock period, and a tolerance. We then prove
that it correctly retimes to remove a tight timing constraint
that contributes to an identified bottleneck.

Algorithm SGR identifies timing bottlenecks by detecting di-
rected cycles in the slack graph . The following theorem
proves that each timing bottleneck indoes indeed correspond
to a special directed cycle in . In addition to bottlenecks
due to cyclic sequential paths in, the theorem encompasses
bottlenecks due to acyclic sequential paths from a primary input
to a primary output, since each such path corresponds to a closed
path in that starts and ends with the vertex . Fur-
thermore, it also considers possible bottlenecks due to acyclic
sequential paths between any two registers since both setup and
hold constraints are considered.

Theorem 10:Let be an edge-triggered
circuit, and let and be given reals. Moreover, let

and be minimum and maximum clock sched-
ules, respectively, such that achieves a clock period with
tolerance . Then for the given placement of registers in, is
the shortest clock period that clock scheduling can achieve with
tolerance if and only if there exists a directed cycle in
which contains a tight setup constraint.

Proof: ( ) The proof is by contradiction. Specifically, we
show that if the directed graph has no cycle containing
a tight setup constraint, then there exist clock schedulesand

such that achieves a clock period with tolerance ,
thus contradicting the minimality of. To that end, we first de-
scribe a procedure for labeling the vertices in . We then

Fig. 7. (a)T (�; �) with a single strongly connected componentc; g; h from
edges corresponding to hold constraints. (b) Construction ofT (�; �). (c)
Labeling ofT (�; �).

rely on these labels to compute new clock schedulesand
that distribute timing slack among all tight timing constraints
and yield a clock period with tolerance .

The absence of tight setup constraints from all directed cycles
in allows us to compute a labeling of its vertices such
that for each edge , we have

1 (51)

(52)

where and are the labels ofand , respectively. The la-
bels can be computed by performing a single-source longest-
paths computation on a directed acyclic graph . This
graph is derived from by grouping together into a single
vertex all vertices that participate in the same strongly connected
component formed by tight hold constraints. Fig. 7 shows the
derivation of from a tight graph . The solid
lines represent tight setup constraints, and the dashed lines rep-
resent tight hold constraints. The shaded nodes form a
single strongly connected component from edges corresponding
to tight hold constraints and are grouped together in .
Since has no cycle containing a tight setup constraint,
the graph is acyclic. It is thus possible to assign to each
vertex in the length of the longest path from
a source vertex to [4]. Fig. 7(c) shows the derivation of
labels on . For each vertex that is also present
in , we have . For all vertices in the same
strongly connected component represented by , we have

. In other words, all vertices in the same strongly
connected component in have the same label.

We now define theslack of a vertex in as the
minimum timing margin over all hold constraints betweenand
all upstream registers in but not in the same strongly con-
nected component and over all setup constraints betweenand
downstream registers in. Intuitively, this slack is the largest
value by which the skew betweenand any can increase
without violating any timing constraint except for hold viola-
tions within the same strongly connected component. If some of
these timing constraints is tight, then . In mathematical
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terms, for an edge in with , the margin
is defined as follows:

(53)

The slack of the tight graph is defined as
. Based on the acyclicity

of , we can prove that . Indeed, since
is acyclic, there exists a vertex , and a corresponding
vertex , with no outgoing edge. Therefore,has no tight
setup constraint with any downstream register in. Moreover,

has no tight hold constraint with any upstream register in
except for those within a strongly connected component. From
the definition of it follows that , and therefore

.
We now rely on the labeling and the slack to compute

new clock schedules and . For each vertex , the
new clock schedule is defined as

where . Furthermore, the clock
schedule is defined as

The following straightforward case analysis shows that the
new clock schedules and satisfy the timing constraints in

for clock period and tolerance. Let
be a path in such that , , and .
By relying on the definitions of and , the setup constraint
along this path can be written as follows:

(54)

The schedules and satisfy the setup constraint be-
tween and with and . If this constraint is not tight, then

. In this case, a straightforward algebraic ma-
nipulation yields

(55)

If the setup constraint betweenand is tight, it follows that
and . Therefore

(56)

From (54)—(56), and the definitions of and , it follows
that and satisfy the setup constraint fromto with
clock period and tolerance . A similar case analysis
shows that and satisfy the hold constraint between
and . Moreover, in the case thatand belong to the same
connected component in , their clock schedules change
by the same amount , and the hold constraints among
them still hold tight. Therefore, there exists a clock schedule that
achieves a clock period with tolerance .

