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Uniform Repeater Insertion in Trees

Victor Adler and Eby G. Friedman

Abstract—Repeater insertion can be used to overcome the quadratic in-
crease in the time required for a signal to propagate through an inter-
connect. A new timing model, based on short-channel equations,
has been developed to characterize the signal delay through a resistive line.
These analytical expressions provide the foundation for algorithms used to
insert uniform repeaters into tree structures. Both local and global op-
timization algorithms for repeater insertion are presented. While the local
optimization algorithm provides a computationally fast solution to the re-
peater insertion problem, the resulting circuit implementation is less power,
area, and speed efficient than applying global optimization techniques. The
global optimization algorithm for repeater insertion is achieved through
the downhill simplex method. The circuit equations, algorithms, and soft-
ware implementation of this repeater insertion system are presented in this
paper.

Results from these insertion methodologies improve delay from 25% to
60% versus typical cascaded buffer methodologies. Global repeater inser-
tion further decreases delay times by up to 22% over the local repeater
insertion method. The accuracy of the timing model characterizing the re-
peater insertion process as compared to SPICE simulations is generally
within 10%. Applications of these algorithms for minimizing the signal
delay through an tree, such as in data paths, and targeting signal de-
lays through an tree, such as in clock distribution networks, are also
discussed.

Index Terms—Buffers, delay, digital CMOS, repeaters, VLSI.

I. INTRODUCTION

Interconnect delay has become a dominant performance limitation
in high-speed integrated circuits. A common method of driving long
interconnect is to insert a buffer at the beginning and the end of the
interconnect line to improve the delay and slew rate of the signal. This
method, however, does not necessarily minimize the delay caused by
the large resistance encountered in long lines.

Bakoglu presents a methodology for inserting repeaters in a line
to overcome the quadratic increase in delay due to a linear increase
in interconnect length so that theRC interconnect impedance does
not dominate the delay of a critical path [1]. Extensions to this re-
peater insertion methodology have also been reported in [2] and [3].
In [2] and [4], Wu and Shiau describe a repeater implementation to
reduce interconnect delay. Their method uses a linearized form of the
Shichman–Hodges equations [5] at a specific operating point to deter-
mine the proper repeater insertion locations. Nekili and Savaria con-
sider optimal methods for driving resistive interconnect in [3]. They
introduce the concept of parallel regeneration in [6], in which precharge
circuitry is added to the repeaters to decrease the evaluation time. This

Manuscript received January 25, 1999; revised June 5, 2000. This work
was supported in part by the National Science Foundation under Grant
MIP-9423886 and Grant MIP-9610108, the Army Research Office under
Grant DAAH04-93-G-0323, a grant from the New York State Science and
Technology Foundation to the Center for Advanced Technology-Electronic
Imaging Systems, and by grants from Xerox, IBM, and Intel.

V. Adler is with Sun Microsystems, Palo Alto, CA 94303 USA (e-mail:
victor.adler@eng.sun.com).

E. G. Friedman is with the Department of Electrical and Computer
Engineering, University of Rochester, Rochester, NY 14627 USA (e-mail:
friedman@ece.rochester.edu).

Publisher Item Identifier S 1057-7122(00)08341-0.

technique requires fewer repeaters, however, extra area is necessary,
adding parasitic capacitance. Furthermore, this technique requires a
precharge signal for the circuit to operate correctly.

Dhar and Franklin present a mathematical treatment for optimal re-
peater insertion in [7]. They present elegant solutions to optimize re-
peaters with and without area constraints; however, the repeater is mod-
eled as a simple linear resistor and capacitor and no closed form so-
lution is provided. Other repeater insertion methods are described in
[8]–[10]. In [11] and [12], buffer placement methodologies in multi-
sink topologies based on minimizing the Elmore delay are presented.

An accurate timing model of a CMOS inverter driving anRC
impedance has been presented by the authors in [13]. This circuit
model is expanded to characterize repeater insertion inRC lines.
This timing model for inserting CMOS inverters intoRC lines,
published previously by the authors in [13], [14] and briefly reviewed
in Section II, has been applied to the development of a repeater design
methodology and related algorithms for efficiently drivingRC tree
structures, such as a clock distribution network, so as to reduce both
the signal delay and slew rate. In this methodology, the number and
size of the repeaters to minimize the propagation delay and transition
time from the root node to each leaf node are determined. The repeaters
are restricted to the same geometric size and equalRC impedance per
interconnect section within each branch. The equal size and section
impedance conditions are known as uniform repeater insertion [1],
[7], in which balancing the interconnect and repeater delay minimizes
the total path delay along anRC line. As an alternative to uniform
repeaters, tapered-buffer repeaters are examined in [14], and found to
be less effective than simple uniform repeaters.

