
3346 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 10, OCTOBER 2022

QuCTS—Single-Flux Quantum Clock
Tree Synthesis

Rassul Bairamkulov , Graduate Student Member, IEEE, Tahereh Jabbari , Graduate Student Member, IEEE,
and Eby G. Friedman , Fellow, IEEE

Abstract—Superconductive rapid single-flux quantum (RSFQ)
is an emerging cryogenic technology, promising a significant boost
in performance and ultralow power consumption. The operating
frequency achieved by RSFQ digital integrated circuits is several
orders of magnitude greater than traditional CMOS circuits.
The fundamental difference of RSFQ circuits, however, renders
traditional clocking techniques appropriate for CMOS unsuitable
for RSFQ technology. Most RSFQ logic gates, such as AND and
OR, are sequential in nature. The number of pipeline stages is
therefore significantly greater in RSFQ as compared to CMOS,
complicating the clock distribution network design process. This
issue is further exacerbated with the need for splitters to achieve a
fanout greater than one and the need for transmission lines rather
than ordinary metallic wires as in CMOS. In this work, QuCTS—
single-flux Quantum (SFQ) Clock Tree Synthesis—is presented.
QuCTS utilizes a two-stage framework for synthesizing clock
networks. In the clock skew scheduling stage, the clock signal
arrival time of each gate is chosen to maximize the robustness
of the circuit to timing variations. In the clock tree synthesis
stage, the layout of the clock distribution network is generated
based on a novel delay equilibration technique. QuCTS is the first
clock tree synthesis tool for RSFQ circuits utilizing useful clock
skew. The synthesized network satisfies the clock arrival time
requirements while minimizing the associated overhead, such as
the interconnect length and number of delay elements. The tool
is validated on a set of benchmark circuits. In a prototypical
case study, a clock tree is generated for the AMD2901 with 1049
clock sinks in 53 min while satisfying the clock arrival time.

Index Terms—

I. INTRODUCTION

RAPID single-flux quantum (RSFQ) technology offers a
range of advantages as compared to CMOS. Several

orders of magnitude greater operating frequency and three
orders of magnitude lower power are among the most promi-
nent advantages of RSFQ. Substantial progress has been made
in the field of superconductive electronics in the past decades.
SFQ manufacturing technology is capable of accommodat-
ing over 6000 Josephson junctions (JJ) per mm2 [1]. An

Manuscript received 12 May 2021; revised 31 July 2021; accepted
26 September 2021. Date of publication 26 October 2021; date of current
version 20 September 2022. This work was supported in part by the National
Science Foundation under Grant CCF-1716091; in part by the Intelligence
Advanced Research Projects Activity under Grant W911NF-17-9-0001; and
in part by the Qualcomm and Synopsys. This article was recommended by
Associate Editor R. Wille. (Corresponding author: Rassul Bairamkulov.)

The authors are with the Department of Electrical and Computer
Engineering, University of Rochester, Rochester, NY 14627 USA (e-mail:
rbairamk@ur.rochester.edu; friedman@ece.rochester.edu).

Digital Object Identifier 10.1109/TCAD.2021.3123141

8-bit superconductive microprocessor operating at a frequency
of 80 GHz has been successfully fabricated [2]. Ongoing
advancements in electronic design automation for RSFQ cir-
cuits are expected to enable the large scale integration of
superconductive digital systems [3], [4].

Beyond the necessity for the cryogenic operation below
approximately 4K and the relatively low density on-chip inte-
gration as compared to CMOS, the design of a robust on-chip
clock distribution network remains a significant challenge in
RSFQ systems [5]. The fundamental properties of RSFQ tech-
nology are described in the seminal work of Likharev and
Semenov [6]. Unlike traditional CMOS, where the information
is represented with a high or low DC voltage level, short quan-
tized voltage pulses transfer information in RSFQ. A logical
high or low is represented, respectively, by the presence or
absence of a single-flux quantum (SFQ) pulse within a certain
time interval. Most logic gates in RSFQ are therefore sequen-
tial, such as AND and OR gates that are combinatorial in
CMOS. This structure drastically increases the pipeline depth
as compared to CMOS, complicating the clock network design
process. The complexity of the clock distribution network is
further exacerbated by the interconnect structures in RSFQ
systems [7]. Unlike CMOS, where the gates can be con-
nected with a simple wire, RSFQ interconnect is either a
passive transmission line (PTL) requiring a driver, receiver,
and impedance matching [8], or an active Josephson trans-
mission line (JTL) requiring bias current for each JJ. Finally,
most RSFQ gates have a fanout of one. A splitter gate is
used to generate two (or more) SFQ pulses from an input
signal [7], [9].

Different approaches to clocking RSFQ circuits have been
reported in the literature. Clockless self-timed systems have
been proposed [10]–[13]. An effective operating frequency
of 20 gigahertz has been demonstrated while eliminating the
overhead of the clock distribution network. Self-timed circuits,
however, remain vulnerable to timing violations, exhibit unpre-
dictable performance due to sensitivity to logic delays, and use
handshaking circuitry that requires significant area [14].

Hierarchical chains of homogeneous clover-leaves clocking
(HC)2LC are described in [15]. The primary advantage of this
structure is robustness since the clock period of the system
adapts to the slowest hierarchical chain. Another advantage
is the elimination of race condition hazards due to forced
counterclocking [5], [15]. The primary drawback is reduced
clock speed since the worst case path determines the clock
period of the entire system. Another drawback of this method

1937-4151 c© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on October 06,2022 at 17:59:49 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-6783-0664
https://orcid.org/0000-0001-8113-7751
https://orcid.org/0000-0002-5549-7160

BAIRAMKULOV et al.: QUCTS—SFQ CLOCK TREE SYNTHESIS 3347

is the underutilization of clock skew as an additional degree
of design freedom. Counterclocking increases the setup time
constraints which limit the minimum clock period [5].

A minimum skew clock tree synthesis algorithm for SFQ
circuits is proposed in [16]. The algorithm incorporates
the CMOS-based deferred merge embedding (DME) algo-
rithm [17] to generate a zero skew clock tree. Due to the
nonnegligible dimensions of the splitters, the clock tree gen-
erated by DME typically violates RSFQ design rules. A
legalization step is therefore proposed [16] to correct the lay-
out at the cost of introducing small skew into the clock tree.
Minimizing the clock skew, however, results in a suboptimal
clock frequency [18] and does not guarantee correct function-
ality [19]. Furthermore, nonzero clock skew in data paths can
improve the performance and robustness of the synchronous
system [20]. With clock skew scheduling, extra delay in the
fast data paths is exploited to decrease the effective delay of
the critical paths, thereby increasing the maximum attainable
operating frequency [18], [21]–[24].

While clock skew optimization may provide a significant
gain in performance and robustness, it is often overlooked
in existing RSFQ clocking approaches. To bridge this gap,
QuCTS, a SFQ clock tree synthesis algorithm, is introduced.
In the clock skew scheduling stage, the arrival time of each
clocked gate is based on the algorithm from [18] and [25]. The
limitations of RSFQ technology, such as the use of splitters
and limited fanout, prevent the direct application of CMOS
techniques for clock tree synthesis. A novel method for gen-
erating a clock tree topology for RSFQ systems based on
hierarchical clustering is proposed here. Unlike CMOS, the
RSFQ clock tree is complicated by many splitters and delay
elements whose placement is restricted to a set of vacant gate
cells. A primary contribution of this article is the delay equi-
libration algorithm for RSFQ clock tree layout synthesis. By
judiciously placing the splitters and delay elements and adjust-
ing the interconnect, the clock arrival times determined from
the clock skew scheduling stage are satisfied.

This article is organized as follows. In Section II, the clock
skew scheduling algorithm is presented. The binary clock tree
synthesis process is described in Section III, followed by
the delay equilibration process presented in Section IV. The
performance of the algorithm is evaluated in the case study
and benchmark circuits presented in Section V, followed by
the conclusion in Section VI.

II. CLOCK SKEW SCHEDULING

Clock skew scheduling is a powerful technique to
maximize the speed and robustness of a synchronous
system [18], [22], [23]. Despite the potential benefits of use-
ful clock skew, it is often viewed as a parasitic effect requiring
minimization [26], [27]. In addition, achieving zero clock skew
is quite difficult due to process and environmental variations
as well as electromagnetic interference that permeate not only
CMOS but also RSFQ circuits [5], [15], [28].

The first stage of QuCTS, presented in this section, miti-
gates this issue by adapting clock skew scheduling within the
RSFQ circuit design process. QuCTS operates in four stages.