( ) We now prove that if there exists a directed cyclein
which contains at least one tight setup constraint, then

is the shortest clock period that clock scheduling can achieve
with tolerance .

Consider an edge in that encodes a setup constraint on
a combinational path from a register on edge to a register
on edge in . From (15) and (16), this constraint yields

(57)

Alternatively, if encodes a hold constraint from to
, then (15) and (17) yield

(58)

By rearranging the terms in (57) and (58), we obtain the equiv-
alent inequalities

(59)

(60)

Adding up (59) and (60) along, we obtain
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Fig. 8. Result of register relocation for the original circuit in Fig. 5. (a) Registerl is shifted forward. (b) Registerk is shifted backward.

where and denote the edges in that correspond to
setup and hold constraints, respectively. The summation on the
left-hand side of this inequality telescopes, yielding

(61)
where denotes the edge count of the set. Since there exists
at least one tight setup constraint, we can now obtain the fol-
lowing lower bound on the clock periodby rearranging (61)
as follows:

(62)

where denotes the edge count of the sets. The right-hand
side of (62) gives a lower bound for that is independent of
the clock schedules and . If the choice of and
does induce the directed cyclein , (57) and (58) are
satisfied with equality along. Propagating this equality all the
way to (62), we infer that the lower bound is attained. Therefore,
the associated clock periodis the shortest one achievable with
tolerance .

Theorem 10 implies that whenever has a directed
cycle which contains at least a tight setup constraint, the clock
period of a circuit cannot be improved by clock scheduling
without reducing the tolerance to clock delay variations.
Retiming can be used to “break” such cycles by relocating the
registers along the critical paths of the circuit. The following
theorem shows that the register relocations in lines 3, 7, and 10
of algorithm SGR break a directed cycle in .

Theorem 11:Each execution of lines 3, 7, and 10 in algo-
rithm SGR eliminates a tight timing constraint associated with
the timing bottleneck detected in lines 2, 6, and 9, respectively.

Proof: When line 3 executes, a register is placed on a reg-
ister-free edge , between the edgesand that give rise to a

tight setup constraint. Since is a subpath of , it fol-
lows that and the tight setup constraint
between and has thus been removed.

When line 7 executes, the delay along the setup path that
ends at is reduced. The corresponding tight setup constraint is
thus removed. Similarly, when line 10 executes, the setup path
starting at becomes shorter and the corresponding tight con-
straint is eliminated.

The retiming transformations in lines 7 and 10 create the po-
tential for further clock period and tolerance optimization. For
example, consider the forward relocation of a registeracross
a vertex under the conditions of the predicate in theif state-
ment of line 6. In the transformed circuit, the maximum de-
lays of the paths that end atand decrease by , whereas
the minimum delays decrease by . Thus, clock scheduling
can redistribute a slack of among other tight setup con-
straints downstream from. Moreover, it can redistribute a slack
of among other tight hold constraints downstream
from . It thus allows for the timing constraints to be met with
a shorter clock period or greater tolerance.

The reader should note that even though they promote op-
timization, the retiming transformations of algorithm SGR do
not guarantee the improvement of the clock period or the toler-
ance in the resulting circuit. When a register is shifted forward
to remove a tight setup constraint with a downstream register,
for example, a setup violation with an upstream register may re-
sult. A careful implementation of the relocation steps in lines 7
and 10 of algorithm SGR should consider the violation of con-
straints that currently hold before deciding to move a register.