The focus of this paper is on introducing a methodology for deter-
mining the size and location for inserting uniform repeaters intoRC

trees. The algorithm and software implementation of two proposed
methodologies, a localRC branch optimization methodology and
a globalRC tree methodology, are described in this paper. Both
optimization methodologies are implemented with the downhill
simplex algorithm. The efficacies of these two repeater insertion
methodologies are compared to a standard cascaded buffer method-
ology [15]–[18]. Furthermore, the analytical equations characterizing
the CMOS repeaters are shown to be accurate, generally within 10%
of SPICE. The application of these local and global algorithms is also
discussed in terms of relative run time and global optimality.

This paper is organized as follows: in Section II, a methodology
for determining an optimal uniform repeater placement within anRC

branch is presented. The local repeater insertion algorithm forRC trees
is discussed in Section III. The global repeater insertion algorithm is
discussed in Section IV. A comparison of the analytic model versus
circuit simulation is presented in Section V. A comparison of the effi-
ciency of the local- and global-optimal repeater insertion methodology
versus using cascaded buffers to drive resistive tree-based interconnect
is also described in Section V. Finally, some concluding comments are
offered in Section VI.

II. A NALYTICAL DELAY MODEL FORRC TREES

An analytical model for determining the delay and placement of
uniformly sized and spaced repeaters inRC trees based on Sakurai’s
�-power law is presented in this section [13], [14], [19], [20]. This
model assumes that the transistor operates in the linear region, when
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Fig. 1. Example of anRC tree. The large numbers are used to identify specific
branches (note that the downstream nodes are to the right of the upstream nodes).

driving anRC load, since the linear region is the dominant region of
operation when operating with fast input signals.

The structure of anRC tree is composed of a primary trunk with
branching points. Each branch is modeled as a lumped resistance and
capacitance, exemplified by Fig. 1. The total path delay is from the
signal input at the root of the trunk to each end point of the tree (or leaf
node).

The time required to drive a single branch of anRC tree using uni-
form repeaters, as shown in Fig. 2, is

tbranch = t�rst stage + (n� 2)tint: stage + t�nal stage: (1)

The first componentt�rst stage is the time required for the output of the
first repeater in a branch to reach the turn-on voltage of the second re-
peater. Thetint: stage component describes the time required for each
repeater between the first and last stage to transition fromVDD+VTP
to VTN or vice versa. The last componentt�nal stage is the time re-
quired to reach a given output voltage from eitherVDD+VTP orVTN
[13], [20], [21]. t�nal stage also considers the effect of the additional
capacitanceCbranch of the downstream repeaters at a branching point.

The componentst�rst stage, tint: stage, andt�nal stage utilize an ex-
pression derived from the Sakurai�-power law [19] for the delay of
a CMOS inverter reaching an output voltageVout given a step input
signal [13]

tout =
(1 + doRint)(Crep=branch + Cint)

do

ln
VDD
Vout

: (2)

do is the saturation conductance, a device parameter from the
�-power law model derived from(Ido=Vdo). Ido is the saturation
current of the device whenVDS = VDD . Vdo is the voltage at
which the device begins to operate in the saturation region [13], [19].
Crep=branch andCint are the capacitances of the following inverting
repeater and the interstage load capacitance, respectively.Rint is the
resistance of the section of interconnect being driven by the repeater
as shown in Fig. 2.

Each term in (1) is characterized by a step input to a single inverter
driving anRC load, permitting a tractable solution of the delay time.
This assumption permits the output waveform to be approximated by

(2). The output waveform of the first stage is the input waveform of
the following repeater. An example of this series of piecewise connec-
tions is shown in Fig. 3. The signal information describing the wave-
form shape permits a more accurate delay estimation as compared to
estimating the path delay based on the classical Elmore delay model
[22], [23]. Since the Elmore delay adds the products of a resistor
(composed of the sum of the linearized repeater output resistance and
the interconnect resistance) and all of the downstream capacitors, the
Elmore delay does not account for the interaction of a repeater with
the RC interconnect nor does the Elmore delay consider the shape
of the output signal waveform. Thus, by integrating a more accurate
timing model of a CMOS repeater into an algorithm for inserting re-
peaters into anRC tree, a more efficient circuit implementation can
be achieved.

