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7) ABSTRACT

Transfer functions are calculated in the following manner
within an RLC tree having a input and a plurality of nodes.
The RLC tree is divided into left and right sub-trees joined
by the node closest to the input. Each of the left and right
sub-trees is divided into left and right sub-trees joined by a
node. The sub-trees are divided recursively into still smaller
sub-trees until the RLC tree is completely decomposed into
left and right sub-trees joined by nodes. At each node of the
RLC tree, the numerator and denominator of the transfer
function at that node are determined in accordance with the
left and right sub-trees joined by that node. The denominator
of the transfer function of the node closest to the input is
taken to be the denominator of all of the transfer functions
of the RLC tree. For each node, the numerators of the
transfer functions of the left and right sub-trees joined at that
node are corrected in accordance with the denominators of
the transfer functions of the left and right sub-trees joined at
that node.

28 Claims, 15 Drawing Sheets

? (58

DENOMINATOR AT NODE CLOSEST TO INPUT
= DENOMINATOR OF ALL TRANSFER FUNCTIONS

MULTIPLY NUMERATOR IN LEFT 35

SUB-TREE BY On(s)

MULTIPLY NUMERATDR IN RIGHT | S/7

SUB-TREE BY Di(s)

S8

NUMERATIORS

(DRRECTED FOR

ALL SUB-TREES
?

NO

(521
[ TRANSFER_FUNCTIONS DETERMINED |

523
END



U.S. Patent Oct. 1, 2002 Sheet 1 of 15 US 6,460,165 B1

13
' s L R /7
v, — RLC t m‘—ww-l +
l = CIRCUIT
- Vin C Vout
n % i 1 -

FlG. 1 FIG. 2

Z

( 15 (17
RLC X RLC

N CIRCLIT I” v: _L_ CIRCUIT

|

=+

I
<l|——|
~N
>
Ao
1

9
23, /s

| L, R 1L, R |
+ Mi +
i + |
Vin | C Vi C !Vout
|



U.S. Patent Oct. 1, 2002 Sheet 2 of 15 US 6,460,165 B1

25-2
n RLC
r'vx f CIRCUIT
g25-l Lin2 —‘.'
+
. — RLC X 25-3
in CIRCUIT — n RLE
-f l—’vx ‘[— CIRCUIT
v I Zin3 —_
I v
| 25-k
" RLC

’ V)< f CIRCUIT

In : 1 : [ RLC CIRCUIT N
_ |- | L R |
L v ] L~ 3. 3la |+
|V
C3==1"3
l
]



U.S. Patent Oct. 1, 2002 Sheet 3 of 15 US 6,460,165 B1

34-4
34‘-2 Ly Ry 33-4 J/
34-1 L Re =
C 5 v
N 1 1 33-/ ' v CSI \34_5
G lg  Re =
Ll L AN 336
v 3 3 -
3 33-3 BCI ~306
FIG 7 s/ &
L 347
(39
37 LEFT RLC
+ Ly Rp T8 SUB-TREE
Viﬂ C 37"/ -r
1 v 4/
B} L RIGHT RLC |~
= SUB-TREE
" FIG. 8 i

RC TRANSMISSION 43
LINE (R, Cy)  # s

Vi—n “él/: % le Vciut
FIG. 9

+




U.S. Patent

Oct. 1, 2002

Sheet 4 of 15

US 6,460,165 B1

3

24

Vour( v
(voLTS)

1_

PRESENT METHOD — — —
SPICE ——

SECOND ORDER

APPROXIMATION
FIG.10A ./
30 100 150 200
TIME (ps>
3
PRESENT METHOD — — —
SPICE ——
2
Vour¢®?
(vaLTS)
| -
THIRD ORDER
APPROXIMATION
FIG. 10B , -
S0 100 150 200
TIME (ps)
3
PRESENT METHOD — — —
SPICE ——
2—.
Vout¢ ®)
(VoLTS)
[ 4
FORTH ORDER
APPROXIMATION
FIG.’OC 0 . r :
0 30 100 150 200

TIME (ps)



