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Fourier Analysis
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Abstract—Based on a Fourier series analysis, an analytic inter-
connect model is presented which is suitable for periodic signals,
such as a clock signal. In this model, the far-end time-domain
waveform is approximated by the summation of several sinusoids.
Closed-form solutions of the 50% delay and overshoots/under-
shoots are provided when the fifth and higher order harmonics are
ignored. Good accuracy is observed between the model and SPICE
simulations. The model is applied to resistance–capacitance–in-
ductance interconnect trees and the computational complexity of
the model is linear with the size of the tree and the model order.
The tree model is shown to be an effective method to analyze
clock distribution networks. The single interconnect model is
also extended to coupled multi-interconnect systems to analyze
crosstalk noise and a general waveform solution is obtained. It
is noted that in addition to the transition time, the period of the
aggressor signal also has a significant effect on the crosstalk noise.

Index Terms—Clock tree synthesis, Fourier analysis, intercon-
nect, noise analysis, resistance–capacitance–inductance (RLC),
very large scale integration (VLSI).

I. INTRODUCTION

I N DEEP submicrometer integrated circuits, interconnect
delay dominates gate delay. Furthermore, wire inductance

can no longer be ignored, due to higher signal frequencies and
longer wire lengths [1]. Accurate and efficient resistance–ca-
pacitance–inductance (RLC) interconnect models are, therefore,
critical in the design of high-performance integrated circuits.

Based on modified Bessel functions, expressions character-
izing the transient response of an RLC interconnect have been
rigorously developed in [2] and [3]. These results, however, are
highly complicated and are not suitable for an exploratory de-
sign process. In order to produce a more efficient solution, the
transfer function of the interconnect is truncated and approxi-
mated with a few dominant poles, for example, one or two poles
in [4] and [5], and four poles in [6]. Four pole expressions are
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highly accurate, however, no closed-form solution has been de-
veloped in [6]. In all of these models, a step or ramp input is
assumed and no initial conditions are considered. For a periodic
signal, however, the initial conditions can have a significant ef-
fect on the output waveform.

The performance of a synchronous circuit is heavily depen-
dent on the design of a clock distribution network. RLC inter-
connect trees are common structures in clock networks. An ac-
curate model of an RLC interconnect tree, therefore, is critical
in modern digital circuit design. In [4] and [7], second-order
models are used to analyze RLC trees. The accuracy of these
models, however, is limited. In order to obtain a more accu-
rate result, model order-reduction techniques can be adopted
at the expense of additional computational complexity, such as
asymptotic waveform evaluation (AWE) [8].

With the scaling of semiconductor technologies, interconnect
crosstalk has become another important issue. Crosstalk can be
caused by either (or both) capacitive coupling and inductive cou-
pling. Capacitive coupling is a short-range effect, where typi-
cally only adjacent lines need be considered. On the contrary,
inductive coupling is a long range effect and is significantly
more difficult to analyze. For multiconductor transmission lines,
modal analysis [9], [10] is a widely used decoupling method.
This decoupling method is extended to drivers and loads in [11]
and [12] for two and more interconnects. The extensions, how-
ever, are only valid for identical lines with identical drivers and
loads. Furthermore, a homogeneous dielectric environment is
assumed in [12].

In this paper, a new interconnect model is presented. The
model is based on a Fourier series analysis of a periodic input
signal. No approximation is made to the transfer function of the
interconnect. The far-end response is approximated by the sum-
mation of several sinusoids. Since the solution is the steady-state
response to a periodic signal, the initial conditions are consid-
ered. The model is verified by SPICE simulations and success-
fully extended to RLC trees and multiple transmission lines.
The paper is organized as follows. In Section II, the Fourier
series-based interconnect model for a single line is described.
In Section III, the model is applied to RLC trees, and a tree
model with linear computational complexity is obtained. Com-
bined with the modal analysis, the proposed model is extended
to multiple interconnect lines in Section IV to analyze crosstalk
noise. Finally, some conclusions are offered in Section V.

II. SINGLE INTERCONNECT MODEL

The exact transfer function of a widely used interconnect
model is described in Section II-A, and compared with the
transfer functions of some approximate models. A Fourier
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Fig. 1. Equivalent circuit model of a distributed RLC interconnect.

series analysis of a typical on-chip signal is presented in
Section II-B. Based on this analysis, an expression for the
time-domain response at the far end of an interconnect is
presented in Section II-C. Closed-form solutions for the 50%
delay and overshoot/undershoots are presented in Section II-D.
In Section II-E, results from this model are compared with
SPICE. A maximum error of about 11% is exhibited.