Fig. 8 shows how register relocation can result in a faster or
more delay-tolerant circuit. By examining the slack graphs in
Fig. 5 for tu and tu, we infer that vertex sat-
isfies the condition in line 6 of algorithm SGR and can thus be
shifted forward. Furthermore, vertexsatisfies the condition of
line 9 and can be shifted backward. The circuits resulting from
each of these possible transformations are shown in Fig. 8. With
tolerance remaining at tu, clock scheduling results in
a shorter clock period for both circuits. The retimed circuit in
Fig. 8(a) achieves tu, whereas the circuit in Fig. 8(b)
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Fig. 9. Procedure RSMINP for simultaneous retiming and clock scheduling to minimize clock period.

Fig. 10. Procedure RSMAXT for simultaneous retiming and clock scheduling to maximize clock delay tolerance.

achieves tu. The intervals above the register names
specify the ranges of the skewed clock arrival times. Alterna-
tively, with the clock period fixed at tu, clock sched-
uling can increase the delay tolerance of both retimed circuits
to tu. The ranges of the clock arrival times are given
below the corresponding register names.

C. Period and Tolerance Optimization

This section describes two heuristic procedures for the opti-
mization versions of the retiming and clock scheduling problem.
These procedures are not guaranteed to find the optimum solu-
tion to their respective problems. As shown in Section VI, how-
ever, they outperform the MILP-based binary search algorithms
by achieving a good tradeoff between program runtime and cir-
cuit performance improvement.

Fig. 9 gives pseudocode for algorithm RSMINP that performs
simultaneous retiming and clock scheduling to minimize clock
period. Given an edge-triggered circuitand a target delay tol-
erance , algorithm RSMINP returns a retimed circuit , an
optimal clock period , and clock schedules and such
that achieves with the given tolerance. The main idea
in this heuristic is to iteratively perform clock scheduling fol-
lowed by scheduling guided retiming. In line 1, is initial-
ized to a retimed version of the input circuit that operates

with minimum clock period under zero clock skew. The reg-
isters in this circuit have been relocated so that maximum de-
lays are distributed evenly along its paths. In line 2, algorithm
SCHEDMINP solves the clock scheduling optimization problem
for with tolerance . Based on Section III, this computation
can be performed by binary searching the tolerance domain with
a single-source shortest-paths algorithm. Thewhile loop in lines
3–8 iterates until the clock period cannot be reduced any further
for a predefined number of iterations. Each execution of line
3 invokes algorithm SGR with the objective to relax the tight
setup and hold constraints for the clock schedules, and
the corresponding optimal clock periodreturned by algorithm
SCHEDMINP. In line 4, clock scheduling is performed on the re-
timed circuit returned by algorithm SGR. Lines 5–6 update
the best solution found so far. The loop exits when no newis
found or the clock period has not improved for a given number
of times.

Fig. 10 gives a pseudocode description of algorithm RSMAXT
for maximum-tolerance retiming and clock scheduling. Sim-
ilar to algorithm RSMINP, this procedure is based on sched-
uling-guided retiming to create a sequence of retimed circuits
and converge toward an optimal tolerance. Given an edge-trig-
gered circuit and a target clock period, this procedure re-
turns a retimed circuit , an optimal clock tolerance, and cor-
responding clock schedules and such that achieves
the given clock period with maximum tolerance. Procedure
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SCHEDMAXT in line 2 performs a binary search to compute the
maximal delay tolerance that can achieve with clock period

. Next, thewhile loop in lines 3–8 iteratively retimes until
tolerance cannot be improved any further or no new retiming
can be found.