U.S. Patent Oct. 1, 2002 Sheet 5 of 15 US 6,460,165 B1

5 5 T
0 1I 0 osI M
' I - 2 11
M I 04131I o.ozI]—

O.OEBII O.OIII. 10 ;
M T G0t

Ry Lt AND Cy
L

- -

Rer LA, RA, LA, RA, Vot

Vin AAA—YY M /\/\/\,TNW\_/\/\/\,ﬁ
EAZI EAZI Icl

FIG. 13



U.S. Patent Oct. 1, 2002 Sheet 6 of 15 US 6,460,165 B1
3
2.5 -
2 -
Vgy(t)
(VOLTS) 197 PRESENT METHOD — — —
SPICE ——
|
0.5+ OUTPLIT NODE 0,
O T t i 1 I
0 20 40 60 80 100
TIME (ps)
3
2.5 -
2 -
Voo t)
(voLTS) 197 PRESENT METHOD — — —
SPICE ——
l .
i DUTPUT NODE 0,
0 1 1 1 1 i
0 20 40 60 80 100
TIME (ps)

FIG. 12B



U.S. Patent Oct. 1, 2002 Sheet 7 of 15 US 6,460,165 B1

3
2.5
2 —
Vg3(t)
S voLTs)y L9 PRESENT METHOD — — —
SPICE ——
1 _
0.5 1 OUTPUT NODE Oy
O 1 ] T 1
0 20 40 60 80 100
TIME (ps)
3
2.5
2 -
Vo t)
(voLTS) 197 PRESENT METHOD — — —
SPICE ——
1 .
0.5 1 DUTPUIT NODE 0
0 1 1 T L 1
0 20 40 60 80 100

TIME (ps)

FIG. 12D



U.S. Patent Oct. 1, 2002 Sheet 8 of 15 US 6,460,165 B1

5
PRESENT METHOD — — —
A SPICE ——

4 - \
Vout(t) >
(VOLTS) |

1-

y FOURTH ORDER
0l s APPROXIMATION
0 100 200 300 400 500 600
TIME (ps)
5
PRESENT METHOD — — —
SPICE ——

4
Vout(t) ° ]
(VOLTS)

2_

1...

ISTH ORDER
. /‘ APPROXIMATION
0 100 200 300 400 500 800

TIME (ps)

FIG. 14B



U.S. Patent Oct. 1, 2002 Sheet 9 of 15 US 6,460,165 B1

5
PRESENT METHOD — — —
SPICE ——
4 -
Vout(t) 2
(VOLTS)
2..
1..4
25TH DRDER
; APPROXIMATION
0 100 200 300 400 500 600
TIME (ps)
5
PRESENT METHOD — — —
SPICE ——
4
Vout(t) > ]
(VOLTS)
2 -
1 -
35TH DRDER
] APPROXIMATION
0 100 200 300 400 500 800

TIME (ps)

FIG. 14D



U.S. Patent Oct. 1, 2002 Sheet 10 of 15 US 6,460,165 B1

4 PRESENT METHOD = = =
SPICE ——
3 -
Vout( t)
(VOLTS) 2-
1 4
0 T 1 ! 1
0 200 400 600 800 1000
TIME (ps)
3 PRESENT METHOD — — —
SPICE —
4 4
Vout(t) 3
(VOLTS)
1 -
0 1 i 1 1
0 200 400 600 800 1000

TIME (ps)

FIG. 15B



U.S. Patent Oct. 1, 2002 Sheet 11 of 15 US 6,460,165 B1

3
2 4
YIo(®) PRESENT METHOD — — —
(VOLTS) SPICE ——
1 4
OUTPUT NODE 12
O i i i I 1 i !
0 20 40 60 80 100 120 140
TIME (ps)
3
2
V21(%) PRESENT METHOD — — —
(VOLTS) SPICE ——
1-4
OUTPUT NODE 21
0 , ;

T

0 20 40 60 80 100 120 140
TIME (ps)

FIG. 16B



U.S. Patent

Oct. 1, 2002

Sheet 12 of 15 US 6,460,165 B1

PRESENT METHOD — — —
SPICE ——

OUTPUT NODE 29

20

1
40 60 80

T I

100 120 140
TIME (ps)

FIG. 16C

3

7.
V2g( t)
(vOLTS)

l ...

