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EMI Suppression With Distributed L LC Resonant
Converter for High-Voltage VR-on-Package

Kan Xu

Abstract— Higher on-chip current demand leads to lower
power efficiency of the power delivery network due to distri-
bution losses within the current path. A high-voltage power
architecture and voltage regulator (VR)-on-package topology can
increase system power efficiency by reducing distribution losses.
Electromagnetic interference (EMI) can, however, be a significant
challenge due to the high-voltage injection and close proximity
to sensitive electronics. A novel transformer-based inductor,
inductor, capacitor (LLC) resonant converter with a distributed
topology for point-of-load dc-to-dc conversion is presented here.
The distributed topology exhibits more than 3x lower EMI as
compared with a single-branch LLC resonant converter with
the same step-down ratio. A prototype of the VR-on-package
has been developed. Experimental results demonstrate good
correlation with the EMI analysis. Application to systems-in-
package, wireless devices, and Internet of Things is targeted due
to the low EMI of this distributed converter system.

Index Terms— Electromagnetic interference (EMI), high-
voltage power architecture, inductor, inductor, capacitor (LLC)
resonant converter, system-in-package (SiP), voltage regulator
(VR)-on-package.

I. INTRODUCTION

CENTRALIZED power architecture (CPA) is widely

used in computer systems, where two-stage voltage con-
version is typically required [1]. A high dc voltage (ranging
from 48 to 60 V), generated from an ac-to-dc converter, is ini-
tially converted to a medium-level dc voltage (for instance,
12 V) [2]. A point-of-load (PoL) converter subsequently
transfers the medium-level voltage to an on-chip voltage
(for instance, 0.8 V). Due to increasing current demand in
high-performance computing (HPC) systems, a CPA suffers
from significant distribution losses. A distributed power archi-
tecture (DPA) has therefore become a widely used power
distribution topology [3], [4]. In DPA systems, the high dc
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voltage is directly converted into the load voltage using a
PoL converter to eliminate local distribution losses caused by
transmitting low voltages. With on-chip voltages as low as
0.8 V [5], high step-down ratio converters for DPA systems are
required [3]. Although a DPA system can reduce distribution
losses between the ac-to-dc converter and the PoL converter,
the power loss due to the parasitic resistance between the PoL
converter and the on-chip load can be substantial, particularly
in HPC systems. This loss is referred to as the last inch power
loss [6].

A voltage regulator (VR)-on-package is a promising
technology to mitigate this last inch power loss. A VR module
is traditionally board mounted, supporting voltage conversion
and regulation for the on-chip load through the power
distribution network of the printed circuit board (PCB)
and the package. By placing a PoL converter within the
package [6], the resistive path is shorter and only within
the package. Power losses due to the resistive path are,
therefore, lower as compared with a VR-on-PCB topology.
Moreover, a VR-on-package topology requires less ball grid
array (BGA) resources for the power distribution network due
to high-voltage transmission between the PCB to package
interface, supporting a higher on-chip signal bandwidth.

The close distance between the VR and on-chip load due to
the VR-on-package topology and high-voltage injection due
to the high-voltage DPA system lead to significant electro-
magnetic interference (EMI) [7]-[9]. Moreover, the higher
operating frequency of the VR makes EMI more of a challenge
[10]-[12]. Not only may EMI affect the proper function of the
digital circuits but EMI can also pollute the surrounding EM
environment, which is crucial for wireless devices and Internet
of Things (IoT). EMI is particularly difficult to eliminate
because EMI is often coupled through the package, where
traditional shielding techniques cannot be applied. Suppression
at the source of EMI is, therefore, important.