The sequential circuit topology, described in Verilog, is ini-
tially converted into a sequential graph. The minimum clock
period is determined by evaluating the expected delay and
delay uncertainty of each data path. The permissible range
(PR) of each data path is a function of the clock skew in
sequentially adjacent registers [19], [20], [24]. The clock skew
schedule is generated using a quadratic programming algo-
rithm that maximizes the robustness of the circuit to parameter
variations [18], [25]. The clock skew schedule is converted into
a schedule of clock arrival times that is passed to the clock
tree synthesis algorithm.

A. Sequential Graph

The first step in the clock skew scheduling process is con-
version of the circuit topology into a directed sequential graph
G = (V, E, dmin : E→ R, Dmax : E→ R), where V is the set
of nodes, E is the set of edges, and dmin and Dmax are, respec-
tively, the minimum and maximum delay of an edge in E. A
typical sequential circuit consists of inputs, outputs, clocked
gates, nonclocked gates, and interconnects. For brevity, the
clocked and nonclocked gates are referred to as, respectively,
registers and gates. Each edge (i, j) ∈ E represents a combina-
tional data path pi,j from a source to target register. The range
of delays di,j = [dmin

i,j , Dmax
i,j] of an edge (i, j) within a graph

is the sum of the delays along a data path

di,j =
∑

k∈pi,j

(
dgate

k + dint
k

)
(1)

where dint
k denotes the range of delay of the interconnect

between gate k and the next gate, and dgate
k denotes the range of

the input-to-output delay of gate k or a clock-to-output delay of
register k. The gate and register delays are supplied externally
as input data.

The inputs and outputs of a sequential circuit are often
described in Verilog as floating signal nets. This structure is
not supported in a graph, where the edges require both source
and target nodes. Furthermore, it is often desired that the clock
skew between the input and output nodes of a circuit is 0 [18].
A dummy I/O node is therefore added to the sequential graph,
as illustrated in Fig. 1. The I/O node is the tail (source) of
each input edge and the head (target) of each output edge.
The dummy node is treated as a standard node during the
clock skew scheduling process. Since a node cannot have a
nonzero clock skew with itself, zero clock skew is ensured
among the circuit inputs and outputs.

B. Minimum Clock Period

In the zero clock skew approach, the minimum clock period
is determined by the delay of the critical paths. In a nonzero
clock skew system, however, finding the minimum clock
period requires a significantly more sophisticated process. The
minimum clock period is determined by the cycles and recon-
vergent paths within the sequential graph [18], as shown in,
respectively, Fig. 2(a) and (b).

An example of a sequential circuit containing cycle pii with
n nodes is shown in Fig. 2(a). To ensure the correct operation

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on October 06,2022 at 17:59:49 UTC from IEEE Xplore. Restrictions apply.

3348 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 10, OCTOBER 2022

(a) (b)

Fig. 1. Processing of inputs and outputs of a logic circuit in a sequential
graph. (a) Initial system with inputs x1, . . . , xm and outputs y1, . . . , yn. Note
that the input and output edges (signal nets in Verilog) typically have one
floating terminal. (b) Sequential graph representation of the input and output
edges in QuCTS. The floating terminals of the input and output edges are
connected to a dummy I/O node. This node acts as a tail (source) of all input
edges and a head (target) of all output edges. The I/O node eliminates any
clock skew between the circuit terminals.

(b)

(a)

Fig. 2. Constraints of the minimum clock period within a sequential circuit.
(a) Cycle path with n registers starting with node i. The dotted arrows represent
the connection to external circuitry. (b) Reconvergent path between registers
d and c.

of the circuit including this cycle, the clock period cannot be
smaller than

Ti = 1

n

∑

j∈pii

(
Dmax

j,j+1 + δs
j+1

)
(2)

where δs
j+1 is the setup time of the gate following gate j.

The clock skew within the cycle is fixed at zero, since, as
previously mentioned, a register cannot have a nonzero clock
skew with itself [24]. Equation (2) therefore requires the aver-
age propagation delay of a data path within a cycle to not
be greater than the clock period. Finding the minimum clock
period requires determining the cycles within sequential graph
G. The computational complexity of finding all cycles within
a graph is O((|V| + |E|)(nc + 1)), where nc is the number of
cycles within a graph.

The reconvergent paths are distinct sequential paths that
begin at the same divergent register d and end at the same
convergent register c. The optimization of these reconvergent
paths includes delay insertion, i.e., intentionally adding delay

to specific data paths to align the arrival time of the sig-
nals, thereby reducing the minimum clock period. Consider
the example illustrated in Fig. 2(b). The short path (s1, . . . , sn)

with n nodes has the smallest propagation delay, and the long
path (l1, . . . , lm) with m nodes has the largest propagation
delay. The minimum clock period Tdc due to the reconvergent
paths between nodes d and c is

Tdc = Dl − Ds + δs
c + δh

c

|m− n+ 1| (3)

where Dl and Ds are, respectively, the maximum propagation
delay of pl and minimum propagation delay of ps, and δs

c and
δh

c are, respectively, the setup and hold time of convergent reg-
ister c. While delay padding may reduce the minimum clock
period, this method requires finding all reconvergent paths
within graph G. The complexity of finding a single simple
path in a directed graph is O(|V| + |E|) [29]. The number of
simple paths can however be prohibitively large, up to |V|!
in a fully connected graph. Depending upon the complexity,
an integrated circuit may contain hundreds of thousands of
nodes, leading to an exorbitant number of simple paths. Delay
insertion is therefore not practical for large circuits. An alter-
native approach, adapted from [30], is utilized in the algorithm
presented here. The minimum clock period is determined by
the delay uncertainty of the edges

Tmin
i,j = max

(i,j)∈E

(
Dmax

i,j − dmin
i,j + δs

j + δh
i

)
(4)

where δh
i is the hold time of register i.

The minimum clock period of the overall system is

Tmin = max

(
max
(i,j)∈E

(
Dmax

i,j − dmin
i,j + δs

j + δh
i

)
, max

i∈V

(
Ti)

)
. (5)

This minimum clock period determines the target clock
period in the clock skew scheduling process, as described
in Section II-C. Note that although setting the clock period
to Tmin maximizes the performance of the system, a higher
clock period can be chosen to improve other metrics, such as
robustness to parameter variations [19], [20].

C. Clock Skew Optimization

Once the minimum clock period is determined, clock skew
optimization is performed in two steps. The PR [19], [20], [31]
of the clock skew for each path is used to form an objective
function. The basis cycles are determined within the graph
to form a constraint function. The clock skew schedule is
optimized for robustness to parameter variations.

The PR is the range of clock skew between sequentially
adjacent registers i and j that satisfy the setup and hold
constraints of a circuit [24], [31], defined as

PRi,j =
[
−dmin

i,j + δh
i , TCP − Dmax

i,j − δs
j

]
(6)

where TCP is the target clock period. In vector form, the upper
and lower bound of the PR for every combinational data path
is expressed as vectors smin, smax ∈ R

|E|. To maximize the
robustness of the system, the clock skew of each data path is

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on October 06,2022 at 17:59:49 UTC from IEEE Xplore. Restrictions apply.

BAIRAMKULOV et al.: QUCTS—SFQ CLOCK TREE SYNTHESIS 3349

maintained at the center s∗ of the PR,

s∗ = 1

2
(smin + smax). (7)

Clock skew deviations arising from parameter variations are
therefore less likely to cause a setup or hold time violation.
Note however that due to timing constraints, such as cycles,
maintaining the clock skew at the center of the PR is often not
possible [20]. The scheduling process therefore sets each target
clock skew as close to the center of the PR while satisfying
the local timing constraints.

Let s ∈ R
|E| be the vector of clock skews for each local

data path. The clock skew scheduling optimization problem is
expressed as

Minimize:
s

∥∥s− s∗
∥∥2 (8)

subject to smin
i ≤ si ≤ si

max∀i ∈ N, i ≤ |E| (9)

Bs = 0 (10)

where smin
i , si, and si

max are the ith element of, respec-
tively, smin, s, and smax; 0 ∈ R

|E| is the zero vector; and
B ∈ R

(|E|−|V|+1)×|E| is the circuit connectivity matrix of
graph G [18]. With (8), the clock skew of each data path is
placed as close to the center of the PR as possible [20], [24].
Expression (9) requires the clock skew of each data path to be
within the PR. Expression (10) requires the clock skew within
a cycle to be zero. Each row bi in B represents an indepen-
dent cycle in G. The entry bi,j is equal to 1 or −1 if the edge,
respectively, follows or opposes the direction of the cycle, and
0 if the edge does not belong to the cycle. An efficient solution
of this problem can be achieved with quadratic programming
(QP) in O(|V|3) time [25].