III. L OCAL BRANCH REPEATERINSERTIONALGORITHM

A local optimization methodology and algorithm for inserting uni-
form repeaters intoRC trees is presented in this section. This method-
ology is particularly appropriate if specific branch delays are being tar-
geted. With the assumption that each branch has a repeater at its source,
the minimum delay of each branch is initially determined. The total
path delay from the root to each leaf is then minimized, according to
the expressions summarized in Section II. The method for optimization
is depth first, in which the lowest level branches are optimized first fol-
lowed by each upstream branch. Thus, theRC tree is optimized locally,
terminating at the root of theRC tree.

The algorithm to perform this repeater insertion process utilizesa
priori information, characterizing theRC impedances and the number
of sub-branches of each branch of theRC tree beginning at the root.
The lowest level of theRC tree hierarchy is reached when all of the leaf
nodes have zero branches. TheRC tree is constructed in this top-down
fashion.

A plot of the delay of branch 1 derived from (1) versus the size
and number of repeater stagesn in a branch is shown in Fig. 4 for
Cbranch = 0. That is, there is no final load capacitance at the end of
the branch due to downstream repeaters of a different branch; however,
there is a capacitance contributed by the repeaters within the branch.
The optimal implementation of a repeater system for a specificRC
load in terms of the number and geometric size of each repeater is rep-
resented by the minimum point on the graph. A similar graph can be
drawn for eachRC branch. The optimal number of repeaters inserted
within a branch to minimize the total delay is determined from a nu-
merical solution of the data illustrated in Fig. 4.

Once the tree has been constructed, it is traversed in a depth-first
manner to determine the optimal repeater insertion for the final leaf
nodes. When all of the branches of a parent have been optimized, the
immediate upstream branch (or parent) is optimized, while considering
the input capacitance of the repeaters of the downstream branches ac-
cording to the method described in Section II. In Fig. 1, the branches
3, 4, and 5 are downstream from branch 2.

The pseudocode of the algorithm used to locally insert repeaters into
each branch is shown in Fig. 5. The first function,build RCtree, re-
cursively builds each branch starting from the root and its sub-branches
based on the specific branch resistances and capacitances. The second
function,insert repeater, is a recursive function, in which the min-
imum delay for inserting a uniform repeater system in a particular
branch is determined. Note that the shape of the delay function de-
scribing a system of inserted repeaters in anRC branch is convex, so
the local branch optimal repeater insertion system is quickly reached.

The performance improvement and accuracy are discussed more
thoroughly in Section V. As described in greater detail in Section V,
the path delay from the input of theRC tree to the final leaf nodes is
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Fig. 2. n equal sized CMOS inverting repeaters driving a branch in anRC tree.

Fig. 3. Analytic and SPICE derived output waveforms of an 11-stage repeater chain driving an evenly distributedRC load of 1 k
 and 1 pF.

Fig. 4. Total delay for a branch as a function of the number of repeaters and repeater sizes. 0.8-�m CMOS technology,C = 0,R = 1 k
, andC = 1 pF.

improved from 25% to 50% by the application of the local repeater
insertion algorithm over a typical cascaded buffer insertion method.
The accuracy of the local repeater methodology is within at least
10% of SPICE and typically within 5%. An example of theRC tree,
shown in Fig. 1 after the local repeater insertion process is applied, is
depicted in Fig. 6. Note that the number of repeaters inserted in each
branch is shown inside the last repeater of that branch.

IV. GLOBAL TREE REPEATERINSERTIONALGORITHM

A global optimization algorithm to determine the size and number
of uniform repeaters inserted within each branch of anRC tree is dis-
cussed in this section. The same timing model as described in Section II
is used in the global optimization algorithm. The downhill simplex
method of Nelder and Mead [24], [25] is used to implement the multi-
dimensional optimization process.
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Fig. 5. Pseudocode of the local branch repeater insertion algorithm.