0

0

3

2..
V30(t)
(VOLTS)

1 -

0

PRESENT METHOD — — —
SPICE ——

OUTPUT NODE 30

20

R 1

40 60 80
TIME (ps)

FI1G. 16D

I 1 L
100 120 140



U.S. Patent Oct. 1, 2002 Sheet 13 of 15 US 6,460,165 B1

3

2 -
Yout ( ¥) PRESENT METHOD — ~ —
(VOLTS) SPICE ——

1 -

0 T 1 1 I

0 10 20 30 40 50

FIG. 17 TIME (ps)

FIG. 18

CAL_DENOMINATOR ( SECTION#w)
{

IF(RIGHT(w)=0) /% THERE IS NO RIGHT SECTION DRIVEN BY w */
{Op=1; Mp=0;)

ELSE /% THERE IS A RIGHT SECTION DRIVEN BY w */
{CAL_DENOMINATOR(RIGHT(w)); Dp=RIGHT(w)->D; MA=RIGHT(W)->M;}

IFCLEFT(w)=0) - /* THERE IS NO RIGHT SECTION DRIVEN BY w %/
(D ‘:1,‘ M :0,')

ELSE L L /% THERE IS A RIGHT SECTION DRIVEN BY w %/
{CAL_DENOMINATOR(LEFT(w)); D (=LEFTt(w)->0; M =LEFTECw ->M;)

w—>N = D|*Dp;

W-OM = w=>C*w-D>N +M [s0p + MpeD|;

w0 = w38 + (w->M)el( w->R x5+ w=>L 15271,




U.S. Patent

Oct. 1, 2002 Sheet 14 of 15

US 6,460,165 B1

CORRECT_NUMERATORS(SECTION *w, POLY F;q)
(

IF(RIGHT(w)z0)
IFCLEFT(w)20)

WON = wONeF; o ;

}

/% w ORIVES A RIGHT SECTION %/
{Fp= Fin*0p; CORRECT_NUMERATOR(RIGHT(w), Fp);}

/+ w ORIVES A LEFT SECTION */
(F|= Fin*Dy; CORRECT_NUMERATOR(LEFT(w),F);)

FIG. 19

5'

(53
DIVIDE RLC TREE INTO
LEFT AND RIGHT SUB-TREES
‘ (S5

DIVIDE EACH SUB-TREE
INTO LEFT AND RIGHT SUB-TREES

IS TREE
COMPLETELY
DIVIDED
?

NO

FIG. 20A

(S9

FOR EACH NOBE, DETERMINE NUMERATOR
AND OENOMINATOR OF TRANSFER FUNCTION

BETERMINED
FOR ALL
NODES
?

ND




U.S. Patent

FIG. 20B

INPUT

Oct. 1, 2002

Sheet 15 of 15

T

US 6,460,165 B1

(513

DENOMINATOR AT NODE CLOSEST 1O INPUT
= DENOMINATOR 0OF ALL TRANSFER FUNCTIONS

PROCESSOR
1074 CPU

109

STORAGE

outeut -

'

TRANSFER FUNCTIONS DETERMINED

523
END

103

105

FIG. 21

101

MULTIPLY NUMERATOR IN LEFT |.5P
i
SUB-TREE BY Dn(s)
MULTIPLY NUMERATOR IN RIGHT | S/7
SUB-TREE BY Dy (s)
s9
NO NUMERATORS
(ORRECTED FOR
AL SUB-TREES
(2l




US 6,460,165 B1

1

MODEL FOR SIMULATING TREE
STRUCTURED VLSI INTERCONNECT

REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. provisional
application No. 60/139,575, filed Jun. 17, 1999, whose
disclosure is hereby incorporated by reference in its entirety
into the present disclosure.

BACKGROUND OF THE INVENTION

The present invention is directed to a method of simulat-
ing an RLC tree and more particularly to a method of
evaluating time domain signals within an RLC tree with
arbitrary accuracy in response to any input signal.

In circuit design, fast, accurate computer simulation of the
behavior of the circuit is important. That is especially true
with VLSI, in which hundreds of thousands of circuit
elements can be placed on a single chip, and with ULSI, in
which millions of circuit elements can be placed on a single
chip.