VI. EXPERIMENTAL RESULTS

In this section, we discuss extensive experimental results
from the application of retiming and clock scheduling to the
optimization of the LGSynth93 and ISCAS89 benchmark
circuits. The statistics of the circuits in our test suite are given
in Table I. Section VI-A presents the results we obtained for the
clock period minimization problem and Section IV-B gives our
results for the tolerance maximization problem. In both cases,
the combined application of the two optimizations resulted
in significant improvements over the separate application of
either of the two. We also compared the results of our heuristic
with those of sequential retiming and clock scheduling. For
the circuits in our test suite, our heuristic achieved marginally
better speedups than retiming for maximum speed followed
by scheduling for maximum speed. With respect to tolerance
maximization, however, our heuristic achieved 12% higher
tolerance, on the average, than sequential retiming and clock
scheduling. Our proposed heuristic approach was orders of
magnitude faster than the exact MILP-based optimizer with
little sacrifice in accuracy. Our software was developed in C
and ran on a Pentium Pro II with 128MB of main memory.

A. Clock Period Minimization

Simultaneous retiming and clock scheduling was applied to
improve the clock period of LGSynth93 and ISCAS89 bench-
mark circuits. We first evaluated the extent to which the com-
bination of retiming and clock scheduling is better than either
optimization. We subsequently compared our heuristic with the
sequential application of the two optimizations.

The following experimental methodology was used to com-
pare the joint retiming and clock scheduling with either of the
two approaches. First, for each circuit, the shortest clock pe-
riod under zero skew was computed. Subsequently, each
benchmark circuit was optimized by retiming, clock scheduling,
and simultaneous retiming and clock scheduling to achieve the
minimum possible clock periods , , and , respectively.
All clock periods were computed with zero tolerance. Simulta-
neous retiming and clock scheduling was performed using the
heuristic procedure RSMINP.

Fig. 11 gives the relative improvement
achieved by heuristic retiming and clock scheduling over the
best result obtained by either retiming or clock scheduling. Our
results show that combined retiming and clock scheduling does
improve over the separate application of the two optimizations.
Improvements greater than 10% are achieved in only five cases,
however, and most of the circuits show no improvement. This
relatively unimpressive performance can be attributed to the
structure of our original test circuits. Most of these circuits
are finite state machines with single-register loops or with
input/output combinational paths. Thus, they are not amenable
to performance optimization by retiming or clock scheduling.

TABLE I
STATISTICS OFTEST CIRCUITS

To explore the potential of simultaneous retiming and clock
scheduling on a test suite that is more representative of typical
circuits, we slightly modified the original benchmark circuits
by inserting an additional register into each single-register loop.
Specifically, each register whose output was connected to its
own input via a purely combinational path was replaced by a pair
of back-to-back registers. This modification does not change the
clock period of the unoptimized circuits. It nevertheless creates
more potential for retiming and clock scheduling to improve
circuit performance.

The optimal clock periods , , and were com-
puted on the modified test circuits. Relative improvements

are given in Fig. 12. Simultaneous
retiming and clock scheduling improved the clock period for
more than half of the modified test suite. For one-third of
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Fig. 11. Relative clock period improvements with original circuits over retiming or clock scheduling.

Fig. 12. Relative clock period improvements with modified circuits over retiming or clock scheduling.

Fig. 13. Relative clock period improvements with modified circuits over the sequential retiming and clock scheduling.

the test circuits, improvements exceeded 10%. In four cases,
relative improvements exceeded 30%. The average improve-
ment was 8%. These results show the superiority of combined
retiming and clock scheduling to the separate application of the
two optimizations.

In addition to the separate application of retiming or clock
scheduling, we compared our heuristic algorithm RSMINP
with a relatively straightforward sequential heuristic. Specif-
ically, for all modified circuits, we computed the minimum
possible clock periods that can be obtained by performing
minimum-period retiming followed by minimum-period sched-
uling. As with our heuristic, the tolerance was set to zero.
Although this heuristic may fail to obtain the shortest possible
clock period, as we demonstrated in Section I, it proved to be
quite effective on our modified circuits with respect to clock
period minimization. Fig. 13 shows the relative improvements
obtained by our heuristic over the sequential heuristic on the
modified circuits. Noticeable improvements were achieved
for only a quarter of the circuits in the test suite. Average and
maximum improvements were 1.6% and 28%, respectively.