The flow of the repeater insertion methodology for determining the
optimal size and location of each repeater is shown schematically in
Fig. 7. In the downhill simplex method, each parameter variable being
optimized is an element in ann-dimensional vectorx. To insert re-
peaters into anRC tree, the vectorx contains the width and number of
the uniformly sized and spaced repeaters within each branch. For ex-
ample, in theRC tree shown in Fig. 1,x [1] is the width andx [2] is the
number of repeaters to be inserted into branch 1. In this example, 18
elements are inx, nine repeater widths and numbers, one pair for each
of the nine branches. The number attached to each branch designates
that branch.

TheRC tree data is converted to a set of analytical expressions, de-
scribing the delays from the root node to each leaf node. This set of
analytical expressions, in addition to the initial set of vectors and the
objective function, are the inputs to the optimization routine. In order
to initialize the downhill simplex algorithm, not just one starting point,
but (n+1) different arbitrary vectors are required. Then-dimensional
initialization vectors are not permitted to lie along a straight line. The
other input, the objective function, is the single value being minimized.
Two useful objective functions appropriate for a repeater insertion al-
gorithm are:

1) to minimize the delay from the trunk node to the leaf nodes such
as in data paths with multiple fanout points;

2) to target the delay to each node such as in a clock signal path
within a clock distribution network [26].

The former objective is specified by minimizing the average delay at
each leaf node while the latter objective function minimizes the stan-
dard deviation of the predicted delay minus the target delay at each leaf
node. In the exampleRC tree shown in Fig. 1 and in the exampleRC
trees listed in Table I, the chosen objective function minimizes the av-
erage of the delays from the root of the tree to each of the leaf nodes
of theRC tree. This objective function tends to minimize the delay
through the trunk of theRC tree.

The results of the downhill simplex optimization method on uni-
form repeater insertion in anRC tree are summarized in Section V.
The downhill simplex optimization produces a repeater implementa-
tion between 10% and 20% faster (with respect to the total path delay)
than the application of the locally optimal repeater insertion method-

ology. In addition, the accuracy of the system of inserted repeaters im-
plemented by the downhill simplex method is generally within 10% of
SPICE. TheRC tree shown in Fig. 1 is also shown in Fig. 8 after the
global insertion algorithm has been performed. Note the decrease in
circuit area (i.e., the total number of repeaters) and an approximately
20% decrease in path delay as compared to the circuit implemented by
the local repeater insertion methodology as shown in Fig. 6.

V. EFFECTIVENESS, ACCURACY, AND APPLICATIONS OFREPEATER

INSERTIONMETHODOLOGIES

A comparison of the local and global repeater insertion methodolo-
gies is presented in this section. The effectiveness of these repeater
insertion algorithms are compared to both a classical cascaded buffer
system and a completely passiveRC tree (no buffers or repeaters).
The system of inserted repeaters within theRC tree is also compared
to SPICE to quantify the accuracy of the timing model. In addition, the
global optimization is compared to an exhaustive search solution for
a small exampleRC tree. Circuit applications of the local and global
optimization algorithms are also discussed.

A. Accuracy and Effectiveness

The path delaytPD from the root node to the end of each branch
for three different trees is listed in Table I. The depth and impedance
characteristics of each branch of these three trees are listed in the
first three columns. The topology of each tree is characterized by the
branch naming convention and indentation in the first column. In the
fourth column, the path delaytpassive from the source to the end of
each branch is listed. TheRC impedances within the passiveRC tree
are modeled as a�3 distributed load. In the fifth column, the cascaded
buffer delaytbu�er from the tree source to each branch is listed. The
cascaded buffer system is a series of optimally tapered buffers placed
at the input of each branch, so as to drive the capacitive load of each
branch (without considering the interconnect resistance) [18]. This
delay assumes the cascaded buffer system uses a tapering factor of
three [15], [17], [18].

The next three superior columns shown in Table I list similar infor-
mation for the local branch repeater insertion methodology described
in Section III and the downhill simplex method described in Section IV.
For the local optimization, the predicted path delay is shown in column
six, and the SPICE simulation and the associated error for the repeater
insertion implementation are shown in columns seven and eight, re-
spectively. The number and size of the repeaters are shown in columns
nine and ten. Note that the maximum deviation of the analytic result
from SPICE is 10% with a typical error of 5% or less.

