2054

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 10, OCTOBER 2014

Memristor-Based Material Implication (IMPLY)
Logic: Design Principles and Methodologies

Shahar Kvatinsky, Student Member, IEEE, Guy Satat, Nimrod Wald, Eby G. Friedman, Fellow, IEEE,
Avinoam Kolodny, Senior Member, IEEE, and Uri C. Weiser, Fellow, IEEE

Abstract— Memristors are novel devices, useful as memory at
all hierarchies. These devices can also behave as logic circuits.
In this paper, the IMPLY logic gate, a memristor-based logic cir-
cuit, is described. In this memristive logic family, each memristor
is used as an input, output, computational logic element, and latch
in different stages of the computing process. The logical state is
determined by the resistance of the memristor. This logic family
can be integrated within a memristor-based crossbar, commonly
used for memory. In this paper, a methodology for designing this
logic family is proposed. The design methodology is based on
a general design flow, suitable for all deterministic memristive
logic families, and includes some additional design constraints
to support the IMPLY logic family. An IMPLY 8-bit full adder
based on this design methodology is presented as a case study.

Index Terms— Design methodology, IMPLY, logic, memristive
systems, memristor, Von Neumann architecture.

I. INTRODUCTION

EMRISTORS [1] and memristive devices [2] are novel

structures, useful in many applications. These devices
are basically resistors with varying resistance, which depends
on the history of the device. It can be used for memory,
where the data is stored as a resistance. While memory is
the common application for memristive devices, additional
applications can also use memristive devices as functional
blocks, such as analog circuits, neuromorphic systems, and
logic circuits. Although the definition of memristive devices
is broader than the definition of memristors, it iS common
to use the term memristor for all memristive devices [10],
[11]. In this paper, for simplicity, the terms memristor and
memristive device are used interchangeably.

The use of memristors to perform logical operations has
been proposed in several different ways. In some logic fam-
ilies, memristors are integrated with CMOS structures to
perform the logical operation, while the logical values are

Manuscript received February 23, 2013; revised June 1, 2013 and August 26,
2013; accepted September 8, 2013. Date of publication October 2, 2013; date
of current version September 23, 2014. This work was supported in part by
the Hasso Plattner Institute, in part by the Advanced Circuit Research Center
at Technion, and in part by the Intel Collaborative Research Institute for
Computational Intelligence.

S. Kvatinsky, G. Satat, N. Wald, A. Kolodny, and U. C. Weiser are
with the Department of Electrical Engineering, Technion-Israel Institute
of Technology, Haifa 32000, Israel (e-mail: skva@tx.technion.ac.il;
guysatat@hotmail.com; nimrodwald @ gmail.com; kolodny @ee.technion.ac.il).

E. G. Friedman is with the Department of Electrical Engineering and
Computer Engineering, University of Rochester, Rochester, NY 14627 USA
(e-mail: friedman@ece.rochester.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2013.2282132

represented by voltage levels. In [3], memristors are used as a
reconfigurable switch. In [4], a hybrid memristor-CMOS logic
family is proposed, memristor ratioed logic (MRL). In MRL,
the memristors act as computational elements, performing
OR and AND Boolean functions, while the CMOS transistors
perform logical inversion and amplification of the logical
voltage signals. A similar approach is proposed in [5].

Another approach for logic with memristors is to treat
resistance as the logical state, where the high and low resis-
tance are considered, respectively, as logical zero and one.
For this approach, the memristors are the primary building
blocks of the logic gate. Each memristor acts as an input,
output, computational logic element, and latch in different
stages of the computing process [6]. This approach is suitable
for crossbar array architectures and can therefore be integrated
within a standard memristor-based crossbar, commonly used
for memory. This approach is appealing since it provides
an opportunity to explore advanced computer architectures
different from the classical von Neumann architecture. In these
architectures, the memory can perform logical operations on
the same devices that store data, i.e., performing computation
inside the memory. This paper focuses on this approach.

Material implication (IMPLY logic gate) [7] is one example
of a basic logical element using this approach, combining state
memory and a Boolean operator. Additional logic families,
which extends the IMPLY logic gate by using certain varia-
tions of a regular memristor-based crossbar, have also been
proposed [8], [9] and are not considered in this paper. A
specific modification of the crossbar structure is, however,
presented in this paper to enhance the performance of the logic
gate.

In this paper, the IMPLY logic gate is described in
Section III, and a memristor-based crossbar in Section IV.
A design methodology for the IMPLY logic gate is proposed
in Section V. This design methodology consists of a design
flow appropriate for all memristor-based logic families, as
well as the IMPLY logic family. This design methodology
is demonstrated by a case study of an 8-bit IMPLY full adder
in Section VI. Logic inside a memristor-based memory is dis-
cussed in Section VII. This paper is concluded in Section VIII.

II. MEMRISTORS

Memristors were conceived in 1971 by Chua [1] based on
fundamental principles of symmetry. Chua proposed a fourth
fundamental electronic component in addition to the three
already well-known fundamental electronic components: the
resistor, capacitor, and inductor. The memristor has varying

1063-8210 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

KVATINSKY et al.: IMPLY LOGIC: DESIGN PRINCIPLES AND METHODOLOGIES

Into the device
_@

Fig. 1. Memristive device symbol. The thick black line on the left side of
the device represents the polarity of the device. If the current flows into the
device, the resistance of the device decreases. If the current flows out of the
device, the resistance increases.

Out of
the device
—

resistance (also named memristance). Changes in the mem-
ristance depend upon the history of the device (e.g., the
memristance may depend on the total charge passing through
the device, or alternatively, on the integral over time of the
applied voltage across the ports of the device).

The theory of memristors was extended to memristive
devices in 1976 [2]. Formally, a current-controlled time-
invariant memristive system is represented by

dx _)]
E - f(-xal) ()
v(t) = R(x,i)-i(?) 2

where x is an internal state variable, i(t) is the memristive
device current, v(¢) is the voltage of the memristive device,
R(x,i) is the memristance, and ¢ is time. The symbol of a
memristor is illustrated in Fig. 1. Note that the polarity of the
symbol defines the sign (positive or negative) of the current.

Since Hewlett—Packard announced the fabrication of a
working memristor in 2008 [12], there has been increasing
interest in memristors and memristive systems. New devices
exhibiting memristive behavior have been announced [13],
[14], and existing devices such as spin-transfer torque
magnetoresistive random access memory (STT-MRAM)
have been redescribed in terms of memristive systems [15].
Actually, most emerging memory technologies obey (1) and
(2) and can therefore be described as memristive devices or
memristors [11].

Several memristor models have been proposed to describe
the behavior of physical memristors [16]-[23]. These models
are deterministic and do not consider stochastic switching [40],
[41]. In this paper, the threshold adaptive memristor (TEAM)
model [23] is used. In the TEAM model, memristors have an
adaptive nonlinearity and a current threshold. For this model,
(1) becomes

dx(t)
dr
. O.OFF
Kok - (ll(% - 1)) + forr(x), 0 <ior <i 3()
0, ion <i <ior 3(b)
. O.0ON
kON . (ll(()_tN) —) . fON(-x)’ i < iON < O 3(0)

where kopr and koy are fitting parameters, aon and aopr are the
adaptive nonlinearity parameters, iorr and ioy are the current
threshold parameters, and fon(x) and fopr(x) are window
functions. An I-V curve for the TEAM model is shown in
Fig. 2 for memristors where (2) is

ROFF - RON

V(l) = [RON + ()C — xON):| . l([) (4)

where Rony and Rope are, respectively, the minimum and
maximum resistance of the memristor, and xon and xopr are,

Xorr — XON

2055

I [Amp]

£ 0 02 04 06 08 1
V [Volt]

Fig. 2. I-V curve of a memristor based on the TEAM model driven with
a sinusoidal input of 1 volt, where Ron = 50Q, Ropr = 1 kQ, kopr =
1.46¢=9 nm/s, aope = 10, iopr = 115 uA, kox = —4.68¢13 nm/s, ooy =
10, ion = 8.9 1A, xon = 1.2 nm, and xopr = 1.8 nm.