Once the final clock skew schedule is generated, a sched-
ule of clock arrival times is produced. An arbitrary node x is
marked as a reference node with a clock arrival time of 0.
The clock arrival time at each register is determined using the
fundamental equation of clock skew [24]

si,f = τi − τf (11)

where τi and τf are, respectively, the clock arrival time at the
initial and final register of a local data path. The arrival time
τp of the register p preceding register x is

τp = sp,x + τx (12)

where sp,x is the clock skew of the edge (p, x) determined
from the optimization process. Similarly, the arrival time τs of
the successor s of register x is

τs = τx − sx,s (13)

where sp,x is the clock skew of the edge (x, s). The process is
repeated until the arrival time at each register is determined.
The resulting schedule of arrival times is passed to the clock
tree synthesis algorithm, as described in Section III.

III. CLOCK TREE SYNTHESIS

Once the clock arrival time of each logic gate is determined,
the objective is to generate a clock network that satisfies these

arrival times. A single external clock source is assumed in
QuCTS. A tree structure distributes the clock signal from a
single source to multiple sinks [32]. Due to the limited fanout
of RSFQ gates, splitters are required to distribute the clock
signal to many gates within a circuit. Standard splitters provide
a fanout of two. Nonstandard splitters with a higher fanout
exist, although the bias margins are significantly degraded as
compared to standard splitters [7], [9]. A binary clock tree is
therefore produced by QuCTS.

To distribute the clock signal to N gates, N− 1 splitters are
required, forming a directed binary tree

T = (VT , ET) (14)

VT = VSPL ∪ Vsink (15)

where Vsink is the set of clock sinks (logic gates), and VSPL
is the set of splitters. The leaf nodes within T (i.e., nodes
with zero fanout) correspond to the clock sinks. Other nodes
correspond to splitters and have a fanout of two. The root node
corresponds to the hierarchically topmost splitter, as shown in
Fig. 3. The clock signal initially arrives at the root node within
the clock tree and passes to the splitters corresponding to child
nodes 0 and 1. At each successive node of tree T , the clock
signal is split into multiple signals that eventually arrive at each
sink within a cluster. The arrival time of the clock signal is
the delay from the clock signal source (root node) to the clock
sink. This delay is comprised of splitter delays, interconnect
delay, and any intentional delay. By varying these components,
the arrival time of the signal can be controlled to satisfy the
timing requirements of each clock sink. The objective of the
clock tree synthesis process in RSFQ is to produce a binary
clock tree that delivers the clock signal at a precise time with
the minimum interconnect and junction area.

The first step in the clock tree synthesis process is to pro-
duce a binary tree. A common approach in the binary tree
synthesis is clustering [33], as illustrated in Fig. 3. Each gate
is represented as a point in a 2-D or 3-D space. The loca-
tion of each gate is represented by an X and Y coordinate,
and the weighted clock signal wT serves as a third dimension.
The importance of the clock arrival time is controlled by the
weight parameter w. If w is large, distant gates exhibiting sim-
ilar arrival times are grouped within the same cluster. Fewer
delay elements are therefore needed in this case since the
difference in arrival time of the gates within a cluster is gen-
erally small. In contrast, with the lower weight, the gates are
grouped by physical proximity, disregarding any difference in
arrival times. Shorter interconnects are required to connect the
gates, since the distance between the target nodes is smaller.
More delay elements are however required to accommodate
the difference in arrival time of the clock signals.

To evaluate the effect of the clustering algorithm on the
clock tree topology, several clustering algorithms are consid-
ered, including K-means [34], BIRCH [35], and agglomerative
clustering [36]. Several layout patterns are used to evaluate the
quality and speed of generating a clock tree. K-means clus-
tering and BIRCH performed best, generating similar, more
balanced trees with fewer levels, as compared to agglomera-
tive clustering. The balanced trees exhibit a smaller variation in

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on October 06,2022 at 17:59:49 UTC from IEEE Xplore. Restrictions apply.

3350 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 10, OCTOBER 2022

(b)(a)

Fig. 3. Binary clock tree generation based on clustering. (a) Hierarchical
clustering of the gates based on location. All of the gates are initially placed
within a single top-level cluster c (top row). The set of gates are decomposed
into two clusters, c0 and c1 (middle row), which, in turn, are further divided
into smaller clusters (bottom row), until the clusters contain only a single
clock sink. (b) Binary clock tree T with each node representing a splitter.
The top-level cluster corresponds to the root splitter sr . Gates within c0 and
c1 receive the clock signal from the two branches of the root splitter sr . s0
and s1 are added to the binary clock tree as successors of the root splitter sr
to distribute the SFQ clock pulse from sr to the corresponding clusters. s00
and s01 (s10 and s11) splitters therefore become the successors of splitter s0
(s1) to distribute the clock pulse to, respectively, c00 and c01 (c10 and c11).
Similarly, each successive clustering step adds two new successor splitters to
the corresponding preceding node, producing a binary clock tree.

delay from the clock source to the gates and therefore require
fewer delay elements and less wire snaking. BIRCH exhibited
the smallest runtime, requiring approximately half the time for
generating a clock tree as compared to K-Means. The result of
BIRCH was however highly sensitive to the threshold param-
eter. Conversely, K-means is slower but consistently provides
a more balanced tree. Since the clock tree topology requires
negligible time as compared to the overall runtime of QuCTS,
a more robust K-means algorithm is incorporated into QuCTS.

A binary clock tree is a directed tree, where each node
corresponds to a splitter. The topmost (root) splitter sr ∈ T
receives a clock pulse from an external clock source. The SFQ
pulse at each clock sink is delivered through the parent split-
ter. After the first clustering step, the gates are decomposed
into two groups, c0 and c1. The two SFQ output pulses of
sr are delivered to clusters c0 and c1 via corresponding split-
ters, respectively, s0 and s1. The SFQ pulse at each clock sink
within c0 (c1) is delivered through splitter s0 (s1), as shown
in Fig. 3. Each cluster is iteratively decomposed into a pair
of subclusters until the size of the cluster is a single gate. A
splitter is assigned to each nonsingular cluster, hierarchically
distributing the clock signal to the clock sinks.

IV. DELAY EQUILIBRATION

The binary tree generation process described in the previous
section is a guideline for establishing the hierarchy of the

Algorithm 1: Given a Set of Gates Within the Circuit
U, Two Gates A ∈ U and B ∈ U, Target Clock Arrival
Times τA and τB, Wire Pitch h, Set of Vacant Cells P,
Set of Delays Realizable by a Delay Element D, and Set
of Routing Obstacles O, Place a Splitter and, Optionally,
Delay Elements to Deliver the Clock Signal to A and B at,
Respectively, τA and τB

procedure DELAY_EQUILIBRATION;
Input: A, B, τA, τB, h, P, O
PAB ← CLOSEST_CELLS{P, A, B};
Vp ← {A, B} ∪ PAB;
Ep ← V2

p \ {A, B};
w(a, b)← |xa − xb| + |ya − yb|;
Gp ← (Vp, Ep, w : Ep → R);
qA, qB, gk, d∗A, d∗B ← PROXY_PATH(Gp, A, B, τA, τB, D);
wireA, wireB,�t, O← HANAN(qA, qB, gk, τA, τB, h, O);
if �t > ε then

wireA ← AURA_SNAKING(wireA,�t, O, U);
else if �t < −ε then

wireB ← AURA_SNAKING(wireB,−�t, O, U);
τSPL ← τA−d(wireA)+τB−d(wireB)

2 − dSPL;
return wireA, wireB, gk, τSPL

gates. The actual connections are determined by a delay equi-
libration algorithm illustrated in Algorithm 1. To explain this
process, consider the two gates shown in Fig. 4(a). Connecting
a splitter to these gates via the shortest path is not suitable
since a precise arrival time needs to be satisfied. The delay
from the splitter to both gates determines the arrival time of
the splitter. Delay equilibration is therefore required to satisfy
the arrival time at each gate. A splitter can be placed closer
to the gate with an earlier arrival time, thereby delivering the
SFQ clock pulse earlier [see Fig. 4(b)]. Practically, however,
splitter placement is not arbitrary but limited by physical lay-
out constraints. In addition, if the difference in arrival time is
large, the splitter placement may be insufficient to balance the
arrival time of the clock signals.