An analysis of two branches listed in Table I is shown in Fig. 9. The
delay of branches 1 and 8 from the first tree of Table I are shown for
the four techniques (passive, tapered buffers, local repeater insertion,
and global repeater insertion) of drivingRC interconnect. A signifi-
cant performance improvement is achieved with repeaters rather than
buffers for those highly resistive branches, as exemplified by the rela-
tive performance improvements for branch 1 (1 K
) versus branch 8
(300
). The area in terms of the total width consumed by inserting
repeaters and buffers into theRC tree is shown at the bottom of the
figure.

The signal waveforms at the final branch output of the locally op-
timized repeater system and the optimally tapered buffer system are
shown in Fig. 10. The performance improvement of the repeater system
over the tapered buffer system for this exampleRC tree is in the range
of 25% to 33%. The buffer system does not drive the highly resis-
tive lines effectively, hence longer than expected propagation delays
and slower rise times are generated, particularly for highly resistive
branches such as branch 6.
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Fig. 6. RC tree shown in Fig. 1 synthesized by the local branch repeater insertion system. The transistor widths are shown below the first repeater of each branch,
and the number of repeaters per branch is shown inside the last repeater of each branch.

Fig. 7. Methodology for globally optimal repeater insertion.

For the downhill simplex method, similar information is shown in
columns 11 through 15 in Table I. A comparison of SPICE simulations
of the downhill simplex method exhibits branch delay improvements
of up to 25% over the application of the local optimization method.

Performance improvements derived from using the downhill simplex
method over the local branch optimization algorithm are guaranteed,
if one of the points of the initial simplex is the final result of the
local optimization method. This improvement can be attributed to the
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TABLE I
THE SIZE AND NUMBER OF REPEATERS ASDETERMINED BY THE LOCAL AND GLOBAL OPTIMIZATION ALGORITHMS FORTHREE DIFFERENTRC TREE

TOPOLOGIES. (THE PROPAGATION DELAY IS IN NANOSECONDS, # IS THE NUMBER OF REPEATERS IN ABRANCH, SIZE IS THE GEOMETRIC WIDTH OF THE

N -CHANNEL DEVICE OF THEUNIFORM REPEATER FOR THATBRANCH, AND THE P -CHANNEL TO N -CHANNEL RATIO IS 3 : 1)

TABLE II
REPEATERINSERTION ASDETERMINED BY THE DOWNHILL SIMPLEX METHOD AND AN EXHAUSTIVE SEARCH FOR THERC TREE SHOWN IN Fig. 11

reduction in the size of the repeaters, which reduces the load capaci-
tance at the branching nodes. Hence, not only is the delay decreased
by globally optimizing the system, but the total area (and power) re-
quired by the repeater system is reduced when the downhill simplex
method is applied, as compared to the local branch repeater insertion
algorithm. Note that, on occasion, branches with similar impedance
characteristics and parents can have different repeater implementa-
tions. This behavior is explained by the simplex solution falling into
a nearby minimum, creating a slightly different repeater implemen-
tation. The run time of various implemented algorithms is discussed
below.

A comparison of the downhill simplex method to an exhaustive
search has been performed. TheRC tree used for comparison is shown
in Fig. 11 and is a three-branch section of the tree, illustrated in Fig. 1.
A relatively small tree is used for comparison, due to the number of
possible repeater implementations. A tree withb branches has(n�w)b

different possible implementations, wheren is the number of repeaters
that can be implemented within each branch andw is the number of
possible discrete sizes of each of the uniformly sized repeaters. The
number of possible implementations therefore can be enormous, thus
the comparison to an exhaustively evaluated solution has been restricted
to a tree with three branches. In the exhaustive search, the number of
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Fig. 8. RC tree shown in Fig. 1 synthesized by the global repeater insertion system. The transistor widths are shown below the first repeater of each branch, and
the number of repeaters per branch is shown inside the last repeater of each branch.

Fig. 9. Delay of branches 1 and 8 from the first tree in Table I. The total area
cost of the inserted repeaters or buffers is shown at the bottom which is the sum
of the total transistor widths.

repeaters in each branch ranges from 1 to 10, and the repeater size
in each branch ranges from 1.0 to 25.0�m in increments of 0.5�m.
While the local optimization algorithm provides a computationally

fast solution to the repeater insertion problem, the resulting circuit
implementation is less power, area, and speed efficient than applying
global optimization techniques.