Pt
-~
v, $ $x
0, [10,."| ©
TiO, |TiO,, s
Pt
|
Fig. 3. Schematic of the physical model proposed in [20] for a TiO;

memristor.

respectively, the minimum and maximum allowed value of the
internal state variable x.

Memristors are nonvolatile and compatible with standard
CMOS technologies [24]. These devices are fabricated in the
metal layers of an integrated circuit, where the memristive
effects occur in the oxide between the metal layers (e.g.,
in TiO, and TaO,) [25] or within the metal layers (e.g.,
in STT-MRAM). The physical model of a TiO, memristor,
proposed in [20], is shown in Fig. 3. The size of a typical
memristor is relatively small, since the fabrication process
is similar to processing the cross-layer via between metal
layers. Memristors therefore exhibit high density and good
scalability. The read and write time for these devices can be
as fast as 120 picoseconds [25]. Currently, except for STT-
MRAM, memristors suffer from endurance limitations, where
the number of allowed writes per cell is approximately 1010
[26]. It is believed, however, that this limit will increase
to at least 10" [27]. Memristors may therefore solve many
significant problems in the semiconductor industry, providing
nonvolatile, dense, fast, and power-efficient memory.

III. IMPLY Locic GATE

The logic function p—q or p IMPLY q (also known as p
IMPLIES q, material implication, and if p then q) is described
in [7] and a truth table is listed in Table I. The IMPLY logic

2056

TABLE I
TRUTH TABLE OF IMPLY FUNCTION

Case | p | q p—q

1 0O 1

2 0|1 1

3 110 0

4 111 1

Veono Vser
p q
R

Fig. 4. IMPLY logic gate. The initial state of memristors p and g is the
input of the logic gate and the output is the final state of the memristor ¢ after
applying the voltages VspT and Vconp. A load resistor Rg is connected to
both memristors.

function together with FALSE (a function that always yields
the value zero as an output) comprises a computationally
complete logic structure. Since the IMPLY function can be
integrated within a memristor-based crossbar, IMPLY logic
provides a basic logic element for a memristor-based circuit.

A. Basic Logic Gate Operation

The proposed memristor-based IMPLY logic gate uses a
resistor Rg (Ron < Rg < Rorr) connected to two memristors,
named P and Q, acting as digital switches. The corresponding
initial memristances p and g are the inputs of the gate;
while the output of the gate is the final memristance of Q
(the result is written into the logic state g). Note that the
memristance of both memristors changes during operation, i.e.,
the computation is destructive to both inputs. A schematic of
an IMPLY gate is shown in Fig. 4.

The basic concept is to apply two different voltages to
P and Q, where Vsgr, the applied voltage on Q, has a
higher magnitude than Vconp, the applied magnitude on P
(IVconp|< |Vser)). If p = 1 (low resistance), the voltage on
the common terminal is approximately Vconp and the voltage
on the memristor Q is approximately Vsgr — Vconp, which is
sufficiently small to maintain the logic state of ¢. In the case
of p = 0 and g = 0 (high resistances), the applied voltage on
Q is approximately VsgT and Q is switched ON (¢ = 1). In the
case of p = 0 and ¢ = 1, the logic state of ¢ is maintained.
The memristance of an ideal IMPLY logic gate (zero delay
time) for input cases 1 and 3 is shown in Fig. 5.

B. Analyzing the Behavior of a Logic Gate

Vser and Vconp, the applied voltages on P and Q, are
fixed. For any initial state, the memristor state ¢ tends to drift

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 10, OCTOBER 2014

Vser ri
= I
5 !
.>2. | — Q Voltage
(a) %’n Veonn — PVoltage
o
=
S
Vio] = | == -

0 0.1 0.2 0304 05 06 0708 09 1

-
% 100 T
$ I
= s0f |
o} - =Casel
- I
o 60 — Case 3
(b) & '
o
S a0 1
o
Rl |
‘F: 20 f I
QU
s N o s v
% 01 02 0304 05 0.6 0708 0.9 1
— 100 —
E rr
5 |
2 a0t I i
X I - =Casel
o 60 ! — Case 3
C .~ |
5] a0 |
= ;|
g 20 | b e ==
3 1
(] et |
I
0 01 02 0304 05 06 0708 09 1
Time [#]

Fig. 5. Behavior of an ideal IMPLY logic gate. (a) Applied voltages on
both memristors P and Q. (b) Memristance of Q for cases 1 and 3. While
the memristance in case 1 decreases to Ron within a zero write time, the
memristance in case 3 does not change. (c¢) Current of memristor Q. The
current in case 1 is sufficiently high to decrease the resistance of Q.

toward the ON state. For digital operation, the state of g should
either stay unchanged or switch fully ON (changing the logic
state from logical zero to logical one).

The different input combinations are listed in Table I. Due
to the polarity of the memristors and the applied voltages, the
memristance of memristor Q can only be reduced. Note that
in cases 2 and 4, the initial logic state of ¢ is logical one and
the logic gate output g is also logical one. The gate operation,
therefore, electrically reinforces the logic state of g since the
memristance of Q is reduced.

In case 1, the initial state of ¢ is logical zero; after applying
the external voltages, g is switched ON. This case determines
the time required to apply Vsgr and Vconp until the logic
state of g reaches the desired state (above a certain level of
conduction that maintains correct logical behavior). This case
determines the write time of the circuit (the delay time of the
logic gate).

In case 3, the initial state of ¢ is logical zero. This logic state
should remain unchanged after applying Vsgr and Vconp,
although the voltages tend to change the internal state of
g toward the ON state of logical one. This phenomenon is
state drift. The logical zero state of g, which is the output
of the gate, is electrically weaker than the input logical state
of g (the memristance of Q after applying the voltages is
lower than the initial memristance). State drift may require

KVATINSKY et al.: IMPLY LOGIC: DESIGN PRINCIPLES AND METHODOLOGIES

refreshing the state; otherwise, repeated or prolonged sensing
action may incorrectly switch the logic state of g. Note that
the state drift phenomenon is a deterministic phenomenon.
Stochastic switching [40], [41] can change the logical state
of the memristors, and is not considered in this paper.

C. Speed—Robustness Tradeoff

The permissible value of the time required to apply Vconp
and Vsgr is determined from case 1. This write time is the
delay time of the logic gate and determines the performance of
the logic gate. Since the initial logical state of the memristors
is unknown during operation (no preliminary read operation
is applied), the voltages are applied at the same time for all
input cases.

The state drift is determined from case 3, which depends
upon the write time determined for case 1. Furthermore, any
improvement in the performance due to changes in the applied
voltage increases the state drift and degrades the robustness of
the logic gate [28].

D. Extended Logic Functions Based on IMPLY

Any general Boolean function f:B" — B can be imple-
mented with only n +3 memristors [29], where three addi-
tional memristors carry out the computation. Only two mem-
ristors are required for up to three inputs. Computation of the
function is performed in steps. In each step, either FALSE
is applied to one memristor, or an IMPLY is applied to two
memristors, where the output is written to a memristor (which
is one of the inputs of the computational IMPLY stage). This
process requires a long sequence of operations depending upon
the number of inputs. This methodology has been improved
in [30], where only two additional memristors are used rather
than three. While a general algorithm to compute any Boolean
function with a minimal number of memristors has been
developed [29], [30], the computational process requires a
large number of functional stages, and therefore requires
significant computational time.

The schematic and sequence of a two input NAND, based on
a memristor-based IMPLY gate and a FALSE logic gate, are
shown in Fig. 6. This NAND gate is designed to minimize
the computational time and number of memristors and is
comprised of three memristors. The operation of this NAND
logic gate changes the function of each memristor during the
computing process. Two memristors act as inputs in the initial
stage, one memristor acts as the output in the last stage, and all
memristors act together as a computational logic element (as
a memristor-based IMPLY gate) during different stages of the
computing process. This application requires three computing
stages (one FALSE and two IMPLY).