In CMOS, a variety of techniques is available to adjust the
wire delay, including wire snaking, wire sizing, dummy wire
insertion, and active delay elements [37]–[39]. In RSFQ, PTLs
require impedance matching, complicating the wire sizing and
dummy wire insertion process. The wire snaking technique,
illustrated in Fig. 4(c), is suitable for RSFQ, albeit requiring
significant area for a modest increase in delay. A significantly
larger delay with a relatively small area can be achieved with
active delay elements. A JTL can be used as a delay element
by controlling the bias current of the JJs [7]. JTLs, however,
require dedicated space within the device layer. JTLs are there-
fore more suitable for providing large delays while PTL-based
wire snaking can be used to tune the path delay.

Delay equilibration of a pair of gates requires the precise
location of each gate. Since only the position of the clock
sinks is initially known, the algorithm generates the clock tree
layout in a reverse breadth-first search order. The gates are
processed in pairs, starting from the farthermost leaves (sinks)
of the tree.

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on October 06,2022 at 17:59:49 UTC from IEEE Xplore. Restrictions apply.

BAIRAMKULOV et al.: QUCTS—SFQ CLOCK TREE SYNTHESIS 3351

(b)(a)

(b)(a)

Fig. 4. Example of delay equilibration process. Two gates A and B require
a clock pulse to arrive at, respectively, 25 and 15 time units. The clock signal
initially arrives at the splitter, where two SFQ pulses for each gate are gen-
erated. (a) Example of an invalid topology. While the delay requirement of B
is satisfied, A receives the SFQ pulse too early, producing a timing violation.
(b) Strategic placement of the splitter closer to B reduces the delay from the
splitter to B and increases the delay from the splitter to A. (c) Wire connecting
the splitter to A is intentionally lengthened to increase the delay. (d) Delay
element is placed between the splitter and A, thereby increasing the delay of
the path.

The embedding of the clock tree into the layout is accom-
plished in three steps. In the coarse embedding step presented
in Section IV-A, the location of the splitter, JTL delay ele-
ments, and initial PTL routing for every pair of nodes in
a binary tree is determined. The local portion of the layout
is converted into a proxy graph where the potential location
of the splitters and JTLs is determined. The graph is evalu-
ated to determine the location and delay of the splitters and
JTLs, satisfying the arrival time of the clock signal with min-
imum interconnect, as described in Section IV-B. Based on
the location of the splitters, JTLs, and blockages, the layout
is converted into a Hanan grid [40]. The approximate PTL
layout is determined using a shortest path algorithm, such as
the A-star algorithm [41]. Precise routing of the interconnect
is determined during the fine routing stage, as described in
Section IV-C. The delay of the wires is finely adjusted with
wire snaking to satisfy the precise requirement of the clock
arrival times.

A. Coarse Routing

The coarse routing process for a pair of nodes A and B
commences with identifying the cell location for the splitters
and JTLs. The layout regions available for the JTLs and split-
ters are provided to QuCTS as a user input. Based on the cell
dimensions and spacing information, these layout regions are
converted into a set of points P describing a potential position
of a cell (see Fig. 5).

The coarse routing procedure is outlined in Algorithm 2.
Delay equilibrium can be achieved with wire snaking or delay
insertion [38], [39]. Large delays with wire snaking however
require prohibitively large area and increase the likelihood of
routing congestion. Delay elements, in contrast, typically pro-
duce large delays, rendering these delay elements unsuitable if
the delay difference is small. N cells located close to the line
connecting nodes A and B form a subset of cells PAB ⊂ P suit-
able for routing. These gate cells combined with gates A and B

Algorithm 2: Given a Proxy Graph Gp, Two Nodes A and
B, and Set of Delays D Available at Each Delay Element,
Determine the Splitter gk and Paths qA and qB Connecting
a Splitter to, Respectively, A and B While Satisfying the
Difference in Arrival Times Between Nodes

procedure PROXY_PATH;
Input: Gp, A, B, τA, τB, D
L∗ ← ∞;
for each path {A, g1, . . . , gm, B} from A to B do

L = v(wA,1 + · · · + wm,B);
for k ∈ {1, 2, m− 1, m} do

qA ← (A, g1, . . . , gk);
qB ← (gk, gk+1, . . . , gm, B);
WA,k = wA,1 + ...+ wk−1,k;
Wk,B = wk,k+1 + ...+ wm,B;

for each combination {d1, . . . , dk−1} ∈
((D

k−1

))
do

for each combination {dk+1, . . . , dm} ∈
((D

m−k

))

do
SA,k ←∑k−1

i=1 di;
Sk,B ←∑m

i=k+1 di;
�t← τA− τB−WA,k+Wk,B−SA,k+Sk,B;
�L← v�t;
Ltotal ← L+�L;
if Ltotal < L∗ then

L∗ ← Ltotal;
q∗A ← qA;
q∗B ← qB;
d∗A ← {d1, . . . , dk−1};
d∗B ← {dk+1, . . . , dm};

end
end

end
end

end
return q∗A, q∗B, gk, d∗A, d∗B

form the node set of proxy graph vertices Vp = {A, B} ∪ PAB.
Each pair of nodes in Vp except {A, B} is connected with
an edge. The weight of each edge is the Manhattan distance
between the terminals. The edge weights therefore represent
the length of the shortest rectilinear PTL connecting two points
within a layout. For a proxy graph with N+2 nodes (two gates
and N gate cells), a total of (1/2)(N+2)(N+1) edge weights
is determined. The resulting undirected proxy graph is

Gp =
(
Vp, Ep, w : Ep → R

)

Vp = {A, B} ∪ PAB

Ep =
{
{a, b} ∈ V2

p |a �= b ∧ {a, b} �= {A, B}
}

w(a, b) = |xa − xb| + |ya − yb| (16)

where xa and ya are, respectively, x and y coordinates of
node a.

Four crucial assumptions are made when producing proxy
graph Gp.

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on October 06,2022 at 17:59:49 UTC from IEEE Xplore. Restrictions apply.

3352 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 10, OCTOBER 2022

(a) (b) (c)

(d) (e) (f)

Fig. 5. Example of delay equilibration between gates A and B. τi is the arrival time of gate i. (a) Initial layout. The empty circles represent vacant gate cells.
(b) Discovery of gate cells in proximity of the line connecting the two gates. The darker areas are closer to the line and are included in the proxy graph.
(c) Proxy graph containing six discovered gate cells and gates A and B. The thickness of the edges represents the closeness of the two nodes within a layout.
(d) Candidate proxy path A − g5 − g6 − B is discovered in a proxy graph. (e) Candidate proxy path transferred to the layout. wi,j is the delay of the path
between nodes i and j, and di is the delay of the element at cell i. The splitter is therefore placed at node 6. The delay from the splitter to A relative to τA
is smaller than the delay from the splitter to B relative to τB. The arrival time of the splitter is therefore based on the arrival time of B. Additional delay is
required along the path to node A. (f) Using wire snaking, additional delay is introduced along the path from the splitter to A. The arrival time is satisfied for
both A and B.

1) Each gate is equipped with a PTL transmitter and
receiver [42]. Including the PTL driver and receiver
within each gate reduces the complexity of the routing
process and enables a linear relationship between the
length and delay of an interconnect [42].

2) The placement of splitters and delay elements is lim-
ited to certain areas of the layout. This assumption is
consistent with a typical RSFQ IC layout, where the
placement of the cells is limited to narrow regions, such
as the cell rows [43]–[45]. Only those nodes within
the dedicated regions have a connection to the vacant
gate cells. Other nodes are not connected to the device
layer, preventing placement of the devices within pro-
hibited zones. QuCTS can however handle arbitrary cell
placement regions.

3) The size of the splitters and delay elements is assumed
to be similar [46] and cells do not overlap. These

assumptions simplify the placement of the splitters and
delay elements, accelerating the clock tree synthesis
process.

4) The orientation and pin configuration of the cells are
assumed flexible, allowing the splitters and JTL elements
to be arbitrarily oriented to satisfy routing needs.

Note that edge {A, B} is explicitly excluded from the proxy
graph since this proxy path does not include a necessary gate
cell for a splitter. The paths within a proxy graph model
the connections in the layout. In this article, these paths are
referred to as proxy paths. A shorter path corresponds to a
PTL connection with a smaller interconnect length. To deter-
mine the shortest proxy paths, the k-shortest path algorithm,
described in [47], is used. This algorithm finds all loop-
less paths from the source to the target in increasing edge
weight. With this algorithm, the proxy paths requiring the least
interconnect resources are identified.