A. Interconnect Transfer Function

A classical interconnect model is shown in Fig. 1. The inter-
connect is represented by a distributed RLC transmission line,
where is the interconnect length, and R, L, and C are the re-
sistance, inductance, and capacitance per unit length, respec-
tively. The driver is linearized as a voltage source serially
connected with a driver resistance . The load of the intercon-
nect is modeled as a capacitor .

This equivalent circuit is a linear time-invariant (LTI) system.
For LTI systems, the time-domain response can be solved by an
inverse Laplace transform. From the parameters [13] of
a transmission line, the transfer function from the input to the
far end of a line is

(1)

where and . Since
(1) includes hyperbolic functions of the complex frequency ,
the inverse Laplace transform is difficult to derive directly. In
order to simplify the problem, the denominator of the transfer
function is expanded into an infinite series. By truncating this
series, the transfer function is approximated by a few dominant
poles [4], [6]. A distributed RLC line can also be modeled by
lumped elements through moment matching [14].

In Fig. 2, the transfer function of some existing models [4],
[6], [14] are compared with the exact transfer function described
in (1). In this example, the interconnect parameters are
2 mm, 8.829 m m 1.538 pH m, and
0.18 fF/ m. The per unit length parameters are calculated with
FastHenry [15] and FastCap [16] for the top-layer metal inter-
connect in a standard 0.18- m CMOS technology. The intercon-
nect has a width 2 m and a height 1 m. The driver
resistance and load capacitance are 30 and 50 fF,
respectively. The interconnect parameters from this example are
used in the rest of this paper. As illustrated in Fig. 2, for this ex-
ample, a simple L-type lumped model produces the poorest ap-
proximation. The two-pole model can be accurate up to 5 GHz.
A nonuniform two stage L-type lumped model is a fourth-order
approximation and has a similar accuracy range as the four-pole
model, which is accurate up to 9 GHz; however, no closed-form
solutions for these two models have been reported.

Fig. 2. Amplitude transfer function of different models of an RLC
interconnect.

Fig. 3. Amplitude transfer functions of an RLC interconnect with different
inductive effects.

The resonance frequencies (where the peaks occur in the
exact transfer function) of the system are related to the poles of
the transfer function. A nonuniform 2L model and a four-pole
model can track the first peak of the exact transfer function,
which means these two models can accurately model two
poles of the system (the other pole is in the negative-frequency
domain). The resonance frequencies are due to the reflection of
the signal at the terminals; therefore, the resonance frequencies
are approximately multiples of , where
is the time-of-flight. The high peaks in the transfer function
are due to strong inductive effects. If the interconnect is
dominant, the amplitude transfer function has no overshoots
and decreases quickly with increasing frequency. In Fig. 3, the
transfer functions with different inductive effects are shown.
The inductance effects are characterized by a parameter [1],
and, in this example, is varied by changing . A small
implies significant inductive effects. As shown in Fig. 3, when

, which corresponds to (the character-
istic impedance at high frequencies), the reflection coefficient
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Fig. 4. Normalized amplitude of odd order harmonics.

at the source is zero, thus, no resonance effects occur. When
is greater than is greater than 0.59, is positive,

and the basic resonance frequency is about . Alternatively,
when is less than is less than 0.59, is negative,
and the basic resonance frequency is about .

B. Fourier Series Representation of Input Signal

In previous work, the excitation signal is modeled as a step or
ramp function, and most of the effort is focused on the transfer
function. In this paper, however, a different approach is pre-
sented which focuses on the input signal. The input signal is
approximated by a periodic ramp signal [17]

(2)

where is the period of is an integer, and is the
transition time. As is well known, a periodic signal can be rep-
resented as a summation of a Fourier series. The Fourier series
representation of is

(3)

(4)

(5)

where is the basis angular frequency, and and
are the amplitude and phase of the th-order harmonic,

respectively. From (3), is composed of the dc compo-
nent and odd-order harmonics. Since decreases quadrati-
cally with can be approximated by the first several
harmonics [17]. The normalized amplitude of the odd-order har-
monics is shown in Fig. 4 for different . Note in Fig. 4 that
the decrease in slows with decreasing . In the limiting
case, and , which is reciprocally
proportional to .