It has become well accepted that interconnect delay
dominates gate delay in current deep submicrometer VLSI
circuits. With the continuous scaling of technology and
increased die area, that situation is becoming worse. In order
to design complex circuits properly, accurate characteriza-
tion of the interconnect behavior and signal transients is
required. An interconnect in a VLSI circuit is commonly tree
structured. A single line is a special case of a tree that has
only one output (or sink). Thus, the process of characterizing
signal waveforms in tree structured interconnect is of pri-
mary importance.

One of the more popular delay models used within
industry for RC trees is the Elmore delay model. Recently,
an equivalent to the Elmore delay model has been intro-
duced for RLC trees. Those models are used for fast approxi-
mate delay estimation. However, highly accurate estimation
of signal transients within a VLSI circuit is required for
performance-critical modules and nets and to accurately
anticipate possible hazards during switching. Also, the
increasing performance requirements forces the reduction of
the safety margins used in a worst case design, requiring a
more accurate delay characterization.

AWE (Asymptotic Waveform Evaluation) based algo-
rithms have gained popularity as providing a more accurate
delay model than the Elmore delay model. AWE uses
moment matching to find a set of low frequency dominant
poles that approximate the transient response at the nodes of
an RLC tree. However, AWE suffers two major problems.
The first problem is that the AWE method can lead to an
approximation with unstable poles even for low order
approximations. The second problem is that AWE becomes
numerically unstable for higher order approximations,
which limits the order of the approximations determined
using AWE to fewer than eight poles, of which some poles
may be unstable and have to be discarded. The limited
number of poles is inappropriate to evaluate the transient
response at the nodes of an underdamped RLC tree, which
requires a much higher number of poles to accurately
capture the transient response at all the nodes.

To overcome this limitation, a set of model order reduc-
tion algorithms have been developed to determine higher
order approximations appropriate for RLC circuits based on
the state space representation of an RLC network. However,
these model order reduction techniques have significantly
higher computational complexity than AWE. These tech-
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niques have super linear complexity with the order of the
RLC tree, which is equal to the total number of capacitors
and inductors in the tree. This high complexity is because
these model order reduction techniques have to solve n
linear equations in n variables several times. This complex-
ity is much higher than the complexity of AWE, which is
linearly proportional to n for an RLC tree. Note that n can
be in the order of thousands for a typical large industrial net.

SUMMARY OF THE INVENTION

In light of the above, it will be apparent that a need exists
in the art for a circuit analysis method and system which can
accurately capture the transient responses at all nodes in a
computationally efficient manner.

It is therefore a primary object of the invention to provide
a method and system for evaluating the transient response at
all of the nodes of a general RLC tree using high order
approximations.

It is another object of the invention to provide such a
method and system which can do so in a computationally
efficient manner.

It is yet another object of the invention to provide such a
method and system having a high degree of stability in terms
of both numerical stability and pole stability.

To achieve the above and other objects, the present
invention is directed to a method and system for evaluating
the transient response at the nodes of a general RLC tree, the
method and system being capable of determining high order
approximations appropriate for underdamped RLC trees in a
computationally efficient way (complexity linear with n).
The present invention also has improved stability properties
for low order approximations as compared to AWE, which
can be a useful feature with RC trees which do not require
high order approximations.

The method and system operate as follows. The RLC tree
is divided into left and right sub-trees joined by the node
closest to the input. Each of the left and right sub-trees is
divided into left and right sub-trees joined by a node. The
sub-trees are divided recursively into still smaller sub-trees
until the RLC tree is completely decomposed into left and
right sub-trees joined by nodes. At each node of the RLC
tree, the numerator and denominator of the transfer function
at that node are determined in accordance with the left and
right sub-trees joined by the node. The denominator of the
transfer function of the node closest to the input is taken to
be the denominator of all of the transfer functions of the
RLC tree. For each node, the numerators of the transfer
functions of the left and right sub-trees joined at the node are
corrected in accordance with the denominators of the trans-
fer functions of the left and right sub-trees joined at that
node.