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on October 06,2022 at 17:59:49 UTC from IEEE Xplore. Restrictions apply.

BAIRAMKULOV et al.: QUCTS—SFQ CLOCK TREE SYNTHESIS 3353

B. Analysis of Proxy Path Delay

If the proxy path contains more than one gate cell, the split-
ter placement is determined by the delay analysis described in
this section. For example, consider path A−g5−g6−B shown
in Fig. 5(d). Placing a splitter at g5 requires the SFQ clock
pulse to arrive at the splitter at

τSPL|g5 = τA − wA,5 − dSPL (17)

where dSPL is the splitter delay. The resulting clock arrival
time at node B is

tB = τSPL|g5 + dSPL + w5,6 + d6 + w6,B � τB (18)

where di is the delay of the element placed at node gi, and wi,j

for brevity is equivalent to w(gi, gj). The resulting arrival time
is significantly later than the required arrival time. Correcting
this discrepancy with wire snaking requires a significant area.
If the splitter is instead placed at cell g6, the SFQ clock pulse
arrives at

τSPL|g6 = τA − wA,5 − d5 − w5,6 − dSPL (19)

yielding a clock arrival time at B

tB = τSPL|g6 + dSPL + w6,B ≈ τB. (20)

The discrepancy in arrival time is minimized and can be
corrected with less area overhead using wire snaking.

To generalize this algorithm, consider path A− g1 − · · · −
gm − B with one splitter and m− 1 delay elements. Placing a
splitter at cell gk produces two paths

qA(gk) = (A, g1, . . . , gk−1, SPL) (21)

qB(gk) = (SPL, gk+1, . . . , gm, B). (22)

The delay of each path is the sum of the splitter delay dSPL,
interconnect delay, and intentional delay,

d(qA(gk)) = WA,k + SA,k + dSPL (23)

d(qB(gk)) = Wk,B + Sk,B + dSPL (24)

where

WA,k = wA,1 + · · · + wk−1,k (25)

Wk,B = wk,k+1 + · · · + wm,B (26)

SA,k =
k−1∑

i=1

di (27)

Sk,B =
m∑

i=k+1

di. (28)

Note that d(gk) is replaced with dSPL.
To satisfy the arrival time at gate A, the SFQ clock pulse is

required to arrive at the splitter at time

τSPL|gk = τA −WA,k − SA,k − dSPL. (29)

The resulting arrival time at gate B is

tB = τA −WA,k − SA,k +Wk,B + Sk,B. (30)

If the required arrival time at B is τB, the resulting mismatch
in the clock arrival time is

�t = τA − τB −WA,k +Wk,B − SA,k + Sk,B. (31)

To minimize this mismatch, the splitter placement and delay
of the delay elements are adjusted to minimize |�t|. Ideally,
�t = 0, yielding

τA − τB = WA,k + SA,k −Wk,B − Sk,B. (32)

Practically, however, a tolerance level |�t| < ε is set by the
user that allows the proxy paths to be reasonably close to the
target arrival time.

The intentional delay can be varied by choosing dif-
ferent delays from the set of possible delays, D =
{d1, d2, . . . , dn|di < dj|1 < i < j < n}. The number of delay
elements on each side of the splitter is, respectively, k−1 and
m − k. The total number of possible splitter locations is m,
yielding a total number of delay combinations

N =
n∑

k=1

(
k + n− 2

k − 1

)(
m− k + n− 1

m− k

)
. (33)

To reduce the number of iterations, note that the gate with an
earlier arrival time typically does not require a delay element.
By varying the delay of the elements along the paths, the
target arrival time can be achieved. In addition, a splitter is
placed closer to the gate with a later arrival time, creating
an unnecessary delay imbalance, requiring greater area. By
restricting the splitter placement to k ≤ 2, i.e., no more than
two nodes from the node with a later arrival time, the total
number of combinations is reduced to

N =
(

m+ n− 2

m− 1

)
+ n

(
m+ n− 3

m− 2

)
. (34)

For m = 10 and n = 5, (34) yields 3190 delay element
combinations, as opposed to 48 620 by (33).

Many proxy paths are generated for further processing.
Those proxy paths exhibiting a delay imbalance within a tol-
erance level are sorted by the number of delay elements and
total interconnect length. The path tuning algorithm processes
the least expensive paths first, yielding a significant savings in
area.

C. Fine Routing

During the fine routing stage, the proxy path selected in
the previous section is converted into a layout. To determine a
feasible placement for the interconnect, the routing is based on
a Hanan grid, widely used in VLSI routing [48], and illustrated
by Algorithm 3. Hanan grid H(S) is the set of points produced
by drawing horizontal and vertical lines through each point in
S. In QuCTS, the set of points for the Hanan grid consists of
clocked gates, splitters, and JTL delay elements from the proxy
graph, as well as bounds on the blockages, as illustrated in
Fig. 5(e). A graph GH(S) is based on points within H(S). Two
nodes in GH(S) are connected if the corresponding points are
adjacent along any of the lines within the Hanan grid H(S) and
no blockage exists between the nodes. The weight of an edge
is related to the propagation delay of the clock signal along
the straight interconnect segment connecting the terminals of
the edge.

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on October 06,2022 at 17:59:49 UTC from IEEE Xplore. Restrictions apply.

3354 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 10, OCTOBER 2022

Algorithm 3: Given Splitter Location gk, Proxy Paths qA

and qB, Target Arrival Times τA and τB, Wire Pitch h, and
Set of Obstacles O, Embed Paths qA and qB Within the
Layout

procedure HANAN;
Input: qA, qB, gk, τA, τB, h, O
S← qA ∪ qB ∪ {gk} ∪ BOUNDARIES(O);
H(S)← HANAN_GRID(S);
for each line segment l ∈ H(S) do

if l intersects an obstacle in O then
remove l from H(S);

end
end
try:

segment ⊆ E← SHORTEST_PATH(GH(S), u, v);
success← False;
while success �= True do

try:
GH(S) = (V, E)← CONVERT_TO_GRAPH(H(S));
wireA ← ∅;
for each pair of nodes {u, v} ∈ qA do

segment ⊆ E← SHORTEST_PATH(GH(S), u, v);
E← E \ segment;
wireA ← wireA ∪ segment;

end
wireB ← ∅;
for each pair of nodes {u, v} ∈ qB do

segment ⊆ E← SHORTEST_PATH(GH(S), u, v);
E← E \ segment;
wireB ← wireB ∪ segment;

end
tA ← v length(wireA);
tB ← v length(wireB);
�t← (τA − τB)− (tA − tB);
O← O ∪ wireA ∪ wireB;
success← True;

catch No path between u and v:
S← DETAILED_HANAN(S, h, O)

end
end
return wireA, wireB, �t

Algorithm 4: Given Set of Points S, Wire Pitch h, and Set
of Obstacles O, Produce a More Complete Set of Points

procedure DETAILED_HANAN;
Input: S, h, O
S∗ ← ∅ for each point (x0, y0) ∈ S do

for each point s ∈ {(x0 ± h, y0), (x0, y0 ± h)} do
if p does not intersect an obstacle in O then

S∗ ← S∗ ∪ s;
end

end
end
return S ∪ S∗

During the routing process, previously routed wires may
disconnect graph GH(S), isolating the target cells. To avoid
this situation, the Hanan grid refinement process is applied, as
shown in Algorithm 4. Four additional points, at a distance of
wire pitch h, are added near each point within S, producing
an extended set S∗. A Hanan grid graph GH(S∗) with superior
connectivity is produced and the routing process is repeated.

The delay of the path generated in a Hanan grid graph is
typically different from the estimate based on a proxy path.