The results of the exhaustive search and application of the downhill
simplex method on globally inserting repeaters into the circuit shown
in Fig. 11 are listed in Table II. The position of each branch within the
tree and theRC characteristics of the branch are described in columns
one through three. The results of applying repeater insertion based on
the objective function for the global optimization are shown in columns
four through six. The same results for the exhaustive search are shown
in the last three columns. The objective function minimizes the av-
erage root-to-leaf delay. In this comparison, the results derived from
the exhaustive search match almost exactly the results derived from
the heuristic search given the restrictions of the repeater size applied
during the exhaustive search.

B. Applications

As mentioned previously, achieving a specific target delay may be
the desired goal rather than minimizing the path delay. The downhill
simplex algorithm can be used to determine a repeater insertion imple-
mentation for targeting a specific final leaf node delay. The objective
function for this case minimizes the sum of the squares of the difference
between the analytically determined delay and the desired target delay.
Alternatively, targeting individual branch delays may be desirable. In
this case, the local optimization algorithm is preferable, because the in-
dividual branch delays cannot be controlled within the global optimiza-
tion algorithms. However, the optimization criteria may be significantly
more complex than targeting a global delay depending upon the number
of internal branches as compared to the number of leaves. In order to
ensure the polarity of a set of repeaters within a branch, a two-pass
optimization is performed. A first pass optimization is performed to
determine the original repeater insertion. The objective criteria is then
modified to limit the optimization to yield the desired polarity, and the
optimization is performed a second time.

A comparison of run times or order of operations is important. In
order to minimize the final branch delay using the local optimization
method, a tree withn total branches results inn 3�3matrices, resulting
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Fig. 10. Delay from the input of theRC tree to specific leaves of the tree based
on the repeater insertion system as compared to applying optimally tapered
buffers. Numbers indicate the leaf nodes as labeled in Fig. 6.

Fig. 11. Section of theRC tree shown in Fig. 1 used to compare the global
optimization algorithm versus an exhaustive search.

in a complexity ofO(n). For the downhill simplex method for global
optimization, ann� n matrix is required, resulting in a complexity of
O(n2). However, a limit on the rate of convergence of the simplex can
be set to reduce the computational run time.

VI. CONCLUSION

A design system for determining the optimal number and size of
uniform repeaters to insert into anRC tree has been described. An
accurate timing model based on a short-channelI � V model, which
considers the shape of the signal waveform is used within this system
to achieve a more accurate and efficient repeater implementation. An-
alytical estimates of the total propagation delay of exampleRC trees
with inserted repeaters agree within 10% of SPICE. A local optimiza-
tion method and a global optimization method have been presented.

Depending upon the application, either delay targeting or delay
minimization of the interconnect inRC trees may be appropriate
goals. Both of these goals can be accomplished by the repeater
insertion methods presented in this paper. The global repeater in-
sertion algorithm is applied to minimize the total path delay or to
satisfy specific root-to-leaf delays, while the local repeater insertion
algorithm is applied to satisfy a specific branch delay objective.

Delay improvements of 25% to 60% over a typical cascaded buffer
insertion methodology are achieved by inserting repeaters. Finally, the
global repeater insertion methodology reduces the propagation delay,
circuit area, and power dissipation as compared to the local optimiza-

tion method. Thus, an integrated design system is presented in this
paper for effectively and accurately inserting repeaters intoRC trees.
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A Systolic Architecture for High-Performance Scaled
Residue to Binary Conversion

G. C. Cardarilli, M. Re, R. Lojacono, and G. Ferri

Abstract—The scaled Chinese remainder theorem (CRT) is a very useful
tool in residue arithmetic. Its properties can be exploited for the simplifi-
cation and speeding-up of the conversion process. The main drawback pre-
sented by this methodology, when it is used for the output conversion, is
the need of long wordlength look-up tables (LUTs) storing the correspon-
dence among the modular numbers and the corresponding scaled terms of
the CRT. This fact limits the maximum speed obtainable by this approach.
In this brief, a new method for the computation of the scaled terms is pre-
sented. It has been implemented by using very small wordlength LUTs and
simple arithmetic operators. The only proviso is that the moduli must be
odd. The obtained architecture is very fast and due to the local intercon-
nections is suitable for an efficient VLSI implementation.

Index Terms—CRT, RNS, scaled output conversion.