The present invention evaluates the time domain signals
within RLC trees with arbitrary accuracy in response to any
input signal. It does so by finding a low frequency reduced
order transfer function by direct truncation of the exact
transfer function at different nodes of an RLC tree. The
method is numerically accurate for any order of
approximation, which allows finding approximations with
large numbers of poles appropriate for approximating RL.C
trees with underdamped responses. The method is compu-
tationally efficient with a complexity linearly proportional to
the number of branches in an RLC tree. The method
determines a common set of poles to characterize the
responses at all the nodes of an RLC tree, which enhances
the computational efficiency of the proposed method. The
stability is guaranteed for low order approximations with
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fewer than 5 poles. Such low order approximations are
useful for evaluating monotone responses exhibited by RC
circuits.

BRIEF DESCRIPTION OF THE DRAWINGS

A preferred embodiment of the present invention will be
set forth in detail with reference to the drawings, in which:

FIG. 1 shows a simplified block diagram of a general RLC
circuit;

FIG. 2 shows an example of a single-section RLC circuit;

FIG. 3 shows a general RLC circuit formed of two RLC
subcircuits connected together;

FIG. 4 shows a ladder RLC circuit formed of two RLC
sections in series;

FIG. 5 shows a general RLC circuit formed of an RLC
subcircuit driving several additional RLC subcircuits which
are connected together in parallel;

FIG. 6 shows an RLC tree formed of three RLC sections;

FIG. 7 shows a general RLC tree;

FIG. 8 shows a building block of a general RLC tree;

FIG. 9 shows an RC transmission line with a source
resistance and a load capacitance;

FIGS. 10A-10C show the transient response evaluated for
the transmission line of FIG. 9 using different approximation
orders;

FIG. 11 shows a general RC tree;

FIG. 12A-12D show the transient response evaluated at
different nodes of the general RC tree of FIG. 11;

FIG. 13 shows an RLC transmission line with a source
resistance and a load capacitance;

FIGS. 14A-14D show the transient response evaluated
for the RLC transmission line of FIG. 13 using four different
orders of approximation;

FIGS. 15A and 15B show the transient response evaluated
for the RLC transmission line of FIG. 13 using different line
parameters;

FIGS. 16 A—16D show the transient response evaluated at
different nodes of an RLC tree for a 40” approximation
order;

FIG. 17 shows the transient response evaluated at a node
of a large copper interconnect RLC for a 457 approximation
order;

FIG. 18 shows pseudo-code for calculating the common
denominator of an RLC tree;

FIG. 19 shows pseudo-code for correcting the numerators
of the transfer functions at all of the nodes of an RLC tree;

FIGS. 20A and 20B show a flow chart of the evaluation
process according to the preferred embodiment of the
present invention; and

FIG. 21 shows a block diagram of a computing system on
which the preferred embodiment can be implemented.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

Apreferred embodiment of the present invention will now
be set forth in detail with reference to the drawings. The
rules governing the poles and zeros in an RLC tree are
defined in subsection A. The method used to calculate the
exact transfer functions at the nodes of an RLC tree is
introduced in subsection B. The use of transfer function
truncation to determine a reduced order approximation is
discussed in subsection C. The determination of the set of
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common poles describing the transient response of an RLC
tree and the corresponding residues at each node of the tree
is described in subsection D. The stability and complexity
characteristics of the method are described in subsection E.
Finally experimental results are given in subsection F.

A. Pole-Zero Behavior in RLC Trees E

The poles and zeros of an RLC tree maintain specific
relations to the poles and zeros of sub-trees forming the RLC
tree. These rules are established in this subsection and are
used in the next subsection to develop an algorithm to
determine the poles and zeros of a general RLC tree by
recursively subdividing the tree into small sub-trees.

Rule 1: The Poles of an RLC Circuit are Zeros of the
Impedance Seen at the Input of the Circuit.

This rule can be understood by referring to FIG. 1 which
allows a general RL.C circuit 11, and noting that the transfer
functions describing the capacitor voltages and inductor
currents have a common denominator.