Algorithm 5: Given Interconnect Layout Wire, Set of
Obstacles O, and Set of Gates U, Extend the Interconnect
to Increase the Delay by �t

procedure AURA_SNAKING;
Input: wire, �t
Q← {};
for each segment ∈ wire do

for each point q ∈ segment spaced by d do
if segment is vertical then

q1 ← (xp, yp − d);
q2 ← (xp, yp + d);

else
q1 ← (xp − d, yp);
q2 ← (xp + d, yp);

end
if q1 �∈ O then

Q[segment]← Q[segment] ∪ {q1};
p[q1]←∑

p∈U
1

|| �pq1||s ;
end
if q2 �∈ O then

Q[segment]← Q[segment] ∪ {q2};
p[q2]←∑

p∈U
1

|| �pq2||s ;
end

end
end
while �t > ε do

d∗ ← −∞;
for each segment ∈ wire do

for each pair of adjacent points q1, q2 ∈ Q[segment]
do

d← p[q1]+ p[q2];
if d < d∗ then

d∗, q∗1, q∗2, segment∗ ← d, q1, q2, segment;
end

end
end
extend segment∗ with q1 and q2; update wire;
update Q;
�t← �t − 2d

v ;
end
return wireA, wireB, �t

To adjust the delay and satisfy the arrival time requirements,
the wire length is increased using wire snaking. A snaking
method—aura snaking—is proposed here (see Algorithm 5)
to increase the wire length, as illustrated in Fig. 6. The set
of points Q within distance d from the interconnect segment
separated by distance s is initially identified [see Fig. 6(b)].
Set Q is referred to as an aura of the interconnect segment.
The proximity metric of point q ∈ Q to the other gates is
defined as

pq ≡
∑

p∈U

1

‖ �pq‖s
(35)

where U is the set of clock sinks, �pq is the vector connecting
points p and q, and ‖vpq‖s is the s-norm of �pq. A point located
closer to the other gates has a greater proximity metric and
can create congestion. An adjacent pair of aura points with
the smallest proximity metric is therefore chosen for snaking
to minimize the likelihood of congestion. The aura points
are evaluated for intersections with blockages, ensuring the
feasibility of the wire snaking process. Once the aura points

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on October 06,2022 at 17:59:49 UTC from IEEE Xplore. Restrictions apply.

BAIRAMKULOV et al.: QUCTS—SFQ CLOCK TREE SYNTHESIS 3355

(a) (b) (c)

Fig. 6. Single iteration of the aura snaking process. (a) Initial wire segment surrounded by vacant cells and blockages. (b) Aura points generated within
distance d from the wire. Two points near node A (filled) are selected for snaking. Note that the aura point is not generated within the blockage. (c) Final
extended segment.

are selected, the wire segment adjacent to the aura points is
replaced with a snaking segment, as depicted in Fig. 6(c). The
interconnect is therefore extended by 2d, increasing the wire
delay by

δt = 2d

v
(36)

where v is the speed of the RSFQ pulse propagation within a
PTL.

To ensure that the aura points can be generated, spacing s
should be smaller than the length l of the interconnect. The
spacing however cannot be smaller than the wire pitch h due to
manufacturing constraints. In the case studies, as described in
Section V, the spacing is equal to the wire pitch. The minimum
length of any interconnect segment is two times greater than
the wire pitch, ensuring that at least three aura points can
be generated. A sufficient number of aura points cannot be
generated if the wire is completely surrounded by blockages.
In this case, an alternative proxy path is embedded, avoiding
the congested area.

Once a valid route for a pair of nodes is determined, several
operations are necessary before the next pair can be processed.
The splitter, delay elements, and interconnect are placed within
the layout. The corresponding points in PAB are removed from
set P, preventing the placement of additional gates into these
locations. Interconnect is added to the blockages to ensure
no intersection with any subsequent wires exists. The process
described in this section is repeated for each pair of nodes
within the circuit, thereby determining the position of the N−1
splitters with N clock sinks.

V. CASE STUDY

QuCTS is verified with the Verilog model of the AMD2901
CPU and the corresponding layout. 1050 clocked gates are
distributed within a 225 mm2 IC. The maximum and mini-
mum delay of each gate is known. The circuit topology is
represented as a Verilog netlist. The PTL driver and receiver
are embedded within each gate and splitter. The dimension of
each gate is 40 μm × 40 μm. Two layers of interconnect

are dedicated to the clock distribution network. The verti-
cal interconnects are placed in layer M2, and the horizontal
interconnects are placed in layer M3. The gates are located
in layer M5 and connected to layer M3 with vias. The
interconnect pitch is 20 μm. The propagation speed of the
RSFQ pulse in layers M2 and M3 is 6.25 μm/ps. The verti-
cal connections between layers are established by the vias and
produce negligible delay.

A clock skew schedule is generated for a 154 ps clock
period in less than one minute. The clock network layout is
generated in 52.5 min and is shown in Fig. 7. 2290 gates,
1049 splitters, and 1241 delay elements are added to the lay-
out. The total wire length is 1027 mm, occupying an area of
5.134 mm2. 9862 vias are placed between layers M2 and M3,
and 6676 vias are placed between layers M3 and M5. The
maximum difference between the required and actual arrival
times is 1.6 ps.

The proposed tool has also been applied to a suite of
ISCAS’89 [49] and ITC’99 [50] benchmark circuits with high
gate count. The cell placement for the benchmarks is gener-
ated with Synopsys IC design compiler [51]. The results are
listed in Table I. Note that the number of delay elements is
linearly correlated with the number of clocked gates. For all
six benchmarks, an average of 1.3 delay elements per splitter
is included within the clock tree. This trend is explained by
the clustering method used in QuCTS. Since the clock arrival
time is considered during the routing process, gates with a sim-
ilar arrival time are grouped together, producing a small delay
imbalance with fewer delay elements and less wire snaking.
Despite the AMD2901 being composed of fewer gates than
the S13207, the total wirelength is significantly larger. This
trend is explained by the more compact placement of the cells
in the S13207 as compared to the AMD2901.

Since QuCTS is the first SFQ-based clock tree synthesis tool
supporting nonzero skew, a direct comparison is complicated
by the heterogeneity of the benchmark circuits and different
target metrics. In [16], for example, a minimum clock skew
tree is generated that reduces the clock skew below 4.6 ps. The
splitters are initially placed arbitrarily and later embedded into
the routing channels. Since the propagation delay of multiple

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on October 06,2022 at 17:59:49 UTC from IEEE Xplore. Restrictions apply.

3356 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 10, OCTOBER 2022

Fig. 7. Clock tree layout of AMD2901 synthesized with QuCTS.

JTLs is significantly greater than the delay of a PTL, and the
minimum propagation delay is of interest in zero clock skew
scheduling, no JTLs are used in [16]. The number of cells is,
on average, doubled after clock tree synthesis, consistent with
these case studies. No information on the algorithm runtime
is provided [16]. The interconnect routing process is however
transformed into two mixed integer programming problems,
each completed in under 30 min. A timing uncertainty-aware
clock tree is proposed in [52], where robustness to process
variations is improved by maximizing the delay available for
the setup and hold times. This process is analogous to clock
skew scheduling, where the target skew is placed at the center
of the PR [20]. The resulting total wirelength is 0.428 mm per
clocked gate, consistent with the 0.419 mm per clocked gate
exhibited by QuCTS.

The primary bottleneck of the algorithm in these case stud-
ies is the Hanan grid-based interconnect placement, requiring,
on average, 78% of the total runtime, followed by proxy
graph analysis (15%) and clock skew scheduling with 6%.
Determining the clock tree topology requires negligible time
in these case studies. Finding the intersection between the
geometric objects is the most expensive operation, requiring
more than two thirds of the time for path embedding. Based
on these case studies, the path embedding process grows lin-
early with the number of clocked gates. This trend can be
explained by Hanan grid interconnect placement which only
depends on the number of gates, cells, and blockages in prox-
imity of the target gates. Other parts of QuCTS, however, scale
superlinearly. The primary bottleneck of clock skew schedul-
ing is the optimization process. The typical complexity of
the optimization algorithms ranges from O(n2) to O(n3) [53].
Although the clock skew scheduling process is not a bottleneck
in these case studies, clock skew scheduling may dominate
the runtime if the number of gates increases to hundreds of

TABLE I
PERFORMANCE OF QUCTS APPLIED TO AMD2901, ITC99, AND

ISCAS89 BENCHMARK CIRCUITS WITH HIGH GATE COUNT

thousands to millions of gates. The current RSFQ technology,
however, only supports several tens of thousands of junc-
tions, making QuCTS applicable to modern RSFQ circuits and
systems.

VI. CONCLUSION

Advances in RSFQ electronics over the past decades have
enabled the development of sophisticated superconductive
systems. Design methodologies and related algorithms and
techniques targeting the large-scale integration of RSFQ cir-
cuits are essential for managing the increasing complexity
of these systems. Elevating the performance of large-scale
superconductive systems requires a significant advancement in
existing design capabilities, particularly the synchronous clock
distribution network.