I. INTRODUCTION

There are a lot of applications (military, avionics, and telecom-
munication), in which digital high-speed architectures are used for
real-time processing of large bandwidth signals [1], [2]. At present,
the analog-to-digital converter technology allows high-resolution
direct intermediate frequency (IF) sampling, and the actual trend will
allow RF sampling in the near future. In this scenario, that implies the
use of very fast processors, residue number system (RNS) constitutes
an interesting method for obtaining high-speed and large dynamic
range hardware structures. Its main advantage is the possibility to
decompose large integer numbers in a set ofN residue numbers
fr1; r2; � � � ; rNg corresponding to the results of modulo operations,
with respect to a set of pairwise coprime modulifm1; m2; � � � ;mNg.
Considering the setfr1; r2; � � � ; rNg, there exists only a number
X < m1m2 � � �mN = M satisfying the congruenciesri = hXim ,
for i = 1; 2; � � � ; N . In RNS, an operation on large numbers is
replaced byN -parallel and carry free operations on small numbers
represented withdlog

2
mie bits [3], [4]. For the most common

dynamic ranges,dlog
2
mie ranges from three to six.

The obtained results are finally converted into a conventional
weighted representation. Usually this conversion is implemented by
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using the Chinese remainder theorem (CRT) algorithm [3], [4]. An
important drawback of the conventional CRT is the requirement of a
modM operation, whereM is a very large number. This drawback
can be overcome, by introducing a scaling factor. Consequently, the
scaled CRT become a very useful technique in many RNS-imple-
mented DSP-algorithms, that often require operations, such as sign
detection, division, and overflow handling. Different scaled CRT-im-
plementations have been presented in the literature [4]–[8], [10], [11].
The precision of the scaled output depends on the application and
ranges from low, in the case of approximate sign detection [6], to very
high precision, for exact sign detection and scaled conversion [7],
[10], [11]. The works presented in the literature can be also classified,
with respect to the used scaling factor. In [5], [7], and [10], a scaling
factor of the formP = 2d=M has been used. In [8] and [11], a more
general scaling factor has been used. In particular, in [8],P 2 [1; M ],
but in order to avoid the “catastrophic error band”, a reduced dynamic
range must be used. In the scaling factor,P must be such thatP > N ,
beingN the number of moduli used in the RNS representation.

Moreover, closed form solutions for the error computation in approx-
imate CRT decoding of residue numbers have been presented in [12].

The brief is organized, as follows. A review of the scaled CRT is
presented in Section II, while in Section III we introduce the algorithm
for the recursive expansion of the terms(xi=mi). Moreover, we show
how the new algorithm can be applied to the scaled CRT. In Section IV,
an efficient hardware architecture implementing this algorithm is pre-
sented.

II. THE SCALED CRT

By choosingP = M , the scaled CRT is defined as

X

M
=

N

i=1

hm̂�1
i
riim
mi

1

=

N

i=1

xi
mi

1

(1)

where(xi=mi) are rational numbers,̂mi = (M=mi) andm̂�1
i

is the
inverse ofm̂i defined ashm̂�1

i
m̂iim = 1. The scaling byM modifies

the output range of the resulting CRT, that is now bounded in the in-
terval0 � (X=M) < 1. This introduces a modular operation, that dis-
cards all the bits of the integer part of (1). This modular operation is rep-
resented with the symbolh� � �i1. By using this technique, themodM

operation is substituted by themod1 operator, corresponding to the
extraction of the fractional part of the termN

i=1
(xi=mi).

Unfortunately, the simplification of the modulo extraction implies
the use of a set of look-up tables (LUTs) to store the fractional terms
of (1).

In [7], to avoid any reconstruction error (i.e., the output is well
ordered and the sign is exactly decoded) each term(2 � xi=mi) of
the summation has been represented by using a LUT ofmi words
of dlog

2
(NM)e + 1 bits. It is important to point out that, while

the number of the memory cells depends only on the modulus size
(normally it is very small), their wordlengths grow with the output
dynamic range and the number of moduli. This reduces the speed of
the final RNS to binary converter limiting the advantages of using the
RNS approach (see [9]).

Our work is aimed to increase the speed of the output converter, in
order to equalize its performance with that of the inner processing struc-
ture. As a consequence, for example, ifmN is the biggest modulus, the
maximum converter delay must be comparable with that of amod mn

adder, for any output range useful in practice.
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