EMI is affected by the waveform profile and magnitude
of the current flowing through the converter. The harmonic
behavior associated with the high-frequency current and volt-
age waveforms is a major aspect of EMI. A sinusoidal current
waveform exhibits few harmonics (ideally, only the primary
harmonic), significantly mitigating EMI [13], [14]. A resonant
converter is, therefore, advantageous due to the characteris-
tics of high efficiency, high power density, and sinusoidal-
shaped waveforms [15], [16]. Based on this concept, a novel
high step-down ratio, low EMI inductor, inductor, capaci-
tor (LLC) resonant converter with a distributed topology is
proposed here.
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Fig. 1. Full-bridge isolated LLC resonant converter.

The rest of this article is organized as follows. The perfor-
mance degradation of an LLC resonant converter caused by
a high turns ratio is discussed in Section II. In Section III,
a distributed LLC resonant converter is introduced. The
performance and power efficiency of this converter are also
presented. In Section IV, near-field simulations of the EMI
of the proposed distributed resonant converter are described.
Experimental near-field scans of a VR-on-package prototype
are also discussed. Some conclusions are offered in Section V.

II. PERFORMANCE DEGRADATION DUE
TO HIGH TURNS RATIO

As illustrated in Fig. 1, an LLC resonant converter consists
of four parts: 1) a primary stage LC tank; 2) a transformer;
3) a rectifier in the secondary stage; and 4) an LC filter. The
primary stage LC tank generates sinusoidal current from the
input dc voltage of the LLC resonant converter Vgc. In this
work, Vg is assumed to be 55 V, a typical voltage within
the telecommunications ecosystem. Voltage conversion and
isolation are achieved by a step-down transformer. The step-
down ratio determines the turns ratio of the transformer. A
full-wave rectifier in the secondary stage of the converter
transforms the ac current from the transformer into a dc current
flowing into the load. Switches within the resonant converter
utilize power MOSFETs, as illustrated in Fig. 1. An LC filter
removes any high-frequency harmonics originating from the
imperfect sinusoidal current as well as stabilizes the output
voltage.

The operating frequency of a resonant converter can range
from a few hundreds of kilohertz up to a few megahertz. To
limit the area of the magnetic component, a higher frequency
is preferred, leading to a larger power density. The tradeoff,
however, is greater switching loss. In the VR-on-package
topology in this work, a smaller area is preferred. The target
frequency of the L LC resonant converter is, therefore, 2 MHz.
The higher switching power loss is alleviated by the reduced
distribution loss due to the VR-on-package topology.

The step-down transformer transfers the sinusoidal current
from the primary stage (/i) to the branches of the secondary
stage (Ibranch1/2). The magnitude of Ipranchi/2 is determined
from both the load and turns ratio of the transformer. Two
current paths control the switches, Ss, Se, S7, and Sg, in the
rectifier stage, as illustrated in Fig. 1. When switches, S¢ and
S7, turn on, the first half-cycle of the sinusoidal current enters
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Fig. 2. Performance degradation of a high-turns-ratio converter.

branch 1, flows through the load, and returns to the transformer
in branch 2. When switches, S5 and Sg, turn on, the second
half-cycle of the sinusoidal current enters branch 2, flows
through the load, and returns to the transformer in branch
2. Switching pairs, S¢ and S7; and Ss and Sg, intermittently
turn on and off two current paths at the resonant frequency
of the primary LC tank stage. The load current (/jpaq) is,
therefore, a positive half-cycle sinusoidal current at twice the
resonant frequency, as illustrated in Fig. 1. Due to the output
capacitor Coy, the voltage across the load exhibits less ripple,
proportional to the current flowing through the load.

A transformer with a high turns ratio is required for high
step-down ratio conversion in DPA systems (e.g., from 55 to
0.8 V). Parasitic impedances exist between the secondary
stage of the resonant converter and the on-chip load. For
example, the power delivery network within the package
connecting the VR to the on-chip power delivery network
can contribute hundreds of micro-ohms of parasitic resistance.
The effects of the parasitic impedance within the secondary
stage, however, become significant with a higher turns ratio,
producing a distorted current waveform within the converter.
As compared with a sinusoidal current waveform, a distorted
current waveform produces greater EMI. Two case studies with
large input voltages and a high step-down ratio have been
evaluated. 22 and 55 V are the input voltages in these two
case studies. The output voltage in both cases is 0.8 V. The
turns ratio of each transformer is selected to match the step-
down ratio of the converters. Simulation results of the two
case studies are illustrated in Fig. 2. Performance degradation
due to the high turns ratio is demonstrated as compared with
the low turns ratio in the 12 V to 18 V conversion.