QuCTS—SFQ Clock Tree Synthesis—was described in this
article. This tool is the first clock tree synthesis capability
for RSFQ circuits that also utilizes useful clock skew. Using
quadratic programming, the clock skew schedule is optimized
for robustness to parameter variations and converted into a
schedule of clock arrival times. A binary clock tree was gen-
erated by recursive clustering of the clock sinks based on
the physical location and, optionally, the clock arrival times.
Splitters and delay elements are placed within the layout, and
the paths are tuned to satisfy the schedule of arrival times.
The tool was validated using the AMD2901 4-bit micropro-
cessor as well as ITC99 and ISCAS89 benchmark circuits. By
exploring different topologies, QuCTS minimizes the number
of delay elements and interconnect length. The clock arrival
time schedule is precisely satisfied with wire snaking.

REFERENCES

[1] V. K. Semenov, Y. A. Polyakov, and S. K. Tolpygo, “New AC-powered
SFQ digital circuits,” IEEE Trans. Appl. Supercond., vol. 25, no. 3,
pp. 1–7, Jun. 2015.

[2] Y. Ando, R. Sato, M. Tanaka, K. Takagi, N. Takagi, and A. Fujimaki,
“Design and demonstration of an 8-bit bit-serial RSFQ microproces-
sor: CORE e4,” IEEE Trans. Appl. Supercond., vol. 26, no. 5, pp. 1–5,
Aug. 2016.

[3] K. Gaj, Q. P. Herr, V. Adler, A. Krasniewski, E. G. Friedman, and
M. J Feldman, “Tools for the computer-aided design of multigigahertz
superconducting digital circuits,” IEEE Trans. Appl. Supercond., vol. 9,
no. 1, pp. 18–38, Mar. 1999.

[4] C. J. Fourie, “Digital superconducting electronics design tools—Status
and roadmap,” IEEE Trans. Appl. Supercond., vol. 28, no. 5, pp. 1–12,
Aug. 2018.

[5] K. Gaj, E. G. Friedman, and M. J. Feldman, “Timing of multi-gigahertz
rapid single flux quantum digital circuits,” J. VLSI Signal Process. Syst.
Signal Image Video Technol., vol. 16, no. 2, pp. 247–276, Jun. 1997.

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on October 06,2022 at 17:59:49 UTC from IEEE Xplore. Restrictions apply.

BAIRAMKULOV et al.: QUCTS—SFQ CLOCK TREE SYNTHESIS 3357

[6] K. K. Likharev and V. K. Semenov, “RSFQ logic/memory family: A new
josephson-junction technology for sub-terahertz-clock-frequency digi-
tal systems,” IEEE Trans. Appl. Supercond., vol. 1, no. 1, pp. 3–28,
Mar. 1991.

[7] T. Jabbari, G. Krylov, S. Whiteley, E. Mlinar, J. Kawa, and
E. G. Friedman, “Interconnect routing for large-scale RSFQ cir-
cuits,” IEEE Trans. Appl. Supercond., vol. 29, no. 5, Aug. 2019,
Art. no. 1102805.

[8] T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, and E. G. Friedman,
“Repeater insertion in SFQ interconnect,” IEEE Trans. Appl. Supercond.,
vol. 30, no. 8, Dec. 2020, Art. no. 5400508.

[9] T. Jabbari, G. Krylov, J. Kawa, and E. G. Friedman, “Splitter trees in
single flux quantum circuits,” IEEE Trans. Appl. Supercond., vol. 31,
no. 5, pp. 1–6, Aug. 2021.

[10] Z. J. Deng, N. Yoshikawa, S. R. Whiteley, and T. Van Duzer, “Data-
driven self-timed rsfq digital integrated circuit and system,” IEEE Trans.
Appl. Supercond., vol. 7, no. 2, pp. 3634–3637, Jun. 1997.

[11] H. R. Gerber, C. J. Fourie, W. J. Perold, and L. C. Muller, “Design of
an asynchronous microprocessor using RSFQ-AT,” IEEE Trans. Appl.
Supercond., vol. 17, no. 2, pp. 490–493, Jun. 2007.

[12] T. V. Filippov et al., “20 GHz operation of an asynchronous
wave-pipelined RSFQ arithmetic-logic unit,” Phys. Procedia, vol. 36,
pp. 59–65, Jan. 2012.

[13] Y. Nobumori et al., “Design and implementation of a fully asynchronous
SFQ microprocessor: SCRAM2,” IEEE Trans. Appl. Supercond., vol. 17,
no. 2, pp. 478–481, Jun. 2007.

[14] Z. J. Deng, N. Yoshikawa, J. A. Tierno, A. R. Whiteley, and
T. Van Duzer, “Asynchronous circuits and systems in superconduct-
ing RSFQ digital rechnology,” in Proc. IEEE Int. Symp. Adv. Res.
Asynchronous Circuits Syst., Apr. 1998, pp. 274–285.

[15] R. N. Tadros and P. A. Beerel, “A robust and self-adaptive clocking tech-
nique for RSFQ circuits—The architecture,” in Proc. IEEE Int. Symp.
Circuits Syst., May 2018, pp. 1–5.

[16] S. N. Shahsavani and M. Pedram, “A minimum-skew clock tree synthesis
algorithm for single flux quantum logic circuits,” IEEE Trans. Appl.
Supercond., vol. 29, no. 8, pp. 1–13, Dec. 2019.

[17] J. Cong, A. B. Kahng, C.-K. Koh, and C.-W. A. Tsao, “Bounded-skew
clock and steiner routing,” ACM Trans. Design Autom. Electron. Syst.,
vol. 3, no. 3, pp. 341–388, Jul. 1998.

[18] I. S. Kourtev, B. Taskin, and E. G. Friedman, Timing Optimization
Through Clock Skew Scheduling, vol. 166. New York, NY, USA:
Springer, 2008.

[19] J. L. Neves and E. G. Friedman, “Buffered clock tree synthesis with non-
zero clock skew scheduling for increased tolerance to process parameter
variations,” J. VLSI Signal Process. Syst. Signal Image Video Technol.,
vol. 16, no. 2, pp. 149–161, Jun. 1997.

[20] J. L. Neves and E. G. Friedman, “Optimal clock skew scheduling tol-
erant to process variations,” in Proc. IEEE/ACM Design Autom. Conf.,
Jun. 1996, pp. 623–628.

[21] E. G. Friedman, “The application of localized clock distribution design
to improving the performance of retimed sequential circuits,” in Proc.
IEEE Asia-Pac. Conf. Circuits Syst., Dec. 1992, pp. 12–17.

[22] E. G. Friedman, “Performance limitations in synchronous digital
systems,” Ph.D. dissertation, Univ. California, Irvine, CA, USA, 1989.

[23] J. P. Fishburn, “Clock skew optimization,” IEEE Trans. Comput., vol. 39,
no. 7, pp. 945–951, Jul. 1990.

[24] E. G. Friedman, “Clock distribution networks in synchronous digital
integrated circuits,” Proc. IEEE, vol. 89, no. 5, pp. 665–692, May 2001.

[25] I. S. Kourtev and E. G. Friedman, “Clock skew scheduling for improved
reliability via quadratic programming,” in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Design, Nov. 1999, pp. 239–243.

[26] L. Xiao et al., “Local clock skew minimization using blockage-
aware mixed tree-mesh clock network,” in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Design, Nov. 2010, pp. 458–462.

[27] Y.-S. Su, W.-K. Hon, C.-C. Yang, S.-C. Chang, and Y.-J. Chang, “Value
assignment of adjustable delay buffers for clock skew minimization in
multi-voltage mode designs,” in Proc. IEEE/ACM Int. Conf. Comput.
Aided Design, Nov. 2009, pp. 535–538.

[28] A. L. Pankratov and B. Spagnolo, “Suppression of timing errors in
short overdamped josephson junctions,” Phys. Rev. Lett., vol. 93, no. 17,
Oct. 2004, Art. no. 177001.

[29] R. Sedgewick, Algorithms in C, Part 5: Graph Algorithms, Pearson
Educ., 2001.

[30] C. Lin and H. Zhou, “Clock skew scheduling with delay padding for
prescribed skew domains,” in Proc. IEEE Asia South Pac. Design Autom.
Conf., Jan. 2007, pp. 541–546.

[31] J. L. Neves and E. G. Friedman, “Design methodology for synthe-
sizing clock distribution networks exploiting nonzero localized clock
skew,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 4, no. 2,
pp. 286–291, Jun. 1996.

[32] J. L. Neves and E. G. Friedman, “Topological design of clock
distribution networks based on non-zero clock skew specifications,”
in Proc. IEEE Midwest Symp. Circuits Syst., vol. 1, Aug. 1993,
pp. 468–471.