C. Far-End Time Domain Response

Since the circuit shown in Fig. 1 is linear and the input signal
can be represented by a summation of harmonics, the superposi-
tion rule can be used to determine the output signal. The transfer
function at each angular frequency can be represented as

(6)

From (1), the gain of the dc component is . The output,
therefore, is

(7)

(8)

(9)

can also be approximated by the first several lower order
harmonics. In this paper, the Fourier series-based models are
referred to as Fb3 and Fb5, with the largest harmonic order
number of three and five, respectively. The results from Fb3 and
Fb5 are compared with SPICE in Fig. 5. The input signal param-
eters are 500 ps, 0.1, and 1.5 V. In the SPICE
simulation, the interconnect line is divided into 200 segments
and each segment is represented by an L-type lumped model.
As shown in Fig. 5, two harmonics (Fb3) are sufficient to pro-
vide a good approximation of the output voltage waveform for
this example.

D. 50% Delay and Overshoots/Undershoots

The 50% delay and overshoots/undershoots can be solved nu-
merically from (7). In this paper, the 50% delay is assumed to
be less than (valid in most practical cases), and the
overshoots/undershoots caused by the rising edge are measured
between the waveform and ground, as shown in Fig. 5. For Fb3,
since only two harmonics are considered, a closed-form solu-
tion is available. In this case

(10)

To determine the 50% delay, (10) is set to . By applying
the multiple-angle formulas [18], a third-order trigonometric ex-
pression can be obtained as

(11)

where and

(12)

(13)

(14)

(15)

A third-order expression has either one or three real roots, and
a closed-form solution exists [11]. If (11) has only one real root

, the output waveform crosses only once from low-to-
high during the first half of a period, therefore, the undershoot
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Fig. 5. Comparison of the time-domain response from Fb3 and Fb5 with SPICE.

is greater than . From this real root, the 50% delay can be
expressed as

(16)

The value of is in the range of . If (11) has
three real roots, the output waveform crosses three times
during the first half of the period, therefore the undershoot is
less than . In this case, the output waveform is not shaped
like a square wave and can no longer represent logic values.

The process for determining the overshoots/undershoots is
similar to that of the delay. From (10), the derivative of
is

(17)

Setting (17) to zero and applying the multiple-angle formulas,
the following third-order trigonometric expression is obtained
as

(18)

where and

(19)

(20)

(21)

(22)

The time when the extremum occurs can be obtained from the
real roots of (18). Note that the time obtained can be less than

. This behavior occurs because the voltage response described
by (7) is a steady-state response. The extremum which occurs
before is the response to the previous period of the input

signal. For the response to the current period, the time when
the extremum occurs should be

(23)

where is a real root of (18). Inserting into (10), the corre-
sponding extremum is

(24)

The overshoot and undershoot are chosen as the maximum and
minimum of the results obtained in (24), respectively.

If higher accuracy is required, more harmonics should be in-
cluded in the model, and higher order (fifth, seventh, ) equa-
tions should be solved. Since only real roots are of interest,
some efficient root-finding algorithms can be used, such as the
Newton–Raphson method. The complexity, however, increases.

Since the output waveform is approximated by a summation
of sinusoids, some of the undershoots obtained are not real
undershoots (called pseudoundershoots in this paper) and
should be discarded. By comparing the waveforms obtained by
the model with SPICE simulations, three such cases are found.

1) There is only one extremum.
2) The last extremum (according to the time index) is the
largest.
3) All extremum values are greater than .

In these cases, either the output is overdamped or the period is
too short for the waveform to achieve the undershoot within half
a period. Examples of different cases are shown in Fig. 6.

E. Model Verification and Discussion

The 50% delay calculated with the proposed model is com-
pared with SPICE in Table I. The interconnect parameters for

6 m are 3.35 m m 1.36 pH m, and
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Fig. 6. Examples of pseudoundershoots for different cases. (a) Case1, R = 100 
 and C = 500 fF. (b) Case2, R = 100 
 and C = 50 fF. (c) Case3,
R = 60 
 and C = 500 fF. (d) Case2 and case3, R = 60 
 and C = 500 fF. The input signal parameters are T = 500 ps, �=T = 0.1, and V = 1.5 V.

