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A Unified Design Methodology
for CMOS Tapered Buffers

Brian S. Cherkauer, Student Member, IEEE, and Eby G. Friedman, Senior Member, IEEE

Abstract— In this paper, the various disparate approaches
to CMOS tapered buffer design are unified into an integrated
design methodology. Circuit speed, power dissipation, physical
area, and system reliability are the four performance criteria
of concern in tapered buffers, and each places a separate, often
conflicting, constraint on the design of a tapered buffer. Enhanced
short-channel tapered buffer design equations are presented for
propagation delay and power dissipation, as well as a new split-
capacitor model of hot-carrier reliability of tapered buffers and a
two-component physical area model. Each performance criterion
is individually investigated and analyzed with respect to the
number of stages and tapering factor, and the interaction of
the four criteria is examined to develop both a qualitative and a
quantitative understanding of the various design tradeoffs. The
creation of process dependent look-up tables for optimal buffer
design is described, and a methodology to apply these look-up
tables to application-specific tapered buffers for both uncon-
strained and constrained systems is developed. Summarizing, the
methodology described in this paper simultaneously considers the
interrelated issues of circuit speed, power dissipation, physical

area, and system reliability, permitting the efficient design of

tapered buffers.

1. INTRODUCTION

N CMOS integrated circuits, large capacitive loads are

often encountered. These large loads occur both on-chip,
where high, localized fan-out and long global interconnect
lines are common, and off-chip, where highly capacitive chip-
to-chip communication lines exist. In order to drive these
large capacitive loads at high speeds, buffer circuits are
required which must quickly source and sink relatively large
currents while not degrading the performance of previous
stages. In CMOS, a tapered buffer system is often used to
perform this task, particularly when the load is predominantly
capacitive [1], [2]. When the load is resistive, typically a
long interconnect line, repeaters, a form of distributed buffer,
rather than tapered buffers are used [3], [4]. This paper,
however, focuses on tapered buffers. Thus, only capacitive
load impedances with negligible resistance are considered.

The basic problem that the tapered buffer must solve is
illustrated in Fig. 1. High output impedance logic and/or
registers must drive a large capacitive load with acceptable
speed. The tapered buffer is placed between the logic/registers
and the large capacitive load. The tapered buffer provides
a high impedance input, so as not to load down the
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Fig. 1. Buffer used to drive capacitive load.

logic/registers, and sources (sinks) high current to quickly
charge (discharge) the large capacitive load. Thus, the buffer
isolates the logic/registers from the load, amplifying the signal
along the way.

The tapered buffer is a well-known CMOS circuit structure.
Many different approaches to tapered buffer design have
been described in the literature, focusing on a variety of
performance aspects. The most commonly addressed criteria in
tapered buffer design are propagation delay, power dissipation,
physical area, and, quite recently, circuit reliability. Previous
design methods utilize analytic expressions to determine the
tapering factor and the number of stages of a tapered buffer
system; these parameters are the two primary variables in
the design of tapered buffers. Unfortunately, the methods
developed to deal with these different design constraints are
quite diverse, do not deal with all four issues simultaneously,
and often provide solutions which are in direct conflict. The
primary objective of this paper is to unify these seemingly
independent criteria by providing a single, integrated design
methodology for determining an application-specific tapering
factor and number of stages of a tapered buffer system
necessary to drive a wide range of capacitive loads. This
unification is accomplished by utilizing consistent models to
derive analytic expressions for all four performance criteria.
Thus, expressions with similar form are produced, permitting
the various criteria to be combined into a single tapering
methodology which simultaneously considers all four criteria.

In Section 1I, a brief background of CMOS tapered buffer
design is provided. An analytic expression using the alpha-
power short-channel MOSFET model for the calculation of
propagation delay through a tapered buffer system is presented
in Section III, permitting the development of an expression
to minimize the buffer system delay. In Section IV, analytic
expressions are presented for determining both the short-circuit
and dynamic power dissipation of tapered buffers, and the
implications of power dissipation on tapered buffer design are
discussed. In Section V, an analytic expression for the physical
area of a tapered buffer is presented, and the significance of

1063-8210/95$04.00 © 1995 IEEE



area to buffer design is summarized. An analytic expression
is described in Section VI which is used as a measure of
hot-carrier degradation of inverter performance, a relationship
which is inversely proportional to buffer reliability. This hot-
carrier degradation behavior is described in terms of the
reliability of tapered buffers. In Section VII, these four design
criteria are unified into a single tapered buffer design strategy.
The application of this unified methodology to the design of
practical buffer circuits is discussed in Section VIII. Finally,
some conclusions are drawn in Section IX. A pseudocode
implementation of an algorithm for generating technology
dependent look-up tables for optimal tapered buffer design
is provided in the appendix.

II. OVERVIEW OF TAPERED BUFFER DESIGN

The tapered buffer structure was first proposed by Lin
and Linholm in 1975 [1]. This structure consists of a series
of inverters where each transistor channel width is a fixed
multiple, F, larger than that of the previous inverter. The
output current drive to output capacitance ratio remains fixed
for each stage in the buffer, therefore each inverter stage
has equal rise, fall, and delay times. Assuming a simplified
capacitance model in which the interstage capacitance is
directly proportional to the size of the input capacitance of
the inverter, and an area model in which the area of each
inverter is directly proportional to the channel widths of the
transistors in the inverter, Lin and Linholm developed an
analytical optimization scheme based on a “figure of merit,”
which is a weighted product of the delay and area requirements
of a tapered buffer.

Immediately following Lin and Linholm, Jaeger proposed
a modification of the optimization process which considered
only speed optimization [2]. Jaeger showed that, in contrast
to the assumptions used by Lin and Linholm, the total delay
through a tapered buffer system is minimized when the entire
system delay is considered, rather than the delay of the
individual inverter stages. He further showed that the minimum
system delay is achieved when the ratio between the transistor
channel widths in adjacent stages, F', is exponentially tapered.
F' and the number of stages NN, as described in [2], are defined
by (1) and (2), respectively, where Cy, is the load capacitance,
Cy is the input gate capacitance of the minimum sized buffer
stage, and W; is the width of the devices in the ith stage of
the tapered buffer system

Wi
= L= ~ 2.72 1
F Wi e~ 2 1)
CL
=In—E. 2
N=lng @)
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Since the early work developed by Lin and Linholm and
Jaeger, both published in 1975, other aspects of buffer design
have been addressed, such as power dissipation [5]-[8], circuit
area [7]-{11], and system reliability [12], many of which
have led to significantly different results than that of Jaeger’s
original solution. Additionally, Jaeger’s approach has been
extended to include more accurate capacitance models [9],
[13]-[16] and improved delay models [13], [14], [17], [18].
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Fig. 2. The split-capacitor model of a tapered buffer [15].