[33] K. Han, A. B. Kahng, and J. Li, “Optimal generalized H-tree topology
and buffering for high-performance and low-power clock distribution,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 39, no. 2,
pp. 478–491, Feb. 2020.

[34] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman,
and A. Y. Wu, “An efficient k-means clustering algorithm: Analysis and
implementation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7,
pp. 881–892, Jul. 2002.

[35] T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: An efficient
data clustering method for very large databases,” ACM SIGMOD Rec.,
vol. 25, no. 2, pp. 103–114, Jun. 1996.

[36] F. Murtagh and P. Legendre, “Ward’s hierarchical agglomerative cluster-
ing method: Which algorithms implement Ward’s criterion?” J. Classif.,
vol. 31, no. 3, pp. 274–295, 2014.

[37] A. Balatsos, “Clock buffer IC with dynamic impedance matching and
skew compensation,” M.S. thesis, Dept. Electr. Comput. Eng., Univ.
Toronto, Toronto, ON, USA, 1998.

[38] R. Chaturvedi and J. Hu, “Buffered clock tree for high quality IC
design,” in Proc. IEEE Int. Symp. Signals Circuits Syst., Jul. 2004,
pp. 381–386.

[39] J.-L. Tsai, T.-H. Chen, and C. C.-P. Chen, “Zero skew clock-tree
optimization with buffer insertion/sizing and wire sizing,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 23, no. 4, pp. 565–572,
Apr. 2004.

[40] M. Hanan, “On Steiner’s problem with rectilinear distance,” SIAM J.
Appl. Math., vol. 14, no. 2, pp. 255–265, Mar. 1966.

[41] W. Zeng and R. L. Church, “Finding shortest paths on real road
networks: The case for A-star,” Int. J. Geogr. Inf. Sci., vol. 23, no. 4,
pp. 531–543, Jun. 2009.

[42] M. Kou, P.-Y. Cheng, J. Zeng, T.-Y. Ho, K. Takagi, and
H. Yao, “Splitter-aware multi-terminal routing with length match-
ing constraint for RSFQ circuits,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 40, no. 11, pp. 2251–2264,
Nov. 2021.

[43] N. Kito, K. Takagi, and N. Takagi, “A fast wire-routing method and
an automatic layout tool for RSFQ digital circuits considering wire-
length matching,” IEEE Trans. Appl. Supercond., vol. 28, no. 4, pp. 1–5,
Jun. 2018.

[44] S. N. Shahsavani, T. Lin, A. Shafaei, C. J. Fourie, and M. Pedram, “An
integrated row-based cell placement and interconnect synthesis tool for
large SFQ logic circuits,” IEEE Trans. Appl. Supercond., vol. 27, no. 4,
pp. 1–8, Jun. 2017.

[45] C. J. Fourie, C. L. Ayala, L. Schindler, T. Tanaka, and N. Yoshikawa,
“Design and characterization of track routing architecture for RSFQ and
AQFP circuits in a multilayer process,” IEEE Trans. Appl. Supercond.,
vol. 30, no. 6, pp. 1–9, Sep. 2020.

[46] R. S. Bakolo and C. J. Fourie, “Development of a RSFQ cell library for
the University of Stellenbosch,” in Proc. IEEE AFRICON, Sep. 2011,
pp. 1–5.

[47] J. Y. Yen, “Finding the K shortest loopless paths in a network,” Manage.
Sci., vol. 17, no. 11, pp. 712–716, Jun. 1971.

[48] M. Zachariasen, “A catalog of Hanan grid problems,” Networks, vol. 38,
pp. 76–83, Sep. 2001.

[49] F. Brglez, D. Bryan, and K. Kozminski, “Combinational profiles of
sequential benchmark circuits,” in Proc. IEEE Int. Symp. Circuits Syst.,,
vol. 3, May 1989, pp. 1929–1934.

[50] S. Davidson, “ITC’99 benchmark circuits—Preliminary results,” in Proc.
IEEE Int. Test Conf., 1999, p. 1125.

[51] “Design compiler and IC compiler physical guidance technology appli-
cation note,” Application Note Version G-2012.06, Synopsys, Mountain
View, CA, USA, Jun. 2012.

[52] S. N. Shahsavani, B. Zhang, and M. Pedram, “A timing uncertainty-
aware clock tree topology generation algorithm for single flux quantum
circuits,” in Proc. Design Autom. Test Europe Conf. Exhibition, 2020,
pp. 278–281.

[53] F. Hutter, L. Xu, H. H. Hoos, and K. Leyton-Brown, “Algorithm runtime
prediction: Methods & evaluation,” Artif. Intell., vol. 206, pp. 79–111,
Jan. 2014.

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on October 06,2022 at 17:59:49 UTC from IEEE Xplore. Restrictions apply.

3358 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 10, OCTOBER 2022

Rassul Bairamkulov (Graduate Student Member,
IEEE) received the B.Eng. degree in electrical and
electronic engineering from Nazarbayev University,
Astana, Kazakhstan, in 2016, and the M.S. degree
in electrical engineering from the University of
Rochester, Rochester, NY, USA, in 2018, where he is
currently pursuing the Ph.D. degree, under the super-
vision of Prof. E. G. Friedman.

He was an Intern with Qualcomm Technologies,
Inc., San Diego, CA, USA, in 2018 and 2020. His
current research interests include power delivery

network design, electronic design automation, and optimization algorithms
in very large scale integration.

Tahereh Jabbari (Graduate Student Member, IEEE)
received the B.Sc. and M.Sc. degrees in elec-
trical engineering from the Sharif University of
Technology, Tehran, Iran, in 2012 and 2015, respec-
tively, and the M.Sc. degree in electrical engineering
from the University of Rochester, Rochester, NY,
USA, in 2019, where she is currently pursuing the
Ph.D. degree in electrical engineering.

From 2015 to 2017, she was a Researcher
of Superconducting Digital Electronics with the
Superconductor Electronics Research Laboratory,

Department of Electrical Engineering, Sharif University of Technology. In
2017, she joined the graduate program with the Department of Electrical and
Computer Engineering, University of Rochester. Her research interests include
superconducting digital electronics, electronic design automation, global sig-
naling, synchronous and asynchronous clocking of very large scale integration
SFQ circuits, security analysis of superconductive electronics, microwave
behavior of superconductive striplines, noise coupling and flux trapping issues
in superconductive circuits, AQFP interface circuits, SFS Josephson junctions,
and inductorless superconductive circuits.

Eby G. Friedman (Fellow, IEEE) received the
B.S. degree in electrical engineering from Lafayette
College, Easton, PA, USA, in 1979, and the M.S.
and Ph.D. degrees in electrical engineering from the
University of California at Irvine, Irvine, CA, USA,
in 1981 and 1989, respectively.

He was with Hughes Aircraft Company, Glendale,
CA, USA, from 1979 to 1991, rising to a Manager of
the Signal Processing Design and Test Department,
where he was responsible for the design and test
of high-performance digital and analog ICs. He has

been with the Department of Electrical and Computer Engineering, University
of Rochester, Rochester, NY, USA, since 1991, where he is a Distinguished
Professor and the Director of the High Performance VLSI/IC Design and
Analysis Laboratory. He is also a Visiting Professor with the Technion–Israel
Institute of Technology, Haifa, Israel. He has authored over 500 articles and
book chapters and authored or edited 19 books in the fields of high-speed and
low-power CMOS design techniques, 3-D design methodologies, high-speed
interconnect, superconductive circuits, and the theory and application of syn-
chronous clock and power distribution networks, and he holds 23 patents. His
current research and teaching interests include high-performance synchronous
digital and mixed-signal circuit design and analysis with application to high-
speed portable processors, low-power wireless communications, and server
farms.

Dr. Friedman was a recipient of the IEEE Circuits and Systems Mac
Van Valkenburg Award, the IEEE Circuits and Systems Charles A. Desoer
Technical Achievement Award, the University of Rochester Graduate Teaching
Award, and the College of Engineering Teaching Excellence Award. He was
the Editor-in-Chief and the Chair of the Steering Committee of the IEEE
TRANSACTIONS ON VERY LARGE SCALE INTEGRATION SYSTEMS and the
Microelectronics Journal, a Regional Editor of the Journal of Circuits, Systems
and Computers, an editorial board member of numerous journals, and a pro-
gram and technical chair of several IEEE conferences. He is a Senior Fulbright
Fellow, a National Sun Yat-sen University Honorary Chair Professor, and an
Inaugural Member of the UC Irvine Engineering Hall of Fame.

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on October 06,2022 at 17:59:49 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