The current flowing through branch 1 Iypanch1 in each of the
converters is illustrated in Fig. 2. Current spikes are observed
in both cases when the current waveform within the branch
crosses zero. The magnitude of the current spikes increases
with a higher turns ratio of the transformer, as illustrated
in Fig. 2. In the case of the 55-V input, the current waveform
is significantly distorted, no longer maintaining a sinusoidal
shape. Large current spikes of 90 A produce greater EMI,
resulting in a less robust, noisy system. Moreover, a high
voltage across the circuit elements is induced by these current
spikes, potentially causing device failure.

The effect of the turns ratio of a transformer on the behavior
of a converter is illustrated in Fig. 3. An ideal transformer is
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Fig. 3.  Working principle of basic transformer.

assumed, where

Vi b
—=2 (1)
Vo I
is maintained. The voltage across the primary winding is
N2R
Vi= — Vi ©)
N Rout + Rin
The current through the primary winding is
Vi
L= —5——o-. (3)
N Rout + Rin

The output resistance and parasitic impedance of the rec-
tifier stage degrade the operation of the primary LC tank.
The resistance in the secondary stage contributes to the total
parasitic resistance within the LC tank in the sinusoidal current
generation stage. From (2) and (3), the parasitic impedance
seen by the primary stage is N> times larger than the actual
resistance. The output impedance, therefore, has a greater
effect on the LC tank than the parasitic impedance of the
primary stage. With increasing N, the effect of the parasitic
impedance on the secondary stage grows exponentially, lead-
ing to a distorted current waveform within the LC tank. An
LLC resonant converter with a high turns ratio is, therefore,
a challenging requirement. Nonetheless, a high step-down ratio
is required for DPA PoL converters due to the high input and
low on-chip output voltage levels. A converter with a small
turns ratio transformer and high step-down ratio is, therefore,
highly desirable.

III. LLC RESONANT CONVERTER WITH
DISTRIBUTED TOPOLOGY

To provide high step-down ratio conversion, a scalable dis-
tributed topology for the LLC resonant converter is proposed.
As illustrated in Fig. 4, a distributed topology is achieved by
cascading multiple primary stages in parallel with multiple
secondary stages. A lower voltage drop is exhibited in this
configuration across the primary winding of each branch.
The secondary stage of each branch is connected to the
load without contention from the other branches. The output
of the secondary stage of each branch is connected to the
power/ground pins of the resonant converter. Current flows
from the power pins to the power delivery network within
the package. The secondary stage voltage of the distributed
topology is similar to the voltage of a single branch LLC
resonant converter. The primary stage voltage in the distributed
topology is, however, reduced due to the voltage divider across
all of the serially connected primary stages. Increasing the
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Fig. 4. LLC resonant converter with distributed topology.
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Fig. 5. Waveforms characterizing performance of distributed L LC resonant
converter.

number of branches within the distributed topology further
reduces the turns ratio of the transformer within the LLC res-
onant converter. High step-down ratio conversion is, therefore,
achieved using multiple transformers with a low turns ratio.

The topology of the distributed LLC resonant converter
is evaluated for high step-down ratio PoL conversion. The
distributed topology consists of eight branches. Each branch
exhibits a turns ratio of 8.5. An input voltage of 55 V is
converted to an output voltage of 0.8 V. The passive LC
elements, parasitic impedances, switches, and load behavior
are identical for each branch. Simulation results describing
the performance of the distributed LLC resonant converter
are illustrated in Fig. 5. The output voltage is stable around
0.8 V with less than 3% ripple. Improved sinusoidal distortion
and smaller current spikes are achieved as compared to a
single-branch, high-turns-ratio converter. A reduction of 90%
in the magnitude of the current spikes is achieved by the
distributed topology. Reductions in EMI levels are discussed
in Section IV.