The split-capacitor model, introduced implicitly by Kanuma
[13], explicitly by Li, Haviland, and Tuszynski [15], and
reviewed in [19], in which the input gate capacitance Cy and
the output diffusion capacitance C,, of the inverter are modeled
as separate capacitors, offers improved accuracy as compared
to the single capacitor model utilized by Lin and Linholm and
Jaeger. The split-capacitor model is illustrated in Fig. 2 and is
utilized throughout this work.

In the split-capacitor model, the capacitance at the output
of the ith buffer stage is included, as shown in (3). This
expression will be utilized frequently in the following sections

Cr, = FY(C, + FC,). (3)

III. PROPAGATION DELAY

In modern submicrometer CMOS fabrication technologies,
short-channel effects are often quite pronounced. Therefore,
an accurate and efficient short-channel transistor model is
necessary when developing a buffer delay equation. The short-
channel transistor model used in this paper is the alpha-power
I-V relationship developed by Sakurai and Newton [20]. In
this model, Sakurai and Newton show that the propagation
delay (the time from the input signal reaching Vpp/2 to the
output signal reaching Vpp/2) for an inverter is as shown
in (4), and the slope of a straight-line approximation of the
output waveform of an inverter, {7, is shown in (6). In (4),
tpuL is the propagation delay for the output transition from
high to low, and ¢,.y is the propagation delay for the output
transition from low to high

1 1-vw CLV;
tpHL, tpLu = (— - T)tT+ L DD 4)

2 1+« 21po
where
Vru
- 8 5
vr Vob &)
b = CrLVpp (0.9 Vbo N 10Vpo ©)
r= IDO 0.8 O.SVDD BVDD )

In the alpha-power model, Ipo represents the drive current of
the MOS device and is proportional to W/L, Vp, represents
the drain-to-source voltage at which velocity saturation occurs
with Vgg = Vpp and is a process dependent constant, and
« models the process dependent degree to which velocity
saturation affects the drain-to-source current and is within
the range 1 < a < 2, where @ = 1 corresponds to a
device operating strongly under velocity saturation, while
a = 2 represents a device where there is negligible velocity
saturation. Vpp is the positive supply voltage, and Vry is the
MOS threshold voltage.
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Under the assumption of symmetric inverters, i.e., inverters
with equal rise and fall times, the delay through each stage
of a tapered buffer is equal [1]. In addition, the rise and fall
times of the signals throughout the tapered buffer system are
equal, therefore straight-line approximations for the input and
output signals yield equal magnitudes for all signal slopes
[14]. With the alpha-power short-channel model, waveform
symmetry is demonstrated since the ratio Cp/Ipo of each
inverter stage remains constant. Thus, (4) and (6) are constant
for each individual stage within the tapered buffer system. The
ratio C,/Ipo of the ith stage may be calculated as

Cr.  FYC,+FC)  (CotFGC,)
Fi_l(IDOi) B

. )

Ipo, Ipo, -

Substituting (6) and (7) into (4) yields an expression for
the single stage delay of a tapered buffer system [21]. Since
the delay through each stage is equal, the total delay is
calculated by multiplying the single stage delay by the number
of stages, N [2], [20]. This process results in an expression
for the propagation delay through a tapered buffer, as given
below in (8)—(10). The subscripts ‘n’ and ‘p’ in (9) and (10)
designate constants describing the NMOS and PMOS devices,
respectively

Vpp(C: + FC,) [ K;
tbuffer = N DD( + y) |: H ¥ KLH:l (8)

Ipo, 2

where
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Note that due to differences in Vpg, Vru, and o between the
NMOS and PMOS devices within each inverter, equalizing
the drive current Ipg of both transistors does not precisely
equalize the high-to-low and low-to-high propagation delays
of the inverter. Therefore, an average of the high-to-low and
low-to-high propagation delays is provided in (8). Equations
(9) and (10) describe the dependence of the propagation delay
on the individual NMOS and PMOS device parameters.

It is interesting to note that short-channel geometries do
not change the form of the propagation delay through a
tapered buffer system. Short-channel geometries affect the
delay calculation, but not the delay optimization method.
Consequently, previous delay optimization work, primarily
developed for long-channel devices, is equally applicable to
short-channel devices.

The number of stages, N, calculated from the split-capacitor
model solution developed by Li et al., in [15], is

In —Céj
T InF

an

The choice of tapering factor, F, for minimum delay may
also be calculated in the same manner as for the long-channel

model, and this transcendental relationship in F is [15]

Flin(F) -1 = 2.

c, 12)

Previous research on the design of tapered buffer circuits
has concentrated on choosing an optimal tapering factor, F,
for a tapered buffer system to achieve a desired performance
goal. In determining an application-specific F, the number of
stages, N, can take on only positive integer values. Typically,
however, expressions for propagation delay, power dissipa-
tion, physical area, and system reliability are developed as
continuous functions of F. A drawback to this approach is
that it disguises an inherently discrete system as a continuous
system, thus greatly increasing the search space for . Upon
selecting F, it is then necessary to convert from a continuous
system to a discrete system in order to physically realize the
tapered buffer.

In unifying these four performance criteria, the discrete
nature of N is used as a simplifying design constraint. Thus,
all design equations are expressed as discrete functions of N
in addition to continuous functions of F'. This transformation
reduces the search space for an optimal design to typically
fewer than ten values and allows for a quick comparison
of the circuit speed, power dissipation, physical area, and
device degradation tradeoffs among the fewest possible circuit
implementations.