TABLE I
COMPARISON OF THE 50% DELAY FROM Fb3 AND Fb5 WITH SPICE AND A

SINGLE POLE MODEL. THE INPUT SIGNAL PARAMETERS ARE T = 500 ps,
� = 50 ps, AND V = 1.5 V. THE INTERCONNECT PARAMETERS

ARE l = 2 mm AND h = 1 �m

0.33 fF/ m. The interconnect parameters for 10 m are
2.2 m m 1.26 pH m, and 0.49 fF/ m.

Results from a single pole model with a ramp input [5] are also
listed. As expected, the single pole model is accurate only when
the circuit is dominated by the impedance. When the circuit
is dominated by the impedance, the error is large. How-
ever, the proposed Fourier series-based method provides accu-
rate delay estimates for both -dominated and -dominated

TABLE II
COMPARISON OF OVERSHOOTS/UNDERSHOOTS FROM Fb3 AND Fb5 WITH

SPICE SIMULATIONS. THE INPUT SIGNAL PARAMETERS ARE T = 500 ps,
� = 50 ps, AND V = 1.5 V. THE INTERCONNECT PARAMETERS

ARE l = 2 mm AND h = 1 �m

circuits. The average error of Fb5 is only 0.6% over a wide
range of circuit parameters (the parameters are selected such
that the bandwidth requirement is satisfied). The overshoots/un-
dershoots for underdamped responses resulting from Fb3 and
Fb5 are compared with SPICE in Table II. As listed in Tables I
and II, the model becomes more accurate with additional har-
monics.
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Fig. 7. Effect of initial conditions on the periodic signals. l = 5 mm.

Fig. 8. 50% delay versus interconnect length. w = 2 �m, T = 500 ps, and
� = 50 ps.

In Tables I and II, the delay and overshoots/undershoots ob-
tained from Fb3, Fb5, and SPICE characterize the steady-state
response. If the response to a rising edge (or falling edge) cannot
converge to (or 0) within half a period, the charge and cur-
rent at the end of a period become the initial conditions of the
following period. These initial conditions, however, can have a
significant effect on propagating high-frequency signals along
long interconnects. The far-end response to a single ramp input
and a periodic ramp input are compared in Fig. 7. As shown
in Fig. 7, the position and value of the overshoot are quite dif-
ferent for the two responses. For periodic signals, the method
presented here is more suitable than other models in which zero
initial conditions are assumed. In Fig. 8, the delay model is ex-
amined for various interconnect lengths. The interconnect in-
ductance is determined for each interconnect length, since the
inductance does not increase linearly with line length. Another
advantage of the proposed model is that frequency-dependent
effects of the interconnect can be directly included, since the
transfer function is calculated at each individual frequency.

The accuracy of the proposed model depends on the fre-
quency spectrum of the far-end response. If most of the signal
energy is allocated in the lower order harmonics, neglecting
those higher order harmonics will cause little error and the

Fig. 9. 50% delay for different �=T . w = 2 �m, l = 2 mm, T = 500 ps,
V = 1.5 V, R = 30 
, and C = 50 fF.

Fig. 10. Normalized amplitude of harmonics with different �=T .

model is accurate; otherwise, the accuracy of the model will
decrease. From Figs. 3 and 4, it can be concluded that the
accuracy becomes worse for signals with small propa-
gating along highly inductive interconnects. The 50% delay
with different is shown in Fig. 9. Note that the accuracy of
the model increases when increases from zero. From (5),
when is large, no longer decreases monotonically with

, as shown in Fig. 10, since the term also depends
on . This effect is demonstrated in Fig. 9. Note that when

is greater than 0.2, the results from Fb3 and Fb5 start to
deviate from the SPICE simulations and the highest accuracy
of Fb3 and Fb5 occurs when is between 0.1 and 0.2.

For highly dominant interconnects, the accuracy of the
model also depends on the frequency of the signal. The 50%
delay and overshoots for different signal frequencies are shown
in Fig. 11. For a fixed , changing the frequency of the input
signal corresponds to stretching the Fourier series in the fre-
quency domain. When the signal frequency is much less than
the resonance frequencies, all of the primary harmonics are lo-
cated in the flat region of the transfer function curve. Those har-
monics which are close to the resonance frequencies are suffi-
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Fig. 11. Effects of signal frequency on the accuracy of the proposed model. (a) 50% delay. (b) Overshoot. The circuit parameters are w = 2 �m, l = 2 mm,
�=T = 0.1; V = 1:5 V, R = 30 
, and C = 50 fF.