Power loss breakdown models of converters have been
well researched [17]-[20]. Four components are considered
to quantify the loss breakdown process: 1) primary side
power MOSFETSs; 2) transformer; 3) secondary side power
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Fig. 6. Power loss components for an eight-branch distributed L LC resonant
converter.

MOSFETs; and 4) parasitic impedances. Note that a low
output resistance reduces the loss within the MOSFET.
PSPICE is used to evaluate both the switching and static
power loss. The transformer loss, typically composed of core
and winding losses, is a significant component of the total
power loss of a converter [20]. The transformer loss varies
significantly with different design specifications such as the
core size, winding size, and winding material. One objective
of this article is to evaluate the effects of EMI on the proposed
resonant converter. Since the design of the transformer is out
of the scope of this article, a 97% transformer efficiency is
assumed for the power loss breakdown analysis.

A distribution of the power loss of each component in the
eight branch distributed L LC resonant converter is illustrated
in Fig. 6. The transformers and MOSFETs within each of
the branches are included. The secondary-side MOSFETSs
contribute most of the total power loss due to the high currents
flowing through the secondary stage and the large number
of MOSFETs to support the eight branches. The maximum
power efficiency of the distributed L LC resonant converter is
89.8%, as compared to a 91.7% maximum power efficiency
in a single-branch LLC resonant converter with the same
step-down ratio. The distributed converter, therefore, exhibits
a greater total power loss as compared with the single-branch
resonant converter. Due to the low turns ratio, the energy
loss of each branch in the distributed topology is less than
the energy loss of the single-branch resonant converter. The
degradation in power efficiency in the distributed topology is
small. The slightly reduced power efficiency is compensated
by the high step-down ratio conversion in DPA systems,
leading to comparable or greater system-level power efficiency.
Due to the lower turns ratio, the current waveform is also less
distorted, producing lower EMI.

Because of the additional transformers and switches in the
secondary stage, the area of the distributed LLC resonant
converter increases linearly with the number of branches.
The increase in area is dependent on the type of transformer
and switch. Due to the lower current flowing through each
branch within the distributed resonant converter, a smaller
switch is utilized. A smaller transformer is also used due
to the lower turns ratio. The area of each branch within the
distributed L LC resonant converter is, therefore, less than the
single-branch resonant converter. In one case study, the area

of an eight-branch distributed LLC resonant converter is
84.1% larger than a single-branch LLC resonant converter.

Note that the distributed converter topology is highly scal-
able. The number of branches is dependent on the circuit
area, specific voltages, and performance requirements. This
distributed topology is particularly advantageous when high
step-down ratio conversion is required, as in DPA systems.
Due to the EMI mitigation characteristics, as described in
Section IV, the distributed topology is highly applicable to
noisy environments, such as systems-in-package, IoT, and
wireless applications.

IV. NEAR-FIELD EMI EVALUATION IN VR-ON-PACKAGE
ENVIRONMENT

Although a high step-down ratio PoL converter-in-package
is a promising technology, high EMI levels have become
significant, degrading the system-level signals and compromis-
ing power integrity. Due to the close proximity in a VR-on-
package environment between the source and victims of EMI,
and the high voltages in a high step-down ratio converter-
in-package, EMI within a package has become a significant
issue. Full-wave EM simulations are, therefore, described in
this section to evaluate the EMI characteristics of the proposed
distributed LLC resonant converter. EMI fundamentals are
briefly summarized in Section IV-A. The VR-on-package
environment used to evaluate the EMI characteristics of the
proposed distributed LLC resonant converter is described in
Section IV-B, followed by the simulation setup. Experimental
and simulation results are discussed in Section I'V-C.