The IMPLY logic gate can also be extended to a multiple
input NOR logic gate [31]. In this extension, as illustrated in
Fig. 7(a), k input memristors P, P», ..., Py, and a separate
output memristor Q are assumed. The operation of this NOR
gate requires two computational stages, the first stage initial-
izes Q to logical zero (¢ = 0) and the second stage applies
Vser and Vconp in a manner similar to regular IMPLY. The
extended NOR suffers from low fan-in since Rg needs to be

2057

Step Voltages
Step 1: 5=0 o Vs = Viiean |
Step 2: p—s Vo = Veono Vs Veer
Step 3: g—s Vy = Vioonn Vs = Ver
(a)
Ve VQ Vs
P Q s
Rg

(b)

Fig. 6. IMPLY NAND, (a) The logic gate requires three sequential steps.
(b) Schematic of IMPLY-based NAND gate.

gre

RG
Vi Vo
Step 1 Veiean q=0
Step 2 Veonp Vser q'= (ps+ pot.+py)'

(b)

e

Fig. 7. Extension to IMPLY, a k-input NOR. (a) Schematic based on execution
of multiple implications in a single step and (b) improved fan-in structure,
where the load resistors are dedicated to the participating logic devices.

-II—MMr—o-ﬁ} Q—

scaled to all possible number of inputs. To solve this issue,
a different structure has been proposed where a load resistor
Rg is connected to every memristor and the load resistance
varies, as shown in Fig. 7(b).

IV. IMPLY INSIDE A MEMRISTOR-BASED CROSSBAR

The IMPLY logic gate cannot be easily integrated with
standard CMOS logic since both circuit structures are sig-
nificantly different. In the IMPLY logic family, a resistance,
rather than a voltage, represents the logical state. Furthermore,
to operate the logic gate, a sequence of specific voltages is

2058

R

junction

f \‘\
£ /‘ 1 L%

Vv,

Junction

Fig. 8. Basic structure of a memristor-based crossbar. Each junction of the
parallel lines is a memory cell with varying resistance Rjunction-

applied to the memristors. The IMPLY logic gate therefore
requires several computational stages (usually a different com-
putational stage is executed during each clock cycle), and a
separate mechanism to read the result of the computation and
control the voltages. To integrate the IMPLY logic gate with
standard voltage-based CMOS logic, a conversion mechanism
is required. This mechanism includes a sense amplifier as well
as additional components. The additional circuitry reduces
the efficiency of integrating CMOS with a memristor-based
IMPLY logic gate.

Alternatively, the IMPLY logic gate can be integrated inside
a memristor-based crossbar array, commonly used for memory,
where the input and output are values stored in the memory
cells. This integration reduces power and provides an opportu-
nity for novel non-von Neumann architectures. In this section,
the basic structure of a memristor-based crossbar is presented,
and a version of the IMPLY logic gate is illustrated.

A. Memristor-Based Crossbar

The basic structure of a memristor-based crossbar consists
of two sets of parallel conductive (metal) lines. The conductive
lines are perpendicular and behave as top and bottom elec-
trodes to the memristive material, located between the lines
[33]. The basic structure of a memristor-based crossbar is
shown in Fig. 8. The write operation to a cell within the
crossbar is achieved by applying a specific voltage to the
junction, where a voltage is applied to both lines. For example,
to write a logical one (low resistance), a positive voltage is
applied to the column line and ground is connected to the row
line (a positive voltage is applied to the memristor). To write
a logical zero (high resistance), the column line is connected
to ground and a positive voltage is connected to the row
line (a negative voltage is applied to the memristor). These
voltages are sometimes called Vsgr (positive voltage to write
a logical one, not necessarily the same voltage as in IMPLY)
and VRpsgr (negative voltage to write a logical zero). Since
memristors are nonvolatile, the data does not change when no
voltage is applied to the lines. The crossbar structure allows
the density of the memory to be relatively high, since CMOS
transistors are not used for each memory cell, but rather only
to select the line. This memory structure is more than 20 times
denser than DRAM [34].

The read operation of the crossbar is achieved by applying
a relatively low voltage (e.g., lower than Vsgr) to a junction
and measuring the current. From Ohm’s law, the resistance

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 10, OCTOBER 2014

< RL
R, Memristor @

Desired Path s

Sneak Path

(a) (b)

Fig. 9. Sneak path in a memristive crossbar. (a) Example sneak path. Every
node in the grid is a memristor. The desired path is marked by a solid line
and a sneak path is marked by a dashed line. (b) Equivalent circuit. All sneak
paths have an equivalent resistance Rgp connected in parallel to the resistance
of the memristor Ry;.

of the memristor is determined from this measured current.
The current measurement is usually achieved by converting
the current into a voltage through a voltage divider with a
known resistance Rpy. The sensed voltage vy is compared to
a known voltage.

An undesired phenomenon in crossbars is sneak paths
[35]-[38], which are undesired paths for the current flow.
When a voltage is applied to a junction in the crossbar, current
also flows through paths different than the desired path. These
paths cross more than one memristor and add a resistance in
parallel to the resistance of the memristor in the junction being
read. An illustration of the sneak path phenomenon is shown
in Fig. 9. This parallel resistance depends upon the stored
data in the memristors in the undesired paths and changes
the sensed voltage vy from a simple voltage divider between
Rpu and the resistance of the memristor to a voltage divider
between Ry, and the total resistance of all memristors in all
paths. A practical sensing operation should therefore consider
all possible sneak paths. A schematic of a crossbar, including
the read and write mechanisms, is depicted in Fig. 10. Several
approaches exist to eliminate or reduce sneak paths, e.g.,
grounding inactive rows. In this paper, it is assumed that these
approaches are used.

B. IMPLY in a Crossbar

The IMPLY logic gate can be integrated inside a crossbar,
where P and Q are two memristors in the same row within
the crossbar. The voltages Vsgr and Vconp are the voltages
of the word line, and the bit line is connected to a resistor Rg.
To compute different Boolean functions with more than two
memristors, the memristors are placed within the same row
within the crossbar. Since the IMPLY operation is destructive
to P and Q, if the data of the input to P is significant, a
copy is assigned to a designated memristor. A schematic of a
crossbar-based IMPLY logic gate is shown in Fig. 11.

V. LoGIC GATE DESIGN METHODOLOGY

In this section, design considerations and constraints for a
memristor-based IMPLY logic gate in a crossbar are described.

KVATINSKY et al.: IMPLY LOGIC: DESIGN PRINCIPLES AND METHODOLOGIES

Select|

w—J
Ry

-<
3

A

s19||01{uod aSejjoh pue 1apo3ap moy

VYVY Y

A

A

Wi~ o

i HW

ol
‘T“T'H [h

Column decoder and voltage controllers |

B
|

Fig. 10. m x n memristive crossbar. The columns show the word lines and
the rows identify the bit lines. Each M —ij is a memristor. The resistance of
the conductive line is nry, for the column line and mr,, for the row line. Ry,
and Ry, are, respectively, the word and bit line resistance.

Veonn Vser

Rg

Fig. 11. IMPLY logic gate inside a memristor-based crossbar.

It is assumed that the memristor behavior is deterministic,
rather than stochastic.