ciently small that they can be safely neglected. The interconnect
line behaves as a pure delay segment and the proposed model
exhibits good accuracy. With the frequency increasing, the first
two or three harmonics remain in the flat region in the amplitude
transfer function. The remaining harmonics, however, approach
those resonance frequencies and are amplified. Neglecting these
harmonics will produce significant error. As shown in Fig. 11(a),
the maximum error of the 50% delay for this example circuit
occurs at 500 MHz. With the signal frequency continuously in-
creasing, the first several harmonics also approach the resonance
frequencies and are amplified, therefore, the ratio between the
harmonics which are included in the model and the harmonics
which are neglected increases, making the proposed model more
accurate. Since the resonance frequency is related to , when
the interconnect length increases, the resonance frequency de-
creases. With technology scaling, the global interconnect be-
comes longer and the clock frequency becomes higher. The pro-
posed model is expected to become more accurate with higher
speed circuits.

III. DISTRIBUTED RLC TREES

Interconnect trees are widely used in clock distribution net-
works. In this section, the proposed Fourier series-based model
is extended to tree structures. Arbitrarily accurate results can
be obtained by including a different number of harmonics. The
computational complexity is linear with the size of the tree and
the number of harmonics. In Section III-A, the transfer function
of a distributed RLC tree is developed. In Section III-B, a tree
example is analyzed with the Fourier series-based model.

A. Transfer Function of Distributed RLC Trees

An example of a distributed RLC tree is shown in Fig. 12. In
this example, a driver with an output resistance is connected
to the root of the tree . All of the output nodes
are called leaves and connected with load buffers which can be
used to drive the RLC trees in the next level. The load buffers

Fig. 12. Distributed RLC tree.

are modeled by capacitors. All of the branches in the tree are
represented by distributed RLC lines. The tree can be balanced
or unbalanced; however, unbalanced trees exhibit more complex
characteristics than balanced trees [7].

The transfer function from to a certain node is the
product of the transfer function of all of the branches along the
unique path from to . For a transmission line of length
with load at the far end, the input impedance seen from the
near end is

(25)

where and are defined in Section II-A. For a node with
multiple fanout, the load impedance seen at this node is the par-
allel combination of the input impedance of the downstream
branches which are connected to this node. The computational
complexity of computing the input impedance at the nodes in
the tree is , where is the number of branches in the
entire tree. The transfer function of a single branch can be ob-
tained by replacing by 0 and by in (1)

(26)
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Fig. 13. Example of a shielded clock-wire structure.

TABLE III
INTERCONNECT LENGTHS SHOWN IN FIG. 12 NORMALIZED TO l

TABLE IV
LOAD CAPACITANCES SHOWN IN FIG. 12 NORMALIZED TO C

The transfer function from the voltage source to a certain node
, therefore, is

(27)

where is the input impedance seen from , and is the
index covering each branch in the path from to . From
(27), the computational complexity of computing the transfer
function at node for one frequency is , where is
the number of branches along the path from to . Upon
obtaining , the Fourier series-based model can be applied.
The total computation complexity to determine the time domain
response at node is

(28)

where is the number of harmonics included in the model.
Note that the first term in (28) is related to calculating the input
impedances of the branches, which are calculated only once for
a specific tree. To determine the response at another node, the
additional computational complexity is the second term in (28).

B. Examples

The tree structure shown in Fig. 12 is evaluated in this sec-
tion. The branches in the tree can have different parasitic inter-
connect impedances. For simplicity, the branches are assumed
to have the same width of 6 m. In high-speed clock networks,
ground wires are often placed at each side of the signal line as
shields [19], [20], as shown in Fig. 13. Since these ground wires
provide a nearby current return path, the effective inductance of
the signal wire is greatly reduced. The width of the shield wire
is assumed to be 10 m and the space between the shield and
the clock line is 6 m. The interconnect parameters of such a
structure are 3.9 m m 0.43 pH m, and
0.36 fF/ m. An effective conductivity of 2.2 cm is used to
determine the resistance and inductance. The normalized wire
length and load capacitance shown in Fig. 12 are listed in Ta-
bles III and IV, where and are the normalized reference
length and capacitance, respectively.