A. EMI Background

EMI is the phenomenon where an EM disturbance is gen-
erated by surrounding electronic devices that affect the proper
function of the electrical circuits through a conducted or radi-
ated path. Conducted EMI, also called coupling noise, consists
of inductive and capacitive coupling through an electrical path.
Conducted EMI filters are widely used to reduce the conducted
EMI [21], [22]. Since the primary focus in this article is
to evaluate how the resonant converter affects the EM envi-
ronment within a system-on-package (SoP), conducted EMI,
albeit important, is not the focus of this article. Radiated EMI
is the undesired EM radiation generated by high-frequency
electronic devices without an electrical path. Due to the high
operating frequency of the proposed distributed L LC resonant
converter, radiated EMI is the primary noise issue in this
converter.

The effects of EMI can be evaluated as two parts,
the aggressor and the victim. Any electrical device or passive
element can behave as an antenna, radiating an EM wave
to the surrounding environment. This structure is considered
to be an EMI aggressor. The higher the frequency and the
larger the antenna size, the stronger the EM radiation. Due
to the high frequency, high power characteristics, and large
metal traces transferring high voltages, the PoL. converter-
in-package is considered here as an EMI aggressor. The
entire system, including the digital ICs and PoL converters,
is treated as an EMI victim. The surrounding environment
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Fig. 7. Package with a digital IC and two PoL converters. (a) Top view.
(b) Side view.

outside the package is not considered; the near-field range is
the focus of this article.

B. EMI Evaluation Setup

The evaluation of package-level EMI has recently drawn
significant attention from the research community [7]-[9],
[11], [23], [24]. In [9], a thin micro-electromechanical sys-
tem (MEMS) package is used to evaluate different EMI
suppression methods. By redesigning the microbumps, adding
ground vias, and applying a metal coating on the input—output
ports, lower EMI is achieved. In [7], a near-field EMI eval-
uation methodology has been developed for mobile DRAM
applications. In [8], cavity resonance, as an EMI contributor,
has been evaluated with a full-wave solver. The effects on
EMI within individual elements and possible EMI vulnerable
spots within a package are also discussed. To the authors’ best
knowledge, no work has been published on evaluating EMI in
a VR-on-package environment where the PoL converters are
treated as EMI aggressors.

The package utilized to evaluate EMI has been designed
within a VR-on-package environment based on the design
specification listed in Table I. All of the power planes and via
connections for the power distribution network exist within
the package. No signal routing, however, exists within the
package. As illustrated in Fig. 7(a), three components, a digital
IC and two PoL converters, are placed on the top side of
the package, highlighted by the solid rectangles. The area
of the IC and PoL converter components is, respectively,
900 and 250 mm?. Since the intended application of the
VR-on-package is HPC, the rectangle representing the digi-
tal IC can include a silicon interposer and high bandwidth
memory. Alternatively, the rectangle representing a PoL con-
verter represents the proposed resonant converter, including

TABLE I

DESIGN SPECIFICATIONS OF PACKAGES SUPPORTING
VR-ON-PACKAGE ENVIRONMENT

Package parameter Value

Total metal layers 28

Package core layers 14
Package thickness (um) 2,025

Package size (mm) 62 x 62

Decoupling capacitance (uF) 2,892

12 volt power plane footprint (mm?2) 4
Number of BGA pins 2,780
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Fig. 8. Intensity of electric field across package. (a) Distributed LLC
resonant converter. (b) Single-branch LLC resonant converter.

the switching devices, transformer, and power/ground pinout.
Note that planar magnetics technology is utilized by the power
transformer within the converter, reducing the thickness of
the converter in the VR-on-package system. The winding is
based on etched copper traces on a PCB with the planar
magnetic core passing through the PCB. The active and passive
components are assembled on the surface of the PCB. The
entire converter is assembled on the package next to the digital
IC, as illustrated in Fig. 7(a). The circular pads shown in the
figure are connection pins between the package and digital
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Fig. 9. Validation of near-field EMI of distributed topology of LLC resonant
converter. (a) Experimental near-field scan. (b) EMI simulation of the Y-
component of the magnetic field at 120 MHz.