A. Design Flow and Constraints

Although no complete and accurate memristor model yet
exists, all of the proposed memristor models are relatively
complicated and the exact behavior of a memristive logic
circuit is therefore mathematically cumbersome. A need there-
fore exists for heuristics for designing memristive circuits. For
memristor-based IMPLY logic gates, the appropriate circuit
parameters (Rg,VseT, Vconp, and the time to apply the volt-
ages T') need to be determined under some general constraints.
These constraints include minimizing power consumption
(only dynamic power consumption in a memristor-based cross-
bar), reducing area (the number of active memristors in a
crossbar and the number of transistors in the controller),
lowering the delay time of the logic gate, and increasing the
robustness of the circuit (by reducing resistance drift during
operation for those input cases where the logical output does

2059

Determine voltage
conditions at
beginning of operation

~—

Simplified Practical memristor
memristor model

switching model

|

Determine write time T as
a function of circuit M
parameters p

A 4 \,
Determine circuit .
properties as a function of Maes N,
circuit parameters = N v
Full simulations and final
parameter estimation

Fig. 12. Design flow for memristor-based IMPLY logic gates.
TABLE II
INPUT GATE VOLTAGES VQ AND Vp, RESPECTIVELY, AT MEMRISTORS
P AND Q ATt = 0, UNDER THE ASSUMPTIONS THAT THE
MEMRISTANCE OF LOGIC ONE AND LOGIC ZERO I8,
RESPECTIVELY, Ron AND Rogr, WHERE Ropr 3> Ron

Case Vo(t=0) Vo(t=0)
1 Ropr +Rg Vs R Veow 7{ R; Ve R + R, v }
! SET coND
Ropr +2R; Ropr +2R; Ry +2R,; Ry +2R,;
2 R, R+ R
VS'” Ri% ~Vser - VSI-'T 'RiG* V(o\‘n
orr Roy + Rg R,y +R;
3 G v,
Vier =Veow —— 5~ o
o R()‘V + RG
4 Ver - Rovt R “Yeown” % = Vir R Ve Roy + Ry
Roy +2R; Roy +2R; S R,y +2R; cow R,y +2R;

not change). The parasitic capacitance of the CMOS transistors
connected to the crossbar and the parasitic resistance of the
metal lines as well as the sneak path phenomenon also need
to be considered.

A general flow for the design of a memristor-based IMPLY
logic gate is shown in Fig. 12. The design of a general Boolean
function is demonstrated through a case study in Section VI.
After determining the topology of the circuit, the conditions at
the beginning of operation need to be determined. These static
conditions do not depend on the memristor model and provide
necessary conditions for correct circuit behavior. Simplified
memristor models use several heuristics to approximate the
circuit characteristics. The TEAM model [23] is used here to
estimate the circuit parameters.

B. Design Constraints and Parameter Determination for
IMPLY Logic Gate

In the design of a basic IMPLY logic gate, the circuit
parameters Vsgr, Vconp, and Rg and the time to apply the
voltages T need to be determined. The memristor parameters
(Ron, Rorr, kon, korr, @on, Gorr, ion, and iopr in the TEAM
model) are fixed for a given technology.

2060

ROFF: 5e3 Ohm|
- ROFF: 1e4 Ohm
_ROFF= 1e5 Ohm|

T [nsec]
>

Fig. 13. Allowed write time T in case 1 for three values of Ropp

(5, 10, and 100 k€) under the assumptions of a binary resistance model and
o' =5x10"1C.

Although difficult to compute the time evolution of the
voltage at Q (Fig. 4), it is possible to determine the voltage at
Q at the beginning of the logic gate activity. The initial applied
voltage at Q is different for each input case (a different initial
memristance for Q and P). The initial voltages at P and Q are
listed in Table II under the assumptions that the memristance
of the logic one and logic zero is, respectively, Roy and Ropg,
where Rorr > Ron.

From the initial applied voltages, some necessary conditions
for correct logic behavior can be determined. The basic design
principle is that the write (delay) time of the logic gate is
determined from input case 1 (see Table II), but the circuit
should also not exceed a specific state drift in input case 3.

A useful switching model is a binary memristance model
[28]. Assume only two allowed memristances, Ron and Rogg.
A total charge Q' flows through the memristor to cause the
memristance Ropp to switch to memristance Roy. Under these
assumptions and by solving both the switching behavior in
case 1 and the write time T as a function of Q’, the circuit

parameter T is

T — |: R%FF + 2RoreRG :| 0
RoreVseT + R [Vser — Vconnl '

The write time for different circuit parameters and varying
Vsger is shown in Fig. 13. Note that the logic gate is faster
with a higher applied voltage or a smaller Rogg.

Under this model, it is possible to limit the state drift (case
3 in Table II) for a fixed drift. The state drift is

qq(T) = |:VSET -

[]Q/ (6)

where g4(T) is the total charge flowing through memristor
Q after time T, as in case 3. If the state drift is limited
to a value of Q'/4 as the maximum state drift, after four
executions of the logic gate in case 3 the state drift would
change the memristive logic state of g. This phenomenon
requires a refresh every three executions of the logic gate
since the logic state would change to an invert value during
the fourth time. The allowed value of Vsgr for several circuit
parameters is shown in Fig. 14. Note that the state drift is more

)

—V
Roxn + Ri COND1|
ROFF + 2RG
RorrVSET + RG [VSET — VeonD]

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 10, OCTOBER 2014

-.-ROFF = 5e3 Ohm i
M= ROFF = 1e4 Ohm -
—Rgpr = 165 0hm

q,(T) [%Q]

Fig. 14. Allowed values of Vsgr for limited state drift in case 3 of Q' /4.Vsgr
is allowed if g4 (7' is smaller than Q'/4 (horizontal line).

" \\
50 kY \
. AN
A Y
AY

301

(T) [%Q]

q

A}
LY
1
Y
\
1
1
1
1
o \
&]
=] %
L 1
© 1
2 H
- R = 5e3 Ohm
H OFF —
II - ROFF = 1e4 Ohm
1 =
: ‘ —ROFF =1e5 Ohm
10 : R o
Write Time T [nsec]
Fig. 15. Tradeoff between the speed (write time) and robustness (the state

drift in case 3 for memristor Q) for three values of Rogr (5, 10, and 100 kQ)
under the assumptions of a binary resistance model and Q' = 5 x 10~ 14c.

significant with a higher applied voltage, or with a smaller
Rorr. Combining Figs. 13 and 14, the tradeoff between the
speed and robustness of a memristive IMPLY logic gate is
illustrated in Fig. 15.

Another simple and useful memristor model assumes non-
linear behavior with a fixed threshold voltage Vo [28]. Under
this model, for an applied voltage below Vqy, the memristance
is unchanged. To produce correct logical behavior, the initial
applied voltage on Q must be above the threshold voltage in
case 1 and below the threshold voltage in case 3. Adding this
assumption to the initial applied voltage (see Table II) leads
to the following two conditions on the circuit parameters:

\% — Vi
RON . SET ON < RG
Von — [VseT — Vconp]
V. —V
< Rom - SET oN)
2Von — [Vser — Veonpl
VSET ROFF (8)
Vcono Ron’

The allowed value for R for several circuit parameters with
varying Vsgr is shown in Fig. 16. A reasonable value of Rg
is the geometric mean of Ron and Rogr

RG = v/Rox - Rorr ©9)

to maintain a constant ratio between each pair of resistances,

Ron and Rg, and Rg and Roge. Other values of Rg are also
possible.

KVATINSKY et al.: IMPLY LOGIC: DESIGN PRINCIPLES AND METHODOLOGIES

80 : :
il

= Upper limit
6000 il

5000

4000

[Ohm]

© 3000

R

2000

1000

" L L L L L L L L L
1o 0.5 0.55 06 0.65 0.7 0.75 08 0.85 0.9 0.95 1
VSET M

Fig. 16. Allowed value of Rg depends on Vsgr. The upper line is the upper
bound for allowed R and the lower line is the lower allowed bound for Rg.
Under the assumption of a threshold voltage Von = 0.55 V, Vconp = 0.5V,
RON =100 Q, and ROFF =10 kQ.

80 S
o

— 60 N
® N\
o
g \
T 40 \
2 \
E |
& 20 l

|

i

ol g .
100 400

Time [ns]

Fig. 17. State variable of ¢ when applying an IMPLY logic gate for cases 1
(dashed line) and 3 (solid line). The parameters of the circuit are Vsgr =1V,
Vconp = 0.5V, and Rg = 10 kQ. The parameters of the memristors are
kon = 0.05, ion = 71A, and aon = 3. The delay of the IMPLY logic gate
is 397.1 ns and the state drift is 0.0007%, equivalent to 145,000 executions
before the need to refresh.