The tapering factor, F', as a discrete function of the number
of stages, N, using the Li split-capacitor model, is

(@)

With this relationship, the propagation delay through a tapered
buffer, given in (8), can be rewritten in terms of N as

(13)

Vop (C1 + (%)ﬁcy) Kur + Kin
thuffer = 2 . (14

Ipo,

This expression is normalized to remove process constants,
thereby expressing delay as a function of only those variables
which may be controlled during the design process. This
procedure results in the normalized delay expression shown
in (15), which is illustrated graphically in Fig. 3

thorm = L — )t " N
" (VDD(KHL + KLH)) butter| V]
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From the shape of the graph shown in Fig. 3, it is seen that
the propagation delay of a tapered buffer system as a function
of N exhibits upward concavity. Therefore, a minimum delay
exists for any specific C,/Cy. The value of N which produces
the minimum propagation delay for a given Cr,/Cy is hereafter
referred to as Np. Examination of Np as a function of CL/Cy
reveals that Np increases slowly with increasing Cr,/Cy. This
can be seen in Fig. 3, in which Np = 2 for C/Cy = 10, and
Np increases to 5 with Cp,/Cy = 1000. These results agree
with those shown in [7] and [10]. The sensitivity of Np to C;
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Fig. 3. Normalized propagation delay of a tapered buffer system.

within this range of O, /C, is small. It should be noted that the
propagation delay dramatically increases when using a value of
N which is much smaller than Np. Furthermore, it is worth
observing that the propagation delay increases slowly when
using more stages than is delay optimal, i.e., for N > Np.

IV. POWER DISSIPATION

There are two primary mechanisms by which power is
actively dissipated in the switching of a CMOS tapered buffer.
The dominant component is dynamic power, in which power
is dissipated by charging and discharging the load capacitance
of each inverter. Dynamic power dissipation of tapered buffer
systems is discussed in subsection A. Short-circuit power, the
second significant power dissipation component, is dissipated
during the time in which the NMOS and PMOS devices in
an inverter are both on [5]. The magnitude of the short-
circuit current is greatly dependent upon the shape of the input
waveform driving the inverter, and a new method to compute
the short-circuit power dissipation of tapered buffer systems
is presented in subsection B. The integration of dynamic and
short-circuit power dissipation into an expression for the total
power dissipation and discussion of reduced power dissipation
design in tapered buffers is presented in subsection C.

A. Dynamic Power Dissipation

Dynamic power dissipation is typically the dominant com-
ponent of power dissipation in CMOS circuits. It is therefore
important to closely examine the dynamic power dissipation
of tapered buffer circuit structures.

Dynamic power dissipation is a well-understood phenom-
enon arising from the charging and discharging of node
capacitances as signal lines shift logic levels. The power itself
is dissipated in the channel on-resistance of the charging
or discharging transistors. Each switching cycle consumes
CrVEp joules. If a switching cycle occurs with frequency
f, the dynamic power dissipated in the ith stage of a tapered
buffer may be expressed in the classical form

Ppyn, = CLiVhpf. (16)
Assuming that the system frequency is independent of the
buffer design, the switching frequency, f, in (16) may be
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considered constant for different tapered buffer implementa-
tions. This is also a realistic assumption, for if a system cannot
tolerate a somewhat slower than minimal delay buffer, then the
option for design tradeoffs does not exist. This would render
moot the: discussion of power dissipation as a parameter to
minimize in tapered buffer design. Thus, with f considered a
constant, the dynamic power dissipation for the entire tapered
buffer system is the sum of the dynamic power dissipation of
each stage, as shown in (17)

N
prntotal = VngZ Fi—l(Cz + FCy)

i=1

a7

Performing the summation in (17) and choosing N as specified
by (11) results in

-1
PDyntozal = VDZDf(CI + Foy)( Fy‘ -1 )’ F>1. (18)

Note in (18) that dynamic power dissipation as a function
of tapering exhibits no global minimum. As F increases,
Ppyn,..., continuously decreases. This phenomenon is dis-
cussed further in subsection C.

B. Short-Circuit Power Dissipation

Sakurai and Newton compute the short-circuit power dis-
sipated in an inverter using the alpha-power model [20].
This expression is based on assumptions similar to those
used by Veendrick [5], but with the alpha-power transistor
model replacing the Shichman-Hodges model [22] used by
Veendrick. It is assumed that the transistor which is switched
from cutoff to saturation remains in saturation during the entire
time short-circuit .current is conducted, and that the short-
circuit current waveform is mirror symmetric about a central
vertical axis. The expression for short-circuit power dissipation
during one switching cycle (a switching cycle is two logic level
transitions, high-to-low and low-to-high) developed in [20] is
presented in (19), where t7 is the input signal transition time,
as previously shown in (6)

1 1
(a+1)2e-1

(1 _ 2VT)0¢+1
(1 - I/T)O‘
Substituting the expression for input waveform transition

time in (6) into (19) yields the following expression for the
short-circuit power dissipated in the ith stage of a buffer

Psc = Vppfiripo (19)

09  Vpo , 10Vpg 1
_y2 i
Psc. = VDDf(o.S t 08Von " eVop (a+1)
1 (1-2up)t?
L SR L N—yo P 20
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Summing (20) for each stage of the buffer system and con-
solidating the constants provides the total short-circuit power
dissipation, Psc,,,,,» for one switching cycle of a tapered
buffer
N
Pscypa = Kpsc VngZ Fl_l(cm + FCy)

i=1

2D
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where

0.9  Vpo . 10Vpo

Kpo, = (~2 4 Ypo_y, 1WVpo
Pr (0.8 t 08V eVDD)
L1 (2w
D2 (1=wp)e

Performing the summation, (21) may be expressed as

22)

C
-1
PsCyo = KpPio VBpf(Co + FCy) (%—1‘), F>1

(23)
This expression for short-circuit power dissipation is of
the same form as that of dynamic power dissipation shown
in (18). Thus, short-circuit power dissipation, like dynamic
power dissipation, has no global minimum but is continually
decreasing with F’ increasing. This result is somewhat counter-
intuitive, as larger F' leads to slower signal transitions, and
thus more short-circuit current. However, due to the interde-
pendence of F' and N, increasing F' simultaneously reduces
N. Though the short-circuit power dissipation of each stage
may increase with F increasing, there are fewer stages, and
the resulting total short-circuit power dissipation of the tapered
buffer system decreases. This result is consistent with the
findings of Veendrick [5]. In subsection C, (18) and (23) are
combined, and the total power dissipation of a tapered buffer
system is discussed.