TABLE II
CLOCK PERIOD MINIMIZATION WITH ALGORITHM RSMINP AND AN EXACT

MILP-BASED BRANCH-AND-BOUND ALGORITHM
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Fig. 14. Optimal tolerance with� = � .

The runtime of Procedure RSMINP was always longer than that
of the sequential heuristic, since RSMINP uses the sequential
heuristic as a preprocessing step. If RSMINP could not find
a better solution than the sequential heuristic, it terminated
quickly and achieved comparable runtimes. Whenever Proce-
dure RSMINP computed better solutions, however, its runtime
could be several times longer then the sequential heuristic.

To evaluate the relative speed and efficiency of our retiming
and clock scheduling heuristic, we independently developed a
MILP-based branch-and-bound solver. Table II compares the
runtimes and output clock periods of the two programs for a
subset of our test suite. In general, the CPU requirements of the
MILP-based optimizer grow very fast, due to the high compu-
tational complexity of mixed-integer linear programming. With
a 48-hour timeout, the MILP-solver runs out of time on most
circuits, without having discovered a better solution than the
heuristic scheme. The last column of Table II shows the relative
clock period improvement achieved by the MILP-based solver
over our heuristic. Except for daio, the fastest circuit computed
by the heuristic is as good as that of the MILP solver. For daio,
the heuristic solution comes within 1% of the MILP solver. In
the case of s1423, the heuristic computes a better solution, be-
cause the exact solver reaches its timeout limit before discov-
ering a better solution. Whenever the exact solver terminates
with the optimal answer, it is one to five orders of magnitude
slower than the heuristic.

In all the experiments, gate delays were derived from the
widely used linear delay formula . For each
gate , we set and

, where and were parameters ob-
tained from the library iwls93.mis2lib in the LGSynth93 bench-
mark. The parameter was a random number uniformly
distributed in the interval [0,1). The relatively small range of
this parameter resulted in small variations between the max-
imum and minimum gate delays, thus limiting the effectiveness
of combined retiming and clock scheduling over the sequential
application of the two heuristics. The delaysand were com-
puted once and then were kept constant throughout the retiming
process. Although fanout can change in zero-skew retiming,
when clock skew is not zero, registers can only be merged when
they have the same skew, an event that occurs very rarely. In

this paper, we did not consider register sharing, and therefore
the fanout did not change during retiming.

B. Delay Tolerance Maximization

In addition to clock period optimization, we applied retiming
and clock scheduling to our modified benchmark circuits to
maximize their tolerance to clock delay variations. In our exper-
iments, target clock periods ranged from to . For
each clock period, the test circuits were optimized by retiming,
clock scheduling, sequential retiming and clock scheduling, and
Procedure RSMAXT to achieve the maximum tolerance , ,

, and , respectively. The sequential heuristic performed
minimal-period retiming followed by maximal tolerance sched-
uling with the given target clock period.

Generally speaking, retiming had little effect on tolerance im-
provement in our experiments and was outperformed by clock
scheduling for most circuits. The sequential heuristic achieved
the highest tolerance among , , and . As shown in
Figs. 14–18, for most target clock periods and most test circuits,
our heuristic RSMAXT achieved higher tolerance than the best
achievable by the other three optimization methods. For ,
clock scheduling performs as well as the combined application
of retiming and clock scheduling in almost all cases. When the
target clock period is relatively long, each circuit has only a few
critical paths and abundant timing slack that can be distributed
with no need for register relocation. It is thus possible for clock
scheduling to set the clock arrival times near the middle of their
respective permissible ranges, thus achieving the same tolerance
as the combination of retiming and clock scheduling. As the
target clock period decreases, our retiming and clock scheduling
heuristic outperforms the other three alternatives by an increas-
ingly higher margin. Moreover, it is capable of achieving shorter
clock periods than the alternatives. Fig. 19 gives the fraction of
test circuits for which our heuristic and its three alternatives can
achieve correct timing. For , Procedure RSMAXT
can meet the required timing for about 20% more circuits than
the combination of the other three methods.