C. Example of 1-Bit IMPLY Logic Gate

As a specific example of applying the flow chart of Fig. 12,
assume the requirement is a maximum write time (delay)
of 0.5 usec. Note that the actual write time of a practical
memristor is significantly faster [25]. The maximum allowed
state drift is 0.00001 Ropr (0.001% of the state drift as
compared to full switching, equivalent to 10° executions of
the logic gate before completely switching).

Assume a memristor with Roy and Ropp, respectively, of 1
and 100 kQ. Set one circuit parameter Vconp to 0.5 V. From
Figs. 13 and 14, note that as Vsgr rises, the logic gate write
time T decreases and the gate response is faster; however, the
state drift phenomenon is more significant. From (8)

0.5V < Vsgr < 50 V. (10)

This expression only produces a lower bound on Vsgr,
since the upper bound is significantly higher than practical
on-chip supply voltages. For a current-controlled memristor
(e.g., TEAM model), it is unrealistic to determine an exact
equivalent voltage threshold (which depends on the transient
memristance of the device). A sufficient approximation for an
equivalent threshold voltage is

(1)

where Vpon is the voltage threshold, and ion is the cur-
rent threshold. For a memristor with a current threshold of

Von = ion - Rorr

2061

TABLE III
WRITE TIME AND STATE DRIFT FOR DIFFERENT VALUES OF R .
ALL VALUES SATISFY (10) AND (12). Vconp IS SET TO
0.5V, Kon =0.05, Ioxn =7 uA, AND apon = 3

R [k2] T [usec] State Drift [% Rorr] Writes Before
Refresh [#]
1 0.1307 0.4655 215
35 0.1782 0.00244 4.09E4
5 0.2144 0.00184 5.43E4
10 0.3971 0.00069 1.45E5
15 0.7472 0.0009 1.15E6
17.5 1.038 0.00001 1.743E7
20 1.46 0 0
30 3.063 0 0
TABLE IV

WRITE TIME AND STATE DRIFT FOR DIFFERENT VALUES OF VSgT AND
MEMRISTOR PARAMETERS. ALL VALUES SATISFY (19) AND (12).
USING THE SAME DEFAULT VALUES AS TABLE III. Rg = 10 KQ

Parameter | T [usec] | State Drift [%Rorr] Writes Before
Refresh [#]

Base 0.3971 0.00069 1.45E5
Vser=1.2V | 0.0945 0.31208 320

kon=0.1 0.1986 0.00069 1.45E5

kon=0.01 1.9866 0.0007 1.44E5
Oon =1 0.1587 0.3669 273

Oon =4 0.7927 0.0004 2.52E5

7 uA, the equivalent voltage threshold is 0.7 volts. From (7),
Rg is

1.5 kQ < Rg < 33.3kQ. (12)

The widely used linear ion drift memristor model [12], [23]
is incompatible with IMPLY logic gates. In this model, the
memristance changes linearly for any applied voltage; the state
drift phenomenon is therefore significant and intolerable for
IMPLY logic gates [28]. Hence, a different memristor model
with a current threshold, such as the TEAM model [23], is
preferable. The TEAM model accurately describes the physical
behavior of memristors. The chosen circuit parameters for this
example are Rony = 1 kQ, Rorr = 100 kQ, Vconp = 0.5V,
Vser = 1V, and Rg = 10 kQ. SPICE simulation based
on these parameters for the memristance of g are shown in
Fig. 17, where the write time (delay) of this logic gate is
397.1ns and the state drift is 0.00069%, equivalent to about
145,000 executions before switching.

The write time (delay) and state drift for varying Rg and
Vser are listed in Tables III and IV. An increase in the
resistance of Rg or decrease in the voltage level of Vsgr
increases the delay of the gate, but lowers the state drift
phenomenon (and vice versa). The write time (delay) and
state drift for different memristor parameters are listed in
Table IV. An increase in the nonlinearity of the memristors
(aon) increases the delay of the gate, but lowers the state drift
phenomenon (and vice versa). An increase in koy decreases the
delay of the gate without changing the state drift phenomenon.

2062

TABLE V
RESISTANCE OF A CMOS DRIVER FOR 0.12 gum CMOS PROCESS

W [um] W/L CMOS Driver Voltage Drop with a
Resistance [Q] Load of 100 kQ
0.13 1 12.8k 11.33%
0.3 2.3 6.4k 6.00%
0.5 3.8 3.8k 3.67%
0.75 5.8 2.5k 2.42%
1 7.7 1.8k 1.83%
1.3 10 1.4k 1.33%
2.5 19.2 708 0.67%
5 38.5 349 0.33%
10 76.9 173 0.17%
20 153.8 86 0.08%
20 |
\
|
_15]|
2 |
5 1
£10] |
= \ With
-‘BE | CMOS Driver
5 |\
N ideal Voltage Source
00 Write Time =397.1 n‘sec ‘ |
0.0 5.0 10.0 15.0 20.0

W [um]

Fig. 18. Write time of an IMPLY logic gate with CMOS drivers for various
CMOS widths (solid blue line) as compared to the write time with ideal
voltage source (dashed red line). A 0.12 um CMOS process is used; other
circuit parameters are the same as in Fig. 17.

D. Variations in Vsgr and VconND

In previous sections, it is assumed that ideal voltage sources
are used for Vsgr and Vconp. Practical implementations,
however, suffer from variations in the voltage level, mainly
due to the resistance of the CMOS drivers. The CMOS
drivers add resistance in series with the circuit and change the
applied voltages. These voltage drops change the performance
(as determined from input case 1) and the state drift (as
determined from input case 3).

To evaluate the influence of CMOS drivers on performance
and state drift, the IMPLY logic gate is simulated with similar
circuit parameters as in Section V-C. The equivalent resistance
of the CMOS driver for various CMOS widths is listed in
Table V. The write time for different driver widths is shown
in Fig. 18. For a W/L ratio of 10, the write time of the IMPLY
logic gate with CMOS drivers increases by approximately
15%, as compared to ideal voltage sources. For a W/L ratio
of 75, the increase in the write time is negligible (less than
1%).

To evaluate the change in the state drift phenomenon, the
IMPLY logic gate is evaluated for input case 3. The difference
in the state drift is listed in Table VI, exhibiting negligible
difference for all W/L ratios. To overcome variations in the

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 10, OCTOBER 2014

TABLE VI
STATE DRIFT OF THE IMPLY LOGIC GATE WITH CMOS BUFFERS AS
COMPARED TO IDEAL VOLTAGE SOURCES FOR VARIOUS W/L RATIO

W [pum] W/L Difference in the State
0.13 1 -0.000502%
0.3 2.3 -0.000150%
0.5 3.8 0.000009%
0.75 5.8 0.000053%
1 7.7 0.000059%
1.3 10 0.000056%
2.5 19.2 0.000038%
5 38.5 0.000021%
10 76.9 0.000011%
20 153.8 0.000006%

voltage source, the applied voltages (Vsgr and Vconp) can
be increased. Alternatively, the resistance of the circuit can be
increased, by increasing Rg or using memristors with higher
Ron and Ropr (e.g., the memristors in [42] have Ron of
approximately 300 kQ), or the resistance of the CMOS driver
can be decreased by increasing the W/L ratio.

VI. 8-BIiT IMPLY FULL ADDER: A CASE STUDY

IMPLY together with FALSE (the function that always
yields zero as an output) provide a complete logical structure.
While any Boolean function can be executed, an efficient
procedure is required to reduce the area and computational
time. In this section, a case study of an 8-bit full adder is
presented to discuss several design constraints and issues for
general Boolean functions. In this case study, three approaches
are considered: a general algorithm [29] is considered first,
which requires a long sequence and only two additional
memristors. Two other specific approaches—serial and parallel-
are also considered. These approaches significantly reduce
the required sequence of operational steps, where the parallel
approach requires more memristors for faster execution as
compared to the serial approach.