C. Total Power Dissipation

Assuming that the static power dissipated due to leakage
current is negligible compared with the dynamic and short-
circuit power dissipation, the total power dissipated in a
tapered buffer system, Piota), may be expressed as the sum
of the individual dynamic and short-circuit power dissipation
components, described in (18) and (23), respectively, and is

&
Piotal = VAR F(1 + Kp )(Ca +Fcy)< F — | F>1.
(24)

Note that (24) has no global minimum. It is a continuously
decreasing function of F'. This demonstrates that with increas-
ing F, the power dissipation of the tapered buffer system
decreases. Given the dependent nature of N on F’, as shown in
(11), as F approaches infinity, N approaches zero, and Piota)
approaches zero. Intuitively, the tapered buffer that dissipates
the least power is the buffer which consists of no buffer stages.
However, this limit is not useful from a design standpoint,
and thus designing a tapered buffer system with minimum
power as a single constraint is not a meaningful process, unlike
designing a tapered buffer system for minimum delay.

Equation (24), however, demonstrates that using larger val-
ues of F', and consequently fewer buffer stages, reduces both
short-circuit and dynamic power dissipation within the buffer.
This conclusion is similar to that drawn by Veendrick, although
only short-circuit power dissipation and long-channel devices
are addressed in [5]. Therefore, the observation described in
[5] that the tapered buffer with the minimum power consists
of the fewest stages necessary to meet any remaining design

Fig. 4. Normalized total power dissipation of a tapered buffer system.

criteria still remains when dynamic power dissipation and
short-channel devices are both considered.

Examining the first derivative of (24) with respect to F'
provides further insight into the sensitivity of the total power
dissipation to variations in the tapering factor, F'. This rela-
tionship is shown below

dPoa
_(—jftﬁ = —VBpf(1+ Kpy)
(Ca+C) (% - 1)
v L (25
x Fo1y ;o F>1.(25)

Note in (25) that the sensitivity of the power dissipation to
F exhibits a ﬁ dependence. Thus, the sensitivity of the
power dissipation diminishes as F is increased. A practical
limit to reducing power dissipation is reached when F' grows
large enough to reduce N to a single stage, as that is the
minimum number of stages necessary to realize a tapered
buffer system.

Expressing total power dissipation, as given in (24), as
a discrete function of the number of stages results in (26).
Assuming that switching frequency, f, is independent of buffer
design, as discussed previously in subsection A, a normalized
version of (26) is depicted in Fig. 4

2 CrL ~
Ptotal =VDDf(1+KPsc) Cz+ C— Cy
Yy

x| ——. (26)
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Unlike Fig. 3, in which the normalized propagation delay of
a tapered buffer system is displayed, the total power dissipation
graph shown in Fig. 4 depicts no local minima. The shape of
the graph demonstrates a steady increase in power dissipation
for increasing values of N. It may be observed that the
propagation delay penalty incurred by reducing N by many
stages below Np is not mitigated by a substantial reduction
in power dissipation, and therefore, minimal incentive exists
to decrease N far below Np.
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V. PHYSICAL AREA

The relationship between the physical area of a tapered
buffer and the tapering factor closely tracks the relationship
between dynamic power dissipation and the tapering factor.
This similarity is due to the strong dependence of dynamic
power dissipation on the transistor gate oxide capacitance, the
magnitude of which is defined by the active area of each
device. The primary difference between the dependence on
tapering of dynamic power dissipation and physical area is
that the total area overhead required to construct an inverter is
significant in comparison with the active area, which is the
component that scales with tapering factor [8]. Thus, only
a certain percentage of the physical area, typically 20-50%,
increases as the geometric device width of each inverter is
made larger.

The physical area model of a buffer stage consists of two
components: the area overhead, Agy, which is constant for all
stages of the buffer, and the active area, A..,, which scales
with F'. Thus, the physical area required for the ith stage may
be expressed as

A; = Aon + F' ' Acty. @7

The total area of a tapered buffer as a function of F' is ex-
pressed in (28) by summing A; for N stages, and substituting
(11) into (27)

ln% %L—l
Atotal = Aon lnFy' + Acty I;—l , F>1.(28)

Both area terms in (28) decrease with increasing F'. This
trend occurs since N decreases with increasing F. Equation
(28) is misleading in that it treats /V as a continuous variable,
whereas N may only assume integer values. Increasing F
without decreasing IV has the effect of increasing area. As
with power dissipation, the optimal area of a tapered buffer is
zero. Therefore, a tapered buffer with the fewest stages and
which satisfies any remaining design criteria is the preferred
physical area of the buffer.

The total area requirement of a tapered buffer given in (28)
may be expressed as a discrete function of N, as shown in (29).
This expression is dependent upon the relative magnitudes of
Aon and A, Assuming the area overhead of a minimum
sized inverter is three times the active area, ie., Aog =
3 X Acty, a graph depicting the physical area as a function
of N and C/Cy is shown in Fig. 5

C
gL _
& 1

Atotal =N- AOH + y41 Actv-

29
QL) ¥ _1q

As with power dissipation, the area requirement steadily
increases for increasing N. The relative difference between
the integer values of N is larger when considering physical
area than with power dissipation, mainly due to the first
component of (29) which displays a linear increase in area
overhead with V. This increase in area penalty with increasing
N provides an additional incentive not to increase N beyond
Np. Fig. 5 also graphically demonstrates that, as with power
dissipation, reducing /N by many stages below Np increases

200

AOH= 3x Actv

150
100

50

1000

Fig. 5. Normalized physical area of a tapered buffer system.

propagation delay significantly while decreasing total area only
approximately linearly.

VL

An important and only recently considered criterion in
tapered buffer design is reliability. The failure mechanism of
concern in tapered buffer design is hot-carrier degradation of
the NMOS devices due to injected charge being trapped in
the gate oxide of the NMOS devices within the buffer [23],
[24]. The degradation experienced by the NMOS devices in an
inverter is typically much greater than that experienced by the
PMOS devices. This difference in degradation occurs since
the substrate currents in the PMOS devices are smaller due
to the lower mobility of holes in comparison with electrons
[25]. Therefore, only the degradation of the NMOS devices is
considered here.