IC and the PoL converters. The dashed circles illustrate the
location of the via stack, which transfers 55 V from the PCB
to the PoL converter.

A side view of the system is depicted in Fig. 7(b). Two
voltage domains exist within the power network of the pack-
age. One domain is a high-voltage power network (55 V),
as illustrated by the dash box. The high-voltage power network
connects the BGA power pins and the VRs, where low current
is transferred from the BGA power pins to the VRs, as the
thin arrow indicates. The other power domain is a low-voltage
power network (0.8 V), as illustrated by the double dash box.
The low-voltage power network connects the VRs and IC,
where high current is transferred from the VRs to the on-chip
power network through the 0.8-V power network, as the thick
arrow indicates. Note that the decoupling capacitance listed
in Table I is connected to the 0.8-V power network. Dedicated
power planes transfer current from the PoL converters to the
digital IC after 55 V are converted into 0.8 V.

As previously mentioned, radiated EMI behaves as an
antenna. A large metal trace passing a high-frequency, high-
voltage signal is a strong EMI aggressor. In the following
case study, the via stack, which transfers 55 V to the PoL
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Fig. 10. Near-field EMI scan of the Y-component of the magnetic field.
(a) 500 MHz. (b) 800 MHz.

converter, is treated as an EMI aggressor. Note that EMI
from the via stack passing through the package is difficult
to eliminate since it is difficult to shield the system. The
metal trace within the PoL converter is not considered an
EMI aggressor since the voltage on the metal trace within
the PoL converter is only 0.8 V after the conversion process.
A metal coating can also be used to reduce EMI radiation
around the PoL converter [9]. The EMI intensity is also
related to the characteristics of the signal passing through the
EMI aggressor (the EMI source) [25]. To compare the EMI
levels of the proposed distributed LLC resonant converter
with the single branch LLC resonant converter, the current
and voltage characteristics are extracted from Cadence Vir-
tuoso simulations, as described in Section III. A near-field
EMI simulation (using ANSYS Slwave [26]) is subsequently
conducted for the entire package. The far-field radiation of the
PoL converter is also provided, comparing the EMI level with
the International Special Committee on Radio Interference
(CISPR) 22 standard, which is widely used for radiated and
conducted EMI.

C. EMI Validation of Distributed LLC Resonant Converter

As previously mentioned, simulation of the near-field EMI
is conducted in ANSYS Slwave, where the near field is
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Fig. 11.

Comparison between far-field radiation of distributed LLC resonant converter at 3 m and the CISPR 22 standard.

TABLE II
COMPARISON OF SINGLE-BRANCH AND DISTRIBUTED LLC RESONANT CONVERTERS

Q) Vi, G Vo % Step down ratio Turns ratio Branch # Ripple Power efficiency
Single branch 12V 08V 15 15 1 4% 91.7%
Distributed topology 55V 08V 68.75 8.5 8 3% 89.8%
TABLE III

evaluated on the surface of a cuboid that completely encloses
the system. The offset of the x-, y-, and z-axes of the cuboid
is 4 mm. The observation surface illustrated in Fig. 8 is the
top surface of the cuboid.

The EMI levels across the entire package, characterized as
electronic field intensity, are illustrated in Fig. 8. A layout
of the metal layer and components of the package are also
illustrated in Fig. 8, where the near-field distribution within
the package is depicted. A darker color implies a higher EMI
level. The closer to the EMI aggressor, the higher the EMI. The
highest electric field intensity is observed around the via stack,
where the high voltage is injected into the VR-on-package
system. The highest EMI level from the single-branch and
distributed L LC resonant converters is, respectively, 740 and
210 V/m, as illustrated in Fig. 8. The distributed L LC resonant
converter, therefore, exhibits more than 3x lower EMI than
the single-branch LLC resonant converter.