Thus, the transfer function at an arbitrary node i of an
RLC tree and the tree’s input admittance are given by

Vi) M) M
V() - D)

Lo N© @
A T

respectively, where N(s) and N, (s) are functions of s
dependent on the circuit structure and D(s) is the common
denominator of the circuit. The input impedance is

Vin
Zin(s) = 1—((55))

_ D)
)

(©)

Thus, the common denominator of an RLC circuit is the
numerator of the input impedance, which proves rule 1.

As an example, consider the single section RLC circuit 13
in FIG. 2. This circuit has a transfer function and an input
impedance given by

Vou(s) _ 1 @)
Vin(s)  S2LC+sRC +1

Vin(s) LR 1 S*LC+sRC+1 ®)
Lo ettt et e

respectively. The denominator of the transfer function is the
numerator of the input impedance. Rule 1 means that an
RLC circuit has a short-circuit input impedance when s is
equal to any of the poles of the circuit.

Rule 2: The Poles of an RLC Circuit Driven at Node x are
Zeros of the Transfer Function at Node x.

This rule can be explained by referring to FIG. 3. Note
that the RLC circuit 17 is driven by the RLC circuit 15 at
node x. Applying rule 1, Z, , is a short circuit between node
x and the ground at frequencies equal to the poles of circuit
17. Hence V. (s) is equal to zero when s is equal to the poles
of circuit 17, i.e., the poles of circuit 17 are zeros of the
transfer function at node x.

As an example, consider the circuit 19 in FIG. 4. Note that
the RLC sub-circuit 23 is driven at node x by the RLC
sub-circuit 21 and that if not connected, sub-circuit 23 has
a denominator given by 1+R,C,s+L,C,s>. The transfer
functions at node x and the output node are
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Vils) L+ RyCos + [,Cos” ©
Vin(s) 1+ [Ri(Cy + C2) + RyCals +
[Li(Cy + C2) + L, Cp + R C Ry Cr]5% +

[RiCLL,Cy + Ry CoL €113 + [Ly CL L Gy )5t

Vou(s) 1

Vies) 1+ [R(C1 + Co) + RyCals +
[L1 (C1 +Cr + 1,Cr + R Cy R2C2]52 +
[RiC1LyCo + Ry Co Ly Cy )53 + [Ly Cy L Cr)s?

D

respectively. Note that the numerator at node x is the same
as the denominator of the disconnected sub-circuit 23 in
accordance with rule 2.

Rule 3: The Poles of an RLC Circuit Driven at Node x are
Zeros of the Transfer Functions at All the Nodes of Parallel
RLC Circuits Driven at the Same Node x.

This rule can be explained by referring to FIG. 5. The
RLC sub-circuits 25-2,25-3, . . . 25-k are driven by RLC
sub-circuit 25-1 at node x. Applying rule 1, Z,, is a
short-circuit at frequencies equal to the poles of circuit 25-2.
Hence, V_(s) is equal to zero and all the current supplied by
circuit 25-1 is sunk to ground by Z,,, when s is equal to the
poles of circuit 25-2. Since V. (s) is equal to zero and no
current is supplied to the sub-circuits 25-3, . . . , 25-k when
s is equal to the poles of circuit 25-2, the voltages at all the
nodes of sub-circuits 25-3, . . . , 25-k are equal to zero.
Alternatively, the poles of circuit 25-2 are zeros of the
transfer functions at all the nodes of the parallel sub-circuits
driven at node x. The same is true for the poles of sub-
circuits 25-3, . . . 25-k which are zeros of the transfer
functions at all the nodes of the parallel sub-circuits driven
at node x.

As an example, consider the RLC tree in FIG. 6. The RLC
section 27 drives the two-parallel RLC sections 29 and 31.
The transfer functions at nodes x, 29a and 31a are given by

Vi(s) _ (L+ RyCys + LpCos™)(1 + Ry Cys + L3C3s”) ()
Vinls) — D

Vals)  (1+RsCss + L3C3s?) ©)
Vinls) — D

Va(s)  (1+RyCos+ LrCas”) (10)
Vinls) D

respectively, where D is the common denominator and is a
polynomial in s of order six. The specific form of D is not
of interest here. The denominators of sub-circuits 29 and 31
are 1+R,C,s+L,C%s?, and 1+R,C,s+L,C5s°%, respectively.
Note that both denominators are in the numerator of the
transfer function at node x showing that the poles of sub-
circuits 29 and 31 are zeros of the transfer function at the
driving node x in accordance with rule 2. Note also that the
poles of sub-circuit 29 are zeros of the transfer function at
node 31 and vice versa which verifies rule 3.