A. General Boolean Functions

An algorithm to implement any general Boolean function
using only IMPLY and FALSE has been proposed in [29]. This
algorithm requires n + 3 memristors for any general Boolean
function f:B" — B. While this algorithm is efficient in terms
of area (the number of memristors to compute a function),
it is inefficient in terms of computational time and requires
O(2F") computational steps, where n is the number of input
memristors and & is the number of additional functional mem-
ristors for the computational process. A different approach is
therefore required to improve the computational time. This
new approach is demonstrated in this section through a case
study.

Several Boolean functions being implemented by IMPLY
and FALSE are listed in Table VII. These functions are
the basic building blocks of any general Boolean function.
Choosing the proper building blocks and computing sequence
are key when the objective is to minimize the number of

KVATINSKY et al.: IMPLY LOGIC: DESIGN PRINCIPLES AND METHODOLOGIES

TABLE VII
BASIC BOOLEAN OPERATIONS BASED ONLY ON IMPLY AND FALSE

2063

TABLE VIII
COMPARISON OF N-BIT FULL ADDERS. THE NUMBERS IN THE
BRACKETS ARE FOR AN 8-BIT FULL ADDER

Structure Operation Comments
0—gq q=1 Base [29] Optimized Approaches
l—q 9=q Serial Parallel
p—0 q'= NOT(p) E ti t 89N (712 29N (232 SN+18 (58
A>(B=0)—=0 J=AANDB Result in different ecutions ei’s (712) (232) (58)
memristor than the inputs Memristors nput 2N 2N 2N
tput + + +
AS0) B B—AORB OuPu N+1 N+1 N+1
A—B B— A 0 '=AXORB Requi i f th Functional 4 2 o1
A=B)=(B=A=0 | a= equires copying of the Total 3N5(29) | 3N+3(27) | 9N(72)
nputs, separate output g
Special Parallel - - vV
FALSE(B), B'=A Copy operation — copy A functions FALSE
FALSE(C), toB required IMPLY - - \Y4
A—C, between
C—-B lines
TRUE \Y - -
A o h\
1) .
7.) g C. IMPLY Full Adder
Cin © F/

c out

Fig. 19. Full adder consisting of two XOR gates, two AND gates, and an OR
gate.

computational steps and memristors. To reduce the number
of computational steps, parallelism can be exploited, where
several IMPLY and FALSE operations occur during the same
clock cycle. Since the operation is accomplished within the
crossbar structure, the topology of the entire array needs to be
considered, including possible sneak paths. Other methods for
parallelism that do not suffer from sneak paths use unipolar
memristors or, alternatively, insert switches between rows,
which deviates from the crossbar structure. Modifying the
crossbar structure to parallelize the execution is discussed in
Section VI.

It is sometimes necessary to copy the value from a memory
cell to other cells. The copy operation is also required when
data is used multiple times, since the destruction of the input
is undesired, or there is a need to transfer data to different
rows within the crossbar. The copy operation is also listed in
Table VII.

B. CMOS Full Adder

The input of the full adder are two 8-bit numbers and the
output is one 8-bit number S7, Sg, ..., Sp and 1-bit carry Coy;.
The basic structure of a CMOS 8-bit ripple carry adder consists
of eight full adders, where the logical operation of each
adder is

Si=A®B OC (13)
Cout = (Ai - Bi) + (Ci - (Ai @ By)). (14)

A single CMOS 8-bit adder consists of 400 CMOS transis-
tors, as shown in Fig. 19 for a basic full adder.

Several approaches exist to design an 8-bit full adder
based solely on IMPLY and FALSE operations. The basic
approach is to follow the algorithm proposed in [29]. Two
additional approaches are considered—serial and parallel. To
evaluate these approaches, the total number of memristors and
the number of computation steps are compared. The general
algorithm from [29] requires 712 computational steps, while
the serial approach lowers the computational time to 232
computational steps with approximately the same number of
memristors, and the parallel approach has the best performance
of 58 computational steps but requires double the number of
memristors. A comparison among the approaches is listed in
Table VIII.

To execute a XOR operation, two functional memristors M1
and M2 are required, where the complete sequence, as listed
in Table VII, is

FALSE(M1),FALSE(S), A — S, S — MI
FALSE(M2),FALSE(S),B — §,S —> M2
B — MI,FALSE(S),MI — S

A—> M2, M2 — S.

A XOR B :

The first two rows are copy operations of A and B, respec-
tively, to M1 and M2 since the IMPLY operation destroys both
inputs. To execute S;, the execution process is divided into two
XOR operations, where (13) is

Si =(A; ® B;) ®C;. (15)

This execution requires two functional memristors and 26
computational steps for S;, while the intermediate XOR of A;
and B; is also used for Coy,;, Where (14) becomes

Cout,i = (Ai — (Bl' —>/ 0/))
— ((¢i = ((Ai® Bi) =’ 0)) =" 0). (16)

Several possible sequences exist for executing C; using
three functional memristors to decrease the number of com-
putational steps. Furthermore, A;, B;, and C; can also be
treated as functional memristors after the initial value is
changed during the execution process. The complete sequence
is described in the supplementary material.

2064

rEe
sl

‘Zzz Vo ‘Zz-s
L S
(b) §
/._‘
L]
L]
. ¥ VAR
Vg2 Vss Vio
e o0
ﬁ MD,B .J
g
Fig. 20. 8-bit full adder for (a) serial approach and (b) parallel approach.

For the serial approach, 27 memristors are used in the same row of a
standard crossbar structure. The parallel approach requires a more complex
crossbar structure, where a switched connection between rows exists. Each
bit execution is done in a different row using nine memristors.

For an 8-bit full adder, two approaches have been examined
in the case study. The serial approach executes one operation
every clock cycle-IMPLY or FALSE. For the serial approach,
all memristors are in the same row, as shown in Fig. 20(a).
In the parallel approach, independent operations are executed
during the same clock cycle, reducing the number of required
computational stages. For the parallel approach, each bit in
the full adder is in a different row, as shown in Fig. 20(b).
The carry is passed between the different rows and the
FALSE operations are simultaneously completed for several
memristors. The parallel approach requires some modifications
which differ from the crossbar structure, adding connections
between the rows of the crossbar. These modifications also
eliminate the sneak path phenomenon while increasing the area
as compared to a conventional crossbar.

VII. BEYOND VON NEUMANN: LOGIC
INSIDE THE MEMORY

IMPLY logic is a natural method to execute logical oper-
ations within the memristors. Memristor-based IMPLY logic
has the same crossbar structure as a memristor-based mem-
ory and therefore enables the capability of performing logic

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 10, OCTOBER 2014

operations inside the memory with the same cells used to
store data. This combination enables innovative computing
architectures, rather than the classical von Neumann architec-
ture where the computing operations and the data storage are
separated.

For these novel architectures, part of the computation is
achieved inside the memory, with no separation with the
data read and write operations. These architectures are par-
ticularly appropriate for massive parallel applications, where
vast amount of data need to be processed. In von Neumann
architecture for massive parallel applications, the data transfer
requires a wide data bus, long latency, and consumes relatively
high power. In these novel architectures, the memory and
logical operations are in the same crossbar structure, almost
no data transfer is required, and the latency and power are
significantly reduced, although the memristor IMPLY logic
delay is greater than the CMOS logic delay.

In these innovative architectures, the memristive memory
serves two roles—as memory to store data and as a com-
putational unit. The function of a specific memristor can
be decided dynamically. Each memristor can act as either a
memory cell or as part of an IMPLY logic gate in different
stages of the operation. The effective size of the memory and
the computational unit is flexible and can vary for different
applications. A memristor-based memory requires a relatively
complex controller that behaves as a regular memory controller
and also sends control signals (VsgT and Vconp) to the IMPLY
logic gates. This novel architecture requires a new instruction
set, requiring specific instructions for logic operations inside
the memory.

VIII. CONCLUSION

An IMPLY logic gate is a natural way to perform logic
operations with memristors. This logic gate can be integrated
within a memristor-based memory and, together with FALSE,
provide a complete logic family. This memristive logic gate
also enables non-von Neumann architectures, which may open
a new era in computer architecture.