The average bond-breaking current density in the NMOS
transistors is a- measure of hot-carrier degradation experi-
enced by the NMOS transistors [12], [26]. The average bond-
breaking current density as a function of tapering factor is
shown in (30), where (Jpp,) is a process constant describing
the average bond-breaking current density of the saturated
NMOS transistor

(JBB) = f(Cr + FCy){JBR,)-

Note that the formula for (Jgg) has been extended in this
paper from that presented in [12], [26] to include the split-
capacitor model. The complete derivation for (30) is provided
in [27].

The average bond-breaking current density is a measure
of expected device lifetime. Lifetime may be considered a
constant performance objective in the manner that propagation
delay, power dissipation, and physical area are considered
constant performance objectives. By using device degradation,
which is a long-term effect, to predict lifetime, reliability may
be treated in the same manner as the remaining three design
criteria.

Hot-carrier degradation, as measured by average bond-
breaking current density, increases with F. Thus, reliability
improves with decreasing F'. This behavior is due to the strong
dependence of degradation upon signal slope and the weak
dependence upon capacitive load [23], [26]. Smaller values of

SYSTEM RELIABILITY

(30)
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Fig. 6. Normalized degradation of a tapered buffer system.

F lead to greater waveform slopes within the tapered buffer.
This behavior may be shown by substituting (7) into the
expression for the waveform transition time, {7, shown in (6)

(Cy + FCy) 0.9 Vbo 10Vpg
tp = 2 Ty 2 n . 3D
0.8 0.8VDD eVDD

Ipo,

The most reliable design and the shortest waveform transition
time correspond to a value of F' = 0, however, a zero tapering
factor again has no physical meaning. A fundamental design
constraint for tapered buffer systems requires

o, =cp (32)

thus constraining F' > 1 for all C, greater than Cy. A lower
bound on F for maximum reliability therefore exists at ' = 1.
However, this bound does not have any practical value in that it
does not reduce the number of possible circuit implementations
since as F approaches one, N becomes infinite for any
Cp > Cy.

Converting (30) to a discrete function of N, the total device
degradation of a tapered buffer system is described as shown
in (33). Again, assuming that frequency is independent of the
tapered buffer system and normalizing the overall function,
the degradation experienced by the NMOS devices within a
tapered buffer is shown in Fig. 6 as a function of N and
CL/Cy

(Jss) = f(Cz (&) Woy) Uss,) @Y

The shape of the degradation graph depicted in Fig. 6 is
similar to that of the graph illustrating propagation delay in
Fig. 3 in that it exhibits a dramatic increase in degradation
for small values of N. However, unlike propagation delay,
degradation continuously decreases with increasing values of
N, showing no local minima nor a strong dependence on
load capacitance. An observation from Fig. 6 is that, from
the perspective of reliability and for moderate-to-large sized
load capacitance, N should be chosen to be greater than two.

VII. UNIFICATION

In Sections III-VI, analytical expressions for propagation
delay, power dissipation, physical area, and hot-carrier degra-

dation are presented using a single nomenclature, allowing
for the unification of these four criteria. This unification
is examined qualitatively in subsection A, followed by a
quantitative analysis in subsection B. In subsection C, the
unified tapered buffer is compared to tapered buffers designed
for minimum delay.

A. Graphical Interpretation

In Figs. 3-6, the behavior of each of the four perfor-
mance criteria with respect to variations in N and CL/C,
is graphically presented. Utilizing these figures, the effects of
deviating from the value of N which produces the minimum
propagation delay, Np, on the propagation delay, power
dissipation, physical area, and hot-carrier degradation of a
tapered buffer system may now be summarized.

Three of the criteria, propagation delay, power dissipation,
and physical area, provide penalties for increasing N beyond
Np, and the reduced hot-carrier degradation benefit of increas-
ing N beyond Np is minimal in comparison to the increases
in both power dissipation and physical area. Thus, it may be
concluded that there is no compelling reason to increase N
beyond Np.

Propagation delay and hot-carrier degradation both exhibit
dramatic increases for small values of N. These increases
are not mitigated by substantial reductions in either physical
area or power dissipation. It may therefore be concluded that
N should be chosen large enough such that the substantial
penalties in propagation delay and hot-carrier degradation for
small N are not incurred.

Within the region between Np and the small values of N
where propagation delay and hot-carrier degradation exhibit
dramatic increase, both power dissipation and physical area
exhibit substantial reduction with decreasing N. Simultane-
ously, propagation delay and hot-carrier degradation increase
moderately, but not prohibitively. Given this analysis, it is
empirically concluded that the optimal value of N, considering
all four factors, should be less than Np, but not so low as to
incur the tremendous propagation delay and system reliability
penalties that occur with very small values of N-

In investigating the effects of these criteria on the perfor-
mance of a tapered buffer system, equal weighting of all four
design criteria has been assumed, i.e., all criteria are of equal
importance in the design of a tapered buffer system. Clearly,
for those application-specific circuits in which a subset of these
four design criteria are emphasized, the observations regarding
an optimal choice of N are skewed from those discussed
here. However, the same general approach to choosing N
may be applied, with the choice of N increasing for systems
where propagation delay and/or reliability are of greater im-
portance, and decreasing for systems where power dissipation
and/or physical area are of greater importance. Furthermore,
a methodology for evaluating those applications with unequal
weighting is described in Section VIIL

B. Delay-Power-Area-Degradation Product

One strategy to permit further examination of these con-
flicting behaviors is to investigate the integrated effects of
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CX=C
AOH=3 X Actv

Fig. 7. Delay-power-area-degradation product of a tapered buffer with small
load capacitance (10 < Cr/C, < 100).

propagation delay, power dissipation, physical area, and hot-
carrier degradation depicted by the product of (14), (26),
(29), and (33). This product gives a figure of merit based
on equal weighting of all four design criteria. The choice of
N for which this product is a minimum provides the optimal
buffer implementation [28]. The delay-power-area-degradation
product as a function of NNV is (34), shown at the bottom of this
page, where K’ represents the collection of process constants.
The delay-power-area-degradation product as a function of F'
is of similar complexity. Due to the form of the delay-power-
area-degradation product, an analytic solution for its minimum
is intractable. In this section, therefore, graphical solutions
for the minimum delay-power-area-degradation product are
investigated while a table look-up strategy for analyzing the
delay-power-area-degradation product is presented in Section
VIIIL. Since the delay-power-area-degradation product grows
much larger for increasing Cr/C, the graph is broken into
three separate graphs in order to preserve the information
within each figure.