A prototype of the VR-on-package topology has also been
developed. Near-field scans have been conducted, spanning
from 120 MHz to 14 GHz. The near field is scanned using
the API 3-D scanning system with a printed circuit magnetic
field probe [27]. An experimental magnetic field scan above
the bottom side of the PoL VR at 120 MHz is illustrated
in Fig. 9(a). These experimental results agree with the EMI
simulations in ANSYS Slwave, depicting the magnitude and
location of the peak EMI in the VR-on-package system.

EMI CHARACTERISTICS OF DISTRIBUTED LLC RESONANT CONVERTER
WITH DIFFERENT NUMBER OF BRANCHES

Branch number 1 2 4 8
EMI level 740 V/im 560 V/m 384 V/m 210 V/m
The Y-component of the peak magnetic field is

6.85 x 1073 A/m, as illustrated in Fig. 9(b). The highest radi-
ated power in the experimental near-field scan is —24 dBm,
as illustrated in Fig. 9(a). As previously mentioned,
the evaluation surface is 4 mm above the package, leading to
a magnetic field strength of 7.25 x 1073 A/m. The simulation
of the peak EMI matches the experimental near-field scan
within a 5.5% error. The experimental field distribution pattern
illustrated in Fig. 9(a) is different from the EMI simulation
in Fig. 9(b) since no signal routing is included in the
simulation. The location of the high-speed signal is illustrated
by the dashed circle in Fig. 9(a). The experimental results also
demonstrate that EMI from the high-speed signal begins to
dominate with increasing frequency, as illustrated in Fig. 10.

The far-field radiation of the proposed distributed LLC
resonant converter at a distance of 3 m is illustrated in Fig. 11.
The frequency ranges from 0 to 500 MHz. A zoomed-in view
around the resolution frequency of 2 MHz is also illustrated
in Fig. 11 to provide sufficient resolution. The highest field
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intensity at 3 m, 42 dBuV/m, is observed at 2 MHz due to the
resonant frequency of the converter. CISPR 22 for class B 3-m
radiated EMI limit (40 dBuV/m) is also illustrated in Fig. 11
as the dashed line. The far-field EMI is below 40 dBuV/m
across the entire spectrum except for the resonant frequency
at 2 MHz. Note that the far-field EMI is not the focus of
this article. Shielding techniques can reduce far-field EMI [9].
Near-field EMI is, however, difficult to eliminate due to the
compact nature of a system-in-package.

A comparison of the near-field EMI among distributed
resonant converters with different branch numbers is listed
in Table III. Although the power efficiency of the distrib-
uted LLC resonant converter is lower than the single-branch
LLC resonant converter, the distributed LLC resonant con-
verter utilizes a much higher step-down ratio. Importantly,
the distributed LLC resonant converter exhibits significantly
lower EMI as compared with the single-branch L LC resonant
converter (see Table II). The high step-down ratio and low
EMI characteristics of the proposed distributed L LC resonant
converter make the distributed LLC resonant converter a
promising candidate for PoL. conversion in a VR-on-package
environment.

V. CONCLUSION

An LLC resonant converter operating at high frequencies
to provide PoL dc—dc conversion is described in this article.
Distortion of the sinusoidal waveform produces a 90-A current
spike due to the high turns ratio of the transformer. A
distributed LLC resonant converter that supports high step-
down conversion is, therefore, proposed. A stable voltage with
less than 3% ripple is achieved. A reduction of nearly 90% in
the magnitude of the current spikes as compared to a single-
branch L LC resonant converter with a similar step-down ratio
is also achieved. A VR-on-package platform, supporting EMI
evaluation of the VR, is demonstrated. More than 3x lower
EMI in the distributed LLC resonant converter is achieved
as compared with the single-branch LLC resonant converter
utilizing the same step-down ratio. Experimental results show
good correlation with the EMI simulations in terms of the
magnitude and location of the peak EMI. The distributed
converter topology is also highly scalable and compatible with
standard power conversion architectures.
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