The potential benefits of memristive circuits in terms of
density and power support further work in this field. The
results described in this paper can be used to direct further
research on device structure optimization, logic synthesis
methods, array structures, and computing architectures.

REFERENCES

[1] L. O. Chua, “Memristor—The missing circuit element,” IEEE Trans.
Circuit Theory, vol. 18, no. 5, pp. 507-519, Sep. 1971.

[2] L. O. Chua and S. M. Kang, “Memristive devices and systems,”
IEEE, vol. 64, no. 2, pp. 209-223, Feb. 1976.

[3] D. B. Strukov and K. K. Likharev, “CMOL FPGA: A reconfigurable
architecture for hybrid digital circuits with two-terminal nanodevices,”
Nanotechnology, vol. 16, no. 6, pp. 888-900, Jun. 2005.

[4] S. Kvatinsky, N. Wald, G. Satat, E. G. Friedman, A. Kolodny, and
U. C. Weiser, “Hybrid CMOS-memristor logic,” IEEE Trans. Very Large
Scale Integr. (VLSI), in preparation.

[5] M. Klimo and O. Such, Memristors Can Implement Fuzzy Logic. Ithaca,
NY, USA: Cornell Univ. Press, Oct. 2011.

[6] G. Snider, “Computing with hysteretic resistor crossbars,” Appl. Phys.
A, Mater. Sci. Process., vol. 80, no. 6, pp. 1165-1172, Mar. 2005.

[7] J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, and
R. S. Williams, “Memristive switches enable ‘stateful’ logic operations
via material implication,” Nature, vol. 464, pp. 873-876, Apr. 2010.

Proc.

KVATINSKY et al.: IMPLY LOGIC: DESIGN PRINCIPLES AND METHODOLOGIES

[8]

[9]

[10]

[11]
(12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

[32]

Y. V. Pershin and M. Di Ventra, “Neuromorphic, digital and quantum
computation with memory circuit elements,” Proc. IEEE, vol. 100, no. 6,
pp- 2071-2080, Jun. 2012.

S. Shin, K. Kim, and S.-M. Kang, “Reconfigurable stateful NOR gate
for large-scale logic-array integrations,” IEEE Trans. Circuits Syst. I,
Exp. Briefs, vol. 58, no. 7, pp. 442-446, Jul. 2011.

D. Biolek, Z. Biolek, and V. Biolkova, “Pinched hysteresis loops of ideal
memristors, memcapacitors, and meminductors must be ‘self-crossing’,”
Electron. Lett., vol. 47, no. 25, pp. 1385-1387, Dec. 2011.

L. O. Chua, “Resistance switching memories are memristors,” Appl.
Phys. A, Mater. Sci. Process., vol. 102, no. 4, pp. 765-783, Mar. 2011.
D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The
missing memristor found,” Nature, vol. 453, pp. 80-83, May 2008.

D. Sacchetto, M. H. Ben-Jamaa, S. Carrara, G. DeMicheli, and
Y. Leblebici, “Memristive devices fabricated with silicon nanowire
Schottky barrier transistors,” in Proc. IEEE Int. Symp. Circuits Syst.,
May/Jun. 2010, pp. 9-12.

K. A. Campbell, A. Oblea, and A. Timilsina, “Compact method for mod-
eling and simulation of memristor devices: Ion Conductor Chalcogenide-
based Memristor Devices,” in Proc. IEEE/ACM Int. Symp. Nanosc.
Architect., Jun. 2010, pp. 1-4.

X. Wang, Y. Chen, H. Xi, and D. Dimitrov, “Spintronic memris-
tor through spin-torque-induced magnetization motion,” IEEE Electron
Device Lett., vol. 30, no. 3, pp. 294-297, Mar. 2009.

Z. Biolek, D. Biolek, and V. Biolkova, “SPICE model of memristor with
nonlinear dopant drift,” Radioengineering, vol. 18, no. 2, pp. 210-214,
Jun. 2009.

T. Prodromakis, B. P. Peh, C. Papavassiliou, and C. Toumazou, “A ver-
satile memristor model with non-linear dopant kinetics,” IEEE Trans.
Electron Devices, vol. 58, no. 9, pp. 3099-3105, Sep. 2011.

J. J. Yang, M. D. Pickett, X. Li, D. A. A. Ohlberg, D. R. Stewart, and
R. S. Williams, “Memristive switching mechanism for metal/oxide/metal
nanodevices,” Nature Nanotechnol., vol. 3, pp. 429-433, Jul. 2008.

E. Lehtonen and M. Laiho, “CNN using memristors for neighborhood
connections,” in Proc. 12th Int. Workshop Cellular Nanosc. Netw. Appl.,
Feb. 2010, pp. 14.

M. D. Pickett, D. B. Strukov, J. L. Borghetti, J. J. Yang, G. S. Snider,
D. R. Stewart, and R. S. Williams, “Switching dynamics in titanium
dioxide memristive devices,” J. Appl. Phys., vol. 106, no. 7, pp. 1-6,
Oct. 2009.

H. Abdalla and M. D. Pickett, “SPICE modeling of memristors,” in Proc.
IEEE Int. Symp. Circuits Syst., May 2011, pp. 1832-1835.

C. Yakopcic, T. M. Taha, G. Subramanyam, R. E. Pino, and S. Rogers,
“A memristor device model,” IEEE Electron Device Lett., vol. 32, no. 10,
pp. 1436-1438, Oct. 2011.

S. Kvatinsky, E. G. Friedman, A. Kolodny, and U. C. Weiser,
“TEAM—ThrEshold adaptive memristor model,” IEEE Trans. Circuits
Syst. I, Reg. Papers, vol. 60, no. 1, pp. 211-221, Jan. 2013.

J. Borghetti, Z. Li, J. Strasnicky, X. Li, D. A. A. Ohlberg, W. Wu,
D. R. Stewart, and R. S. Williams, “A hybrid nanomemristor/transistor
logic circuit capable of self-programming,” Proc. Nat. Acad. Sci. United
States Amer., vol. 106, no. 6, pp. 1699-1703, Feb. 2009.

A. C. Torrezan, J. P. Strachan, G. Medeiros-Ribeiro, and R. S. Williams,
“Sub-nanosecond switching of a tantalum oxide memristor,” Nanotech-
nology, vol. 22, no. 48, pp. 1-7, Nov. 2011.

J. J. Yang, M.-X. Zhang, J. P. Strachan, F. Miao, M. D. Pickett,
R. D. Kelley, G. Medeiros-Ribeiro, and R. S. Williams, “High switching
endurance in TaOy memristive devices,” Appl. Phys. Lett., vol. 97,
no. 23, pp. 1-3, Dec. 2010.

J. Nickel, “Memristor materials engineering: From flash replacement
towards a universal memory,” in Proc. IEEE IEDM Adv. Memory
Technol. Workshop, Dec. 2011, pp. 1-3.

S. Kvatinsky, E. G. Friedman, A. Kolodny, and U. C. Weiser,
“Memristor-based IMPLY logic design procedure,” in Proc. IEEE Int.
Conf. Comput. Design, Oct. 2011, pp. 142-147.

E. Lehtonen and M. Laiho, “Stateful implication logic with memristors,”
in Proc. IEEE/ACM Int. Symp. Nanosc. Archit., Jul. 2009, pp. 33-36.
E. Lehtonen, J. H. Poikonen, and M. Laiho, “Two memristors suffice
to compute all boolean functions,” Electron. Lett., vol. 46, no. 3,
pp- 239-240, Feb. 2010.

S. Shin, K. Kim, and S.-M. Kang, “Reconfigurable stateful NOR gate
for large-scale logic-array integrations,” IEEE Trans. Circuits Syst. I,
Exp. Briefs, vol. 58, no. 7, pp. 442-446, Jul. 2011.

E. Linn, R. Rosezin, C. Kiigeler, and R. Waser, “Complementary
resistive switches for passive nanocrossbar memories,” Nature Mater.,
vol. 9, no. 5, pp. 403—406, Apr. 2010.