In Fig. 7, the delay-power-area-degradation product for
10 < Cr/Cy < 100 is depicted. From this graph it is shown
that over much of this range of Cp /Cy there is minimal
difference between N = 2 and N = 3, thus the optimal
number of stages is two when logical inversion is not desired,
and three when logical inversion is preferred.

The symbol N,p; is used to represent both the number
of stages which produces the minimum delay-power-area-
degradation product and the number of stages which produces
the near-minimum product. The notation in (35) represents
these two approximately equivalent choices for the optimal
value of N, one with logical inversion and one without

Nopt = (4, 7). (35)

Once the optimal number of stages, Nope, is chosen, the
optimal tapering factor, Fyp¢, may be computed directly from

Fig. 8. Delay-power-area-degradation product of a tapered buffer with
medium sized load capacitance (100 < Cr/C, < 1000).

(36). Fyp¢ also has two values, each of which corresponds to
one of the two possible values of Nyp¢

1

Cp\ ™
Fopt = (c_y) : (36)

In Fig. 8, the delay-power-area-degradation product for
100 < C1/Cy < 1000 is depicted. This graph shows that for
most of this range, there is minimal difference between N = 3
and N = 4. This leads to the conclusion that N = 3 is the
optimum number of stages when logical inversion is desired,
and N = 4 is the optimum when logical inversion is not
preferred. The transition from Nope = (2,3) to Nope = (3,4)
occurs in the lower end of the CL/C, range, though the
exact transition is dependent upon the Cy/C, ratio, which
for these graphs, C,/C, = 1. Note that N = 1 is not shown
on this graph, as it produces a much higher delay-power-area-
degradation product that does not easily fit onto the vertical
axis of Fig. 8.

In Fig. 9, the delay-power-area-degradation product for
1000 < C/Cy < 10000 is shown. Over most of this range,
there is minimal difference between N = 4 and N = 5. Thus,
when logical inversion is not desired, a four stage buffer
system is optimal, and when logical inversion is desired, a
five stage buffer is preferable.

C. Comparison of Nopy with Np

The number of stages and tapering factor which produce the
minimum delay (Np and Fp) is compared with the optimal
number of stages and tapering factor (Nope and Fgpe) in
Table 1, where optimal is defined by the minimum delay-
power-area-degradation product. The conditions C,, = C, and
Aon = 3 X Ay are assumed in Table 1.

From Table I, it is shown that N, does not increase
with increasing load capacitance (Cr/Cy) as quickly as Np
does. This behavior is due to one factor of the delay-power-

Prod = K’

3 L 1 1 1
N(CL - C,) (OLW Cy+CoCF ) (AC§* ™ = Ay CrCF — AouCF CN + AonCy' ™™ )

2 S 1\ 2
cﬁ“ﬁ)(fcg + CyN)

(34)



CHERKAUER AND FRIEDMAN: A UNIFIED DESIGN METHODOLOGY FOR CMOS TAPERED BUFFERS . 107

===\ ==
== —_— e
S e e s e
=
S
==

Fig. 9. Delay-power-area-degradation product of a tapered buffer with large
load capacitance (1000 < C'p,/Cy, < 10000).

TABLE I
COMPARISON OF N AND F' FOR MINIMUM PROPAGATION DELAY
VERSUS UNIFIED METHODOLOGY C; = Cy, Ao = 3 X Actv

Minimum delay Unified methodology
CL/Cy ——

Np Fp Nopt Fopt
10 2 3.16 1, 2) (10, 3.16)
100 4 3.16 2,3 |ao, 464
1000 5 398 3, 4) (10, 5.62)
10000 7 3.72 “,5) (10, 6.31)
100000 9 3.59 @, 6) (10, 6.81)

area-degradation product, the physical area, being independent
of capacitive load. The result is that Ny is less sensitive
to variations in load than the choice of N based on solely
minimizing propagation delay. Also noteworthy is that for
C. = Cy, a lower bound on N, appears as approximately
N = [logo &= ]. With the powers of 10 for C/C), that are
used in Table I, this manifests itself as Fo,,c = 10 appearing in
each entry. Additionally, note that Fp > e. This behavior is
the result of utilizing the more realistic split-capacitor model
rather than the single capacitor model applied by Jaeger [2].
The split-capacitor model results in tapering factors larger than
e for minimum delay.

VIII. APPLICATION OF UNIFIED METHODOLOGY

In Section VII, the propagation delay, power dissipation,
physical area, and system reliability of a tapered buffer are
unified both qualitatively and quantitatively. As the intent of
this paper is to provide a unified methodology for the design
of tapered buffers which is easily applied to practical systems,
the design of an application-specific tapered buffer system
utilizing this process is addressed in this section.

Only a single degree of freedom, the choice of IV, exists in
the design of a tapered buffer system. Once N is determined,
the tapering factor, F, is uniquely derived from the relationship
shown in (13) and repeated below. Due to this interdependence
of F on N, the tapering factor, F', does not provide an
additional degree of freedom in the design of tapered buffers

Cc\ ¥
F=(ZE)".
()

(13)

TABLE II
NUMBER OF STAGES FOR VARYING LOAD CAPACITANCE,
C. = 10 fF, Cy = 15 fF, Aou = 150 pm?, Acev = 50 um?

Load Capacitance (Cp) | T omber of Stages
(Nopt)
<225 fF .2
225 fF — 3 pF @ 3)
3 pF — 40 pF (3.4
40 pF — 300 pF @5
300 pF — 7 nF 5, 6)

The parameters Cy, Cy, Aon, and Aty in (14), (26), (29),
and (33) all depend upon the layout and fabrication technology
of the tapered buffer system. However, for a given technology
and buffer layout, these values can be considered as constants.
Therefore, the design of a tapered buffer reduces to choosing
N, and therefore F, based on a specific load capacitance, Cp.