For each circuit and each target clock period, we cal-
culated the normalized tolerance achieved by our
heuristic RSMAXT and the best of the other optimizations
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Fig. 15. Optimal tolerance with� = 0:95 � � .

Fig. 16. Optimal tolerance with� = 0:85 � � .

Fig. 17. Optimal tolerance with� = 0:75 � � .

. Whenever the target clock period
could not be achieved, we set tolerance to zero. Fig. 20
shows the average tolerance improvements with respect to
the target clock period. As the target decreases, average
relative improvements increase monotonically, exceeding 25%
at and averaging 12% across the entire range.
Our combined retiming and clock scheduling methodology is

thus most promising for high-speed circuit design with a tight
timing budget.

Table III compares the efficiency and effectiveness of the
heuristic solver and the MILP-based solver for a target clock of

. With a timeout limit set to 48 hours, the MILP solver
improves the tolerance of only a small number of circuits from
our test suite. For every circuit omitted from the table, the MILP
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Fig. 18. Optimal tolerance with� = 0:65 � � .

Fig. 19. Percentages of circuits that achieve correct timing under different target periods.

solver reaches its timeout without any improvement in circuit
tolerance. Whenever both algorithms yield improvements, the
heuristic is one to five orders of magnitude faster than the MILP
solver. The relative effectiveness of the MILP-based algorithm
over the heuristic approach is shown in the sixth column of
the table. For all circuits but lion, the heuristic outperforms the
MILP-based algorithm.

VII. CONCLUSION
This paper explores the application of simultaneous retiming

and clock scheduling for maximizing the operating speed or
the delay-variation tolerance of synchronous circuits with

edge-triggered registers. Our work encompasses delay vari-
ations caused by process parameter variations, temperature
fluctuations, and power supply variations. It is also applicable
to the case of variations in clock signal delays due to clock
gating or other data-dependent hardware mechanisms.

In the context of setup and hold constraints, we show that the
combined optimization can result in faster or more tolerant cir-
cuits than when either of the two optimizations is applied sep-
arately or sequentially. We give a precise mixed-integer linear
programming formulation for the basic problem of retiming and
clock scheduling with a target clock period and a specified tol-
erance to variations in the clock signal delays. Moreover, we
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Fig. 20. Relative tolerance improvement by RSMAXT over the best achieved by retiming, clock scheduling, or sequential retiming and clock scheduling.

TABLE III
COMPARISON OFALGORITHM RSMAXT AND AN EXACT MILP-BASED SOLVER

FOR DELAY TOLERANCE MAXIMIZATION

present efficient and effective heuristics for the two optimiza-
tion variants of the basic feasibility problem.

Experiments with a test suite obtained by modifying
LGSynth93 and ISCAS89 benchmark circuits demonstrate
the significant performance improvements achievable by
simultaneous retiming and clock scheduling over the separate
application of the two optimizations. For one-third of the
circuits in our test suite, clock period improved by at least 10%.
The sequential application of retiming and clock scheduling
was found to be effective in improving clock frequency. Yet our
heuristic can still improve the clock period by a significant 28%
in best case. Tolerance to delay variations improved by 12%
on the average over the best of retiming, clock scheduling, and

sequential retiming and clock scheduling. In general, relative
tolerance improvements were higher with more aggressive
clock periods, thus suggesting the particular effectiveness of
the simultaneous optimization for high-speed circuit design.

Our work can be generalized to encompass several varia-
tions of the retiming and clock scheduling problem. The basic
MILP formulation can be extended in a straightforward manner
to include a register minimization objective so that the target
clock period and delay tolerance are achieved with the minimum
number of registers. It can also be extended to handle more gen-
eral delay models that account for changes in the register loca-
tions or impose restrictions on the mobility of certain registers.

An interesting problem in practice would be to investigate
the effectiveness of combined retiming and clock scheduling
when clock delay values are discrete or multiples of a basic
delay. Another challenging and interesting research topic is the
investigation of retiming and clock scheduling in the context
of level-clocked circuitry with level-sensitive latches and mul-
tiphase clock schemes.
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