(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

2065

A. Flocke and T. G. Noll, “Fundamental analysis of resistive nano-
crossbars for the use in hybrid Nano/CMOS-memory,” in Proc. Eur.
Solid State Circuits Conf., Sep. 2007, pp. 328-331.

M. A. Zidan and K. N. Salama, “Memristor based memory: The sneak
paths problem and solutions,” Microelectron. J., vol. 44, no. 2, pp. 176—
183, Feb. 2013.

C. A. David and B. Feldman, “High-speed fixed memories using large-
scale integrated resistor matrices,” IEEE Trans. Comput., vol. 17, no. 8,
pp- 721-728, Aug. 1968.

W. T. Lynch, “Worst-case analysis of a resistor memory matrix,” I[EEE
Trans. Comput., vol. 18, no. 10, pp. 940-942, Oct. 1969.

S. Shin, K. Kim, and S.-M. Kang, “Analysis of passive memristive
devices array: Data-dependent statistical model and self-adaptable sense
resistance for RRAMs,” Proc. IEEE, vol. 100, no. 6, pp. 2021-2032,
Jun. 2012.

Y. Cassuto, S. Kvatinsky, and E. Yaakobi, “Sneak-path constraints
in memristor crossbar arrays,” in Proc. IEEE Int. Symp. Inf. Theory,
Jul. 2013, pp. 1-5.

O. Kavehei, S. Al-Sarawi, K.-R. Cho, K. Eshraghian, and D. Abbot,
“An analytical approach for memristive nanoarchitectures,” IEEE Trans.
Nanotechnol., vol. 11, no. 2, pp. 374-385, Mar. 2012.

T. Devolder, J. Hayakawa, K. Ito, H. Takahashi, S. Ikeda, P. Crozat,
N. Zerounian, J.-V. Kim, C. Chappert, and H. Ohno, “Single-shot
time-resolved measurement of nanosecond-scale spin-transfer induced
switching: Stochastic versus deterministic aspects,” Phys. Rev. Lett.,
vol. 100, no. 5, pp. 057206-1-057206-4, Feb. 2008.

R. Soni, P. Meuffels, G. Staikov, R. Weng, C. Kiigeler, A. Petraru,
M. Hambe, R. Waser, and H. Kohlstedt, “On the stochastic nature of
resistive switching in Cu doped Gep3Sep7 based memory devices,”
J. Appl. Phys., vol. 110, no. 5, pp. 054509-1-054509-10, Sep. 2011.
T. Chang, S.-H. Jo, K.-H. Kim, P. Sheridan, S. Gaba, and W. Lu,
“Synaptic behaviors and modeling of metal oxide memristive device,”
Appl. Phys. A, vol. 102, no. 4, pp. 857-863, Feb. 2011.

Shahar Kvatinsky (S’12) received the B.Sc. degree
in computer engineering and applied physics and
the M.B.A. degree from the Hebrew University of
Jerusalem, Jerusalem, Israel, in 2009 and 2010,
respectively. He is currently pursuing the Ph.D.
degree with the Electrical Engineering Depart-
ment, Technion-Israel Institute of Technology, Haifa,
Israel.

Prior to his Ph.D. studies, he worked for Intel as
a circuit designer.

Guy Satat received the B.Sc. degree in electrical
engineering and the B.Sc. degree in physics from
the Technion-Israel Institute of Technology, Haifa,
Israel, as part of the Technion’s Program for excel-
lent students.

He joined Intel, Inc., in 2011, and worked on inter-
connect architecture. In 2013, he joined the Media
Laboratory, Camera Culture Group, Massachusetts
Institute of Technology, Cambridge, MA, USA, as a
Graduate Student, and worked on ultrafast imaging
and health imaging.

Nimrod Wald received the B.Sc. degree in electrical
engineering and physics from Technion-Israel Insti-
tute of Technology, Haifa, Israel, in 2013.

He joined Qualcomm, Inc., San Diego, CA, USA,
in 2011, as a Hardware Designer, and he has been
a Hardware Architect since 2013 in the area of
performance analysis.

2066

Eby G. Friedman (M’79-SM’90-F’00) received
the B.S. degree from Lafayette College, Easton, PA,
USA, in 1979, and the M.S. and Ph.D. degrees
from the University of California, Irvine, CA, USA,
in 1981 and 1989, respectively, all in electrical
engineering.

He was with Hughes Aircraft Company, Glendale,
CA, USA, from 1979 to 1991, rising to the position
of manager of the Signal Processing Design and
Test Department, responsible for the design and test
of high performance digital and analog IC’s. He
has been with the Department of Electrical and Computer Engineering at
the University of Rochester, Rochester, NY, USA, since 1991, where he
is a Distinguished Professor, and the Director of the High Performance
VLSI/IC Design and Analysis Laboratory. He is also a Visiting Professor
with the Technion-Israel Institute of Technology. His current research interests
include high performance synchronous digital and mixed-signal microelec-
tronic design and analysis with application to high speed portable processors
and low power wireless communications.

Dr. Friedman is the author of over 400 papers and book chapters, 12
patents, and the author or editor of 16 books in the fields of high speed
and low power CMOS design techniques, 3-D design methodologies, high
speed interconnect, and the theory and application of synchronous clock and
power delivery. He is the Regional Editor of the Journal of Circuits, Systems
and Computers, a member of the editorial boards of the Analog Integrated
Circuits and Signal Processing, Microelectronics Journal, Journal of Low
Power Electronics, Journal of Low Power Electronics and Applications, and
IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND
SYSTEMS, Chair of the IEEE TRANSACTIONS ON VERY LARGE SCALE
INTEGRATION (VLSI) SYSTEMS steering committee, and a member of the
technical program committee of a number of conferences. He previously was
the Editor-in-Chief of the IEEE TRANSACTIONS ON VERY LARGE SCALE
INTEGRATION (VLSI) SYSTEMS, a member of the editorial board of the
Proceedings of the IEEE, IEEE Transactions on Circuits and Systems II:
Analog and Digital Signal Processing, and Journal of Signal Processing
Systems, a Member of the Circuits and Systems (CAS) Society Board of
Governors, Program and Technical chair of several IEEE conferences, and
a recipient of the University of IEEE CAS Charles A. Dosoer Technical
Achievement Award, Rochester Graduate Teaching Award, and a College of
Engineering Teaching Excellence Award. He is a Senior Fulbright Fellow.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 10, OCTOBER 2014

Avinoam Kolodny (SM’11) received the Doctoral
degree in microelectronics from the Technion-Israel
Institute of Technology, Haifa, Israel, in 1980.

He joined Intel Corporation, where he was
engaged in Research and Development in the areas
of device physics, VLSI circuits, electronic design
automation, and organizational development. He has
been a member of the Faculty of Eletrical Engi-
neering, Technion since 2000. His current research
interests include interconnects in VLSI systems at
both physical and architectural levels.

Uri C. Weiser (F’02) received the bachelor’s and
master’s degrees in electrical engineering from Tech-
nion, Haifa, Israel and the Ph.D. degree in computer
science from the University of Utah, Salt Lake City,
UT, USA.

He is a Visiting Professor with the Electrical Engi-
neering Department, Technion IIT, and an Advisor
at numerous startups. He was with Intel from 1988
to 2006. At Intel, he initiated the definition of
the first Pentium processor, drove the definition of
Intel’s MMX technology, invented (with A. Peleg)
the Trace Cache, he co-managed and established the Intel Microprocessor
Design Center, Austin, TX, USA, and later initiated an advanced media
applications research activity. He was appointed Intel Fellow in 1996. He was
with the Israeli Department of Defense as a Research and System Engineer
and with National Semiconductor Design Center, Israel, where he led the
design of the NS32532 microprocessor.

Dr. Weiser was an Associate Editor of the IEEE Micro Magazine from 1992
to 2004 and Computer Architecture Letters. He was a fellow of ACM.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