The application of the delay-power-area-degradation prod-
uct to buffer system design in which no specific performance
constraints exist is described in subsection A. The application
of the delay-power-area-degradation product to buffer design
in systems where specific performance constraints exist is
described in subsection B.

A. Unconstrained Systems

The circuit attributes of propagation delay, power dissi-
pation, physical area, and hot-carrier degradation are unified
and strategies for determining the optimal choice of N are
described in Section VIL This unifying process produces an
optimal buffer implementation given a design space which is
unconstrained other than by the tapered buffer relationship of
(13) and with the assumption that all four design criteria are
of equal importance. This permits a straightforward minimiza-
tion of the delay-power-area-degradation product in order to
determine the optimal number of stages.

Since the delay-power-area-degradation product is transcen-
dental in both N and F, a generalized analytical solution for
its minimum value is not provided, and the minimum value is
determined using simple numerical techniques. If the product
is expressed as a discrete function of N, as suggested in
Section VII, this method quickly converges to the minimum
product value in only a few iterations.

It is possible, therefore, to construct a look-up table for
a specific technology for a broad range of load capacitance.
Pseudocode of an algorithm for generating this look-up table
is provided in the appendix. Given a circuit specification
requiring a buffer to drive a large capacitive load, the optimal
number of stages of a tapered buffer system can be immedi-
ately determined from a look-up table, permitting the tapering
factor to be calculated directly from (13). An example of such
a look-up table is shown in Table IL

As shown in Table II, very few entries are required to cover
the expected range of load capacitance. The first two rows in
the table represent typical on-chip loads, and the use of one
to three stage tapered buffers for these capacitive loads agrees
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TABLE III
NUMBER OF STAGES FOR MINIMUM DELAY-POWER-DEGRADATION
Propucr, C; = 10 F, Cy = 15 F

900 fF — 2.8 pF @, 5)
2.8 pF — 8.5 pF G, 6)
8.5 pf — 25.5 pF 6,7
25.5 pf — 75 pF , 8)
75 pF — 250 pF (8, 9)
250 pF — 700 pF ©, 10)

with standard practice. The third and fourth rows represent
larger capacitive loads typically encountered when driving off-
chip. Finally, the fifth row represents highly atypical capacitive
loads which might exist when driving board level system-
wide interconnections, e.g., clock distribution networks or data
busses. Also note that the table contains a solution for both
inverted and noninverted logic polarities for each capacitive
range, permitting the selection of the logic polarity best suited
for the circuit implementation.

It is important to note that the delay-power-area-degradation
product assumes all four design criteria are of equal im-
portance. In systems where certain criteria are of greater
importance than others, a similar process may be applied using
a weighted product or other combination of (14), (26), (29),
and (33) in order to reflect the relative importance of these
design criteria.

In some systems, one or more of the four performance
criteria may be of negligible or minor importance. It is
therefore useful to construct look-up tables for subsets of the
four criteria. There are 15 possible products, however four of
these products have a minimum at either N =0 or N = oo,
which are physically unrealizable. These four nonphysically
realizable products are power, area, degradation, and power-
area. However, eleven products of possible interest remain.
In order to exemplify the process of evaluating these eleven
products, an example table describing the number of stages
for varying load capacitance for an equally weighted delay-
power-degradation product is shown in Table IIL

B. Constrained Systems

In the previous subsection, a buffer design methodology is
presented for those systems where the buffer is not constrained
to meet specific performance requirements. However, often
an application-specific system places particular performance
constraints upon a buffer. In modern CMOS-based systems,
propagation delay and power dissipation are often both of
primary concern, placing limits on the range of N which may
be considered during the design of a tapered buffer system.
Physical area and system reliability may place additional
constraints upon N, and the same process described below

for just propagation delay and power dissipation is applicable
with those criteria.

As power dissipation monotonically increases with N, a
specification on the maximum power dissipation, Ppax, has
the effect of placing an upper bound on N, Np,,,., at or below
which the power dissipation of the buffer system is within
specification. In order to determine the maximum number
of “stages of a tapered buffer system which will satisfy the
maximum power dissipation requirement, (26) is set equal to
Poax and solved for Np__ . This transformation results in

ln(%;)

In [_—K”C’ _(%5—1)+me}

Panax— K, Cy (85 ~1)

Np,. =

max

(37

where

Kp=Vi,f(1+ Kpy) (38)

and Kp,, is defined in (22). Thus, the maximum number
of stages and tapering factor of a buffer system can be di-
rectly determined from a specified maximum power dissipation
requirement.

Similarly, (14) may be set equal to a specified delay value
and solved for N. However, unlike the expression for power
dissipation, this process results in a transcendental expression
in which the two solutions for N are not analytically obtain-
able. Therefore, a preferred method is to numericaily solve for
N using the discrete nature of N to limit the granularity, and
thus the solution time.

Due to the upward concavity of the delay function shown
in Fig. 3, a maximum delay constraint places both upper
and lower bounds on the value of N between which the
delay constraint is satisfied. If Nept falls within the bounds
established by the propagation delay and power dissipation
requirements, then Ny, satisfies both the propagation delay
and the power dissipation requirements of the system and is the
recommended number of stages for the particular application-
specific tapered buffer.

An example of such a constrained system, utilizing the
process parameters shown in Table IV, is as follows. Assume
an application requires that a 45 pF load be driven at 25 MHz
with a buffer dissipating no more than 300 mW (continuous
operation), has a propagation delay of no more than 15 ns,
and an inverting polarity is preferred. No specific constraints
exist for physical area or system reliability, though it is
desired to optimize these within the specified speed and power
constraints. Therefore, all four of the performance criteria
are of concern, and the delay-power-area-degradation product
used to generate Table II may be applied. From (37), the
maximum allowable number of stages, assuming a maximum
power dissipation of 300 mW, is Np,.., = 6. Equation (14)
is used to numerically determine that the propagation delay is
less than 15 ns for 4 < N < 13. Thus, the range of N which
satisfies both the propagation delay and the power dissipation
constraints is 4 < N < 6. This “design space” is shown as
the gray area in Fig. 10. The optimal number of stages for
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TABLE IV
EXAMPLE PROCESS PARAMETERS
Parameter Value
an = Qp 1
Ve = [Vypl 05V
Vpon = [Vipgpl 3v
Vb 5V
Ipon = lpopl 100 A
Cx 10 fF
Cy 15 fF
Aoty 50 pm?
AoH 150 pum?
Delay Power Delay
Constraint  Constraint Constraint
N ' v
-+
-

8 9 10 11 12 13

Fig. 10.
straints.