TABLE V
50% DELAYS AT NODES N5 AND N7 AS SHOWN IN FIG. 12

WITH DIFFERENT CIRCUIT PARAMETERS

A 2-GHz clock signal with 50 ps is applied at the input
of the tree. The 50% delay at nodes and are listed in
Table V for a range of circuit parameters. Results from the two-
pole model [4] and the equivalent Elmore delay model [7] are
also listed for comparison. Since no closed-form solution for a
ramp input signal is available with these methods, the values
listed in Table V are obtained through curve measurement. The
branches in the tree are represented by lumped L-type models
in [4] and [7].

The methods presented in [4] and [7] have similar accu-
racy and complexity, since both of these models are based
on second-order approximations. For a response which is
low-frequency dominant, such as the response at node ,
these second order methods can produce accurate delay es-
timates. For a response which exhibits more high-frequency
effects, such as the response at node , the error caused
by these second-order methods becomes large. These high
frequency effects originate not only from the complexity of the
tree structure, but also from the distributed properties of the
interconnect, which cannot be modeled by lumped elements.
As listed in Table V, Fb3 and Fb5 produce higher accuracy
than those second order approximations, particularly for node

. The average error of Fb5 is only 3.3%. The time domain
response obtained by different models at nodes and
is compared with SPICE simulations in Fig. 14. As shown in
Fig. 14, although the equivalent Elmore delay model provides
satisfactory estimation of the 50% delay at node , other
information characterizing the waveform is lost, such as the
overshoots and transition times. The 10% to 90% transition
times from different models are compared with SPICE in
Table VI. As listed in Table VI, all of the models exhibit worse
accuracy for the transition times as compared with the 50%
delay, since additional high-frequency harmonics are required
to characterize the signal transition times. Among the models,
Fb5 is the most accurate, exhibiting an average error of 5.8%.

The accuracy of the Fourier series-based model can be en-
hanced to capture the fine details of the waveform by including
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Fig. 14. Time-domain response at the leaves of the tree shown in Fig. 12. (a) Node N5. (b) Node N7. The circuit parameters are l = 1 mm, � = 50 ps, T =

500 ps, V = 1.5 V, R = 10 
, and C = 20 fF.

TABLE VI
TRANSITION TIMES AT NODES N5 AND N7 AS SHOWN IN FIG. 12

WITH DIFFERENT CIRCUIT PARAMETERS

additional harmonics. As shown in (28), the complexity of
higher order Fourier series-based models is linear with the
number of harmonics. Furthermore, there are no stability and
numerical problems such as suffered by AWE [8]. In Fig. 15,
the Fourier series-based model with a different number of
harmonics is compared with SPICE simulations. is reduced
to 5 ps to emphasize the high-frequency effects. As shown
in Fig. 15, results from the tenth-order Fourier series-based
model are sufficiently close to the SPICE simulations. These
experiments are performed on a SunBlade1000 workstation. In
SPICE simulations, each branch is represented by 100 lumped
elements. The time required by SPICE to simulate one clock
period (500 ps) is 9.6 s. The run time of the tenth-order model
(implemented by Matlab) is about 6.6 ms.

Clock distribution networks are typically hierarchically struc-
tured. A high-level interconnect tree distributes the clock signal

to several buffers, which drive the lower level interconnect trees.
The buffers in the clock-distribution networks are nonlinear de-
vices, and the clock signal is reshaped by these buffers. The pro-
posed model, therefore, is limited to a single tree structure. By
combining the signal waveform at the output node of a tree and
the buffer model, the effective input signal for the tree of the
next level can be obtained. The proposed model, therefore, can
be applied to each individual tree in a specific clock network,
permitting the entire network to be analyzed. The analysis of a
hierarchical clock-distribution network, however, is omitted in
this paper due to space limitations.

IV. MULTIPLE COUPLED INTERCONNECT LINES

The solution for a single distributed RLC line can also be ex-
tended to multiple coupled transmission lines. In Section IV-A,
the modal analysis-based decoupling method is reviewed. A
general solution for multiple transmission lines is presented in
Section IV-B. The model is verified by SPICE in Section IV-C.

A. Decoupling Multiconductor Systems

For multiple transmission lines, the interconnect parameters
per unit length are the resistance matrix , inductance matrix ,
and capacitance matrix . All of these matrices are symmetric
with the dimension of , where is the number of lines.
From the telegrapher equations of coupled transmission lines,
the voltage vector and current vector have the following
relationship in the frequency domain:

(29)

where and .
Decoupling (29) can be achieved by applying a modal anal-

ysis [9], [10]. The matrix for a practical system is always
diagonalizable [10]

(30)
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Fig. 15. Time-domain response at node N7 as shown in Fig. 12, evaluated by the Fourier series-based model with different n as compared with SPICE
simulations. The circuit parameters are l = 1 mm, � = 5 ps, T = 500 ps, V = 1.5 V, R = 10 
, and C = 20 fF.