B. Calculating the Transfer Functions at the Nodes
of an RLC Tree

It is illustrated in this subsection how to recursively
calculate the transfer functions at the nodes of an RLC tree
using the concepts developed in the previous subsection.
Consider the general RLC tree 33 in FIG. 7. The current
sunk to ground by a capacitor k is given by C,dv,(t)/dt where
vi(t) is the voltage across C,. Thus, the current passing
through the resistance R, and the inductance L, is given by
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d
W= ¢ Zl([)
k

where the summation index k runs over all the capacitors in
the tree. The voltage drop across R; and L, is given by

(12

§ d* v (D)
+ 1 Cy yra

k

Vin(2) =1 () =

. diy (1) dv (i)
R0+ L — =Rlzk]ck T

In the frequency domain the above relations transforms to

Vin($) = Vi(s) = SRy +52 L)Y CeVi(s) a3
k

Dividing (13) by V,,(s) in the following:

L=Ti(s) = (sRy +5L1) ) CTils) (14
k

where T,(s) is the transfer function at node 33-1 and T,(s)
is the transfer function at node k. Note that determining the
transfer function at node 33-1 is sufficient to determine the
poles of the circuit since the transfer functions at all the
nodes 33-1, 33-2, 33-3, 33-4, 33-5, 33-6, and 33-7 of the
RLC tree have a common denominator as aforementioned.

Now consider the structure 35 in FIG. 8 which shows an
RLC section 37 driving left and right sub-trees 39 and 41.
Without loss of generality, a binary branching factor is used,
since a general tree with arbitrary branching factor can be
transformed into a binary tree by inserting zero impedance
branches. The structure in FIG. 8 can be used recursively to
fully represent any RLC tree, since the left and right
sub-trees can in turn be presented by the same structure. The
transfer function at node 37-1 of FIG. 8 is given by equation
(14), which can be reformulated by using the rational
representations of the transfer functions T,(s)=N,(s)/D(s)
and Ty(s)=Ny(s)/D(s) and is

D(s) - Ny(s) = (sR + SL)Z CeNi(s) (15)
k

Assume that the transfer functions at all of the nodes of the
left and right RLC sub-trees (when they are disconnected)
are known and are given by Ty1(s)=N,.,(s)/Ds) at node k;,
of the left sub-tree and T,.,(8)=N,..(s)/D,(s) at node k, of
the right sub-tree. The numerator at node 37-1, N,(s), of
FIG. 8 can be directly calculated by applying rule 2 in the
previous subsection and is

Ni($)=Di(s)D,(s) (16)
The “-” operator above represents a polynomial multiplica-
tion. The denominator D(s) can be determined from (15) as

D(S)=N1()+(sRy+s°Ly )M, an
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where M; is defined as

My =" CeNils) 18)
k

and characterizes the summation of the numerators of the
transfer functions across the capacitors in the tree multiplied
by the corresponding capacitances. The summation in M,
runs over all the capacitors in the tree and can be divided into
three components as

My =CiNi(s)+ ) CuNg(s) + ) CiaNia(s) (19)

ki k2

where k,; covers the capacitors in the left sub-tree and k,
covers the capacitors in the right sub-tree. By applying rule
3, the numerators in the left sub-tree can be described in
terms of the parameters of the disconnected left and right
sub-trees as N,,(8)=N,(s)'D,(s). Similarly, N,,(s)=N,,,(s)
‘D/(s). Thus, equation 19 can be put as

20)
“Dy(s)

My = CiNy(s) + [Z ClulNus(5) |- Dos) + [Z CiaNpia(s)
ki k2

Note that the two summations above are M; and M, of the
disconnected left and right sub-trees, respectively. Hence,
M, can be fully calculated in terms of the disconnected left
and right sub-tree parameters as

M