Nopt falls within propagation delay and power dissipation con-

Cp = 45 pF, derived from Table II, is Nop, = (4,5). The
logically inverted value, N = 5, falls within the design space.
Thus, a choice of N = 5 and therefore a tapering factor of
F = 4.96 =~ 5.0 is recommended for the tapered buffer circuit
described in this example.

However, N,,; may fall outside the constraints imposed by
the propagation delay and/or power dissipation specifications.
If this occurs, N is chosen to be the value closest to N,,; while
remaining within the range established by these constraints.

As an example of this process, again utilize the process
parameters given in Table IV, and assume that a different
application requires a buffer to drive a 45 pF load at 25 MHz
with a maximum power dissipation of 450 mW, a maximum
propagation delay of 12 ns, and no logical inversion. Applying
(37) to this example, N < Np___ = 10. Equation (14) is used
to determine that the propagation delay is less than 12 ns
for 6 < N < 8. Thus, the design space which meets these
constraints is 6 < N < 8. From Table II, Nope = (4, 5),
neither value of which falls within the preferred design space.
In this case, N = 6 should be chosen since it is the value
closest to Nope which is within the design space and satisfies
the noninverted logic polarity requirement. From N = 6,
a tapering factor of F' = 3.80 is directly determined. This
example is illustrated in Fig. 11.

Delay Power
Constraints Constraint
-
-

1 2 3 4 5 6 7 8 9 10

4

Nopt Choice Npmax
of N
Fig. 11. Nop: falls outside propagation delay and power dissipation con-
straints.

In this manner, a tapered buffer system may be designed
with all four design criteria unequally weighted. One or more
criteria are used to establish a region in which equal weighting
is applied locally. Due to the upward concavity of the delay-
power-area-degradation product, choosing the value of N
closest to Nyp within the constrained region guarantees that
the delay-power-area-degradation product has the minimum
possible value within the permitted design space. Thus, the
equally weighted product is applied locally to the design space
in order to determine appropriate application-specific values
of N and F.

IX. CONCLUSION

A CMOS integrated circuit designer is often faced with
multiple, conflicting, design criteria when confronted with
the task of driving a large capacitive load with a tapered
buffer system. This paper provides analytical expressions for
the four primary criteria typically encountered in tapered
buffer design: propagation delay, power dissipation, physical
area, and system reliability. It is preferable to consider these
four design issues as discrete functions of NNV, rather than as
continuous functions of F, since the design space is vastly
reduced. Each of these design criteria is graphically illustrated
as a discrete function of N, and the shapes of these graphs
are used to develop a unifying strategy for choosing N. The
behavior of each design criterion as a function of N leads to
the conclusion that the optimal number of stages, for equal
weighting of all four criteria, is less than the number of
stages which produces the minimum propagation delay. This
result is due to the significant increase in power dissipation
and physical area outweighing the increase in reliability for
increasing N.

The delay-power-area-degradation product is investigated to
examine this conclusion. This product provides a measure of
the simultaneous tradeoffs that exist among all four design
criteria of the tapered buffer system. It is shown that for
a wide range of load capacitance, there exist an optimal
and a nearly optimal value of N whose difference is one.
This result describes both logically inverted and noninverted
tapered buffer systems which are, for all practical purposes,
equivalent in delay-power-area-degradation product.
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/* As initialization, one may assume that for CL = Cy, Nopt = (1,2)
*/
initialize brackets
while upper bracket capacitance is less than maximum capacitance
lower bracket capacitance <- upper bracket capacitance
central bracket N <- lower bracket N + 1
upper bracket N <- central bracket N + 1
evaluate lower bracket product
/* With the lower bracket representing a CL for which Nopt = (i, i+l1),
the bracketing function searches for an upper bracket CL for which
Nopt = (i+l, i+2) or higher. This reduces to finding a value
of CL for which the product for
N = i+2 is less than the product for N = i.
*/
do /* bracket transition */
increase upper bracket capacitance
evaluate upper bracket product
while lower bracket product < upper bracket product
/* The upper and lower brackets now contain values of CL between which
Nopt transitions from (i, i+l) to (i+l, i+2). Because of the well
behaved nature of the Nopt function, simple bisection may be
applied to find this transition point within a specified tolerance.
*/
do /* bisection */
central bracket cap. <- average upper and lower bracket caps.
Productl <- product of central cap. with lower N
Product2 <- product of central cap. with upper N
if Productl < Product2
lower bracket <- central bracket
else
upper bracket <- central bracket
while upper and lower bracket difference > tolerance
/* The transition from Nopt = (i, i+l)} to (i+l, i+2) has now been
located. Repeat algorithm for next transition using old upper
bracket as the new lower bracket until maximum capacitance is
reached.
*/
endwhile

Fig. 12. Pseudocode for look-up table generation algorithm.

These results are used to develop a design strategy for
both unconstrained and constrained tapered buffer systems. A
technology dependent look-up table is used in the design of
tapered buffer systems where the performance specifications
are unconstrained. For those applications where specified
performance attributes constrain the design, the relationships
developed in this paper are used to establish additional limits
on the number of stages. The technology dependent look-
up tables are then used to determine the final choice of
the appropriate number of stages, and therefore the tapering
factor, once the necessary performance specifications have
been satisfied.

This paper describes a unified design methodology for
tapered buffer systems which simultaneously considers propa-
gation delay, power dissipation, physical area, and hot-carrier
system reliability. This methodology integrates these until now
disparate performance criteria, permitting the optimal design
of application-specific CMOS tapered buffers.

APPENDIX

Generation of Nop. Tables

Look-up tables for Ny, as exemplified by Tables II and
III, may be generated through the use of a simple algorithm,
a pseudocode version of which is depicted in Fig. 12. Given
target process parameters and a maximum load capacitance
to serve as a termination point, the algorithm brackets the
capacitance transition values between Nope = (4,7 + 1) and
Nept = (i + 1,7 + 2) and applies bisection to locate these
capacitance transition values within a certain error tolerance.
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