Fig. 16. Geometric characteristics of five parallel interconnect lines.

where is a diagonal matrix with eigenvalues of as the di-
agonal elements, and matrix has the corresponding eigenvec-
tors of as the columns. Performing a linear transformation
of and

(31)

(32)

and substituting (31) and (32) into (29), (29) becomes

(33)

where and . Since and
are symmetric, and are both diagonal [9]. The coupled
interconnect lines are, therefore, decoupled into independent

Fig. 17. Amplitude transfer functions of a five-line system.

lines. The characteristic impedance matrix and the propaga-
tion coefficient matrix of the decoupled system are

(34)

(35)
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Fig. 18. Comparison of the far-end response from Fb3 and Fb5 with SPICE in a five-line coupled system, (a) line 1 and (b) line 2. The input-signal parameters
are T = 500 ps, � = 50 ps, and V = 1.5 V.

This decoupling method has been extended to drivers and
loads in [11] and [12] for two and more interconnects. These
extensions, however, are only suitable for identical lines with
identical drivers and loads. Furthermore, the inductance matrix
in [12] is obtained as , where is the speed of light
in a dielectric. This expression is only valid for a homogeneous
dielectric environment with an ideal ground for the current re-
turn path. Due to these constraints, the practical generality of
these models is greatly limited.

B. Far-End Response

Applying the parameter concept to (33), the voltage
and current vectors at the boundary have the following relation-
ship:

(36)

where the subscript and represent the driver side (or near
end) and receiver side (or far end), respectively. The
[13] matrices of the decoupled transmission lines are

(37)

(38)

(39)

(40)

The boundary conditions of the coupled interconnects are

(41)

(42)

TABLE VII
COMPARISON OF THE MAXIMUM CROSSTALK NOISE FROM Fb3 AND Fb5 WITH

SPICE SIMULATIONS. THE INPUT SIGNAL PARAMETERS ARE T =

500 ps, � = 50 ps, AND V = 1.5 V

where and are the driver resistance matrix and load ca-
pacitance matrix, respectively. Both of these matrices are diag-
onal. Combining (36) with (31), (32), (41), and (42), the voltage
vector at the far end of the interconnects is

(43)

(44)

where is the transfer function matrix. The matrices
of the coupled transmission lines are

(45)

(46)

(47)

(48)

In general, is a matrix function of and cannot be expressed
in closed form [10]. Furthermore, the matrix inverse operation in
(44) does not permit an analytic expression (or an analytic low-
order approximation) of the transfer function to be obtained.
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Fig. 19. Crosstalk noise in a five line system versus the period of the excitation signal, (a) victim 2 and (b) victim 5. The circuit and signal parameters are l = 2
mm, � = 30 ps, and V = 1.5 V.

Conventional inverse Laplace transform-based methods [2]–[6],
which assume a step or ramp input, can no longer be used. The
proposed model, which assumes a periodic input signal, remains
valid, since the solution of (44) is only required at certain dis-
crete frequencies (e.g., the harmonic frequencies of the input
signal), and can be solved numerically at each frequency. When

is less than five, closed-form solutions exist [12] to calcu-
late and . For a larger , numerical methods have to be
used, and the computing complexity increases. When
becomes an identity matrix. Since no approximation is made in
this derivation, (44) is the exact transfer function of a coupled
multiconductor system. For the structure shown in Fig. 16, the
accuracy of (44) is illustrated in Fig. 17. The interconnect pa-
rameters are

m m (49)

pH m (50)

aF m (51)

For simplicity, capacitive coupling is assumed to exist
only between adjacent lines. The other circuit parameters
are 2 mm, 50, 30, 40, 50, 30 , and

50, 100, 80, 80, 50 fF. In Fig. 17, represents
the amplitude transfer function from the input of line to
the far end of line . Upon obtaining the transfer coefficient
at each harmonic frequency, the output signal can be deter-
mined in the same manner as in (7). The time-of-flight of a
multiconductor system is the minimum of all of the wave
modes. In this multiconductor model, no constraints are made
on the interconnect parameters, making the solution of general
utility. With a periodic ramp signal applied to line 1, the far-end

response from Fb3 and Fb5 is compared with SPICE in Fig. 18.
The model is implemented by Matlab and the runtime for this
example is about 17 ms on a SunBlade1000 workstation. The
time required by SPICE to simulate one clock period (500 ps)
is 7.7 s.

C. Model Verification and Discussion

For simplicity, only one aggressor is considered in the fol-
lowing examples. Multi-aggressor circuits can be solved by ap-
plying superposition. The maximum crosstalk noise determined
by the Fourier series-based model is compared with SPICE in
Table VII for several cases: the five line system evaluated in
Section IV-B with interconnect lengths of 1 and 2 mm, and a
three-line system (composed of lines 1–3) with the same geo-
metric characteristics as the five-line system. In these systems,
line 1 is the aggressor, and all of the other lines are quiet victims
(represented as V2–V5 in Table VII).

As shown in Table VII, Fb3 provides limited accuracy in mul-
ticonductor systems. Note that the error reaches 40% as com-
pared with SPICE. This result is not surprising since, as shown
in Fig. 17, the magnitude of the transfer function of the victims is
small at low frequencies. Thus, the high-frequency components
are comparable or greater than the low-frequency components at
the output, and are, therefore, not negligible. By including one
more frequency component, Fb5 is significantly more accurate,
exhibiting an average error of 4.3%.

Note in Table VII that the noise on the victims far from the
aggressor can be greater than the noise on a nearby victim. Since
capacitive coupling is assumed to exist only between adjacent
lines, the noise on the far victims is primarily due to inductive
coupling. This noise, however, is not just a simple function of
the mutual inductance between the victim and the aggressor, but
a complicated function of all of the circuit parameters. Since no
dedicated shield lines or ground planes are assumed, the mutual
inductance decreases slowly with distance. By including the ef-
fects of different driver resistances and load capacitances of the
victims, a victim line with a small mutual inductance can pro-
duce greater noise than a victim line with a large mutual induc-
tance. Furthermore, with a rising edge on the aggressor, capaci-
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tive coupling produces a positive response on the victim, while
inductive coupling produces an oscillating response beginning
with a negative peak. These two effects can cancel each other,
thereby lowering the noise voltage on the nearby victim line.

Also note that there are peaks in the amplitude frequency re-
sponse of the victims, as shown in Fig. 17. If a harmonic fre-
quency at the input is located on or near a peak, the noise on that
victim will be large. The crosstalk noise, therefore, depends not
only on the transition time but also on the period of the excita-
tion signal. For example, in Fig. 17, has a peak at 3.6 GHz.
The third harmonic frequency of a 1.25 GHz ramp signal (
0.8 ns) is 3.75 GHz, which is near that peak. With the same
transition time rate , the maximum coupling noise
produced by the 1.25-GHz signal is 246.9 mV, which is 61.1%
greater than the noise produced by a 2-GHz signal, although the
1.25-GHz signal has a longer transition time. The relationship
between the maximum crosstalk noise and the signal period is
shown in Fig. 19. The high-frequency response (which is ig-
nored in the model) on the fifth victim is relatively more impor-
tant as compared with the second victim. The proposed model
therefore exhibits a larger error on the fifth victim than on the
second victim.

In integrated circuits, since logic gates have a low pass fil-
tering property [21], the sharp spikes in the time domain wave-
forms normally cannot cause a circuit to fail. The Fourier se-
ries-based model, which ignores these high frequency effects,
is therefore an effective method to analyze crosstalk noise.

V. CONCLUSION

By exploiting a Fourier series representation of a typical
on-chip signal, an analytic time-domain solution for an RLC in-
terconnect is shown to be an effective modeling strategy, which
can be used in early circuit-level design stages to estimate the
time characteristics of periodic signals. Expressions for the
50% delay and the overshoots/undershoots are also provided
and are within 11% of SPICE over a wide range of circuit
parameters. The single-line model is applied to tree structures
and a tree model with linear computational complexity is ob-
tained, which is shown to be an effective analysis tool for clock
distribution networks. Combined with the modal analysis-based
decoupling method, the proposed model is also extended to
coupled interconnect systems to analyze crosstalk noise. For
three harmonic frequencies (Fb5), the average error is 4.3%.
It is also noted that crosstalk noise depends not only on the
transition time but also on the period of the excitation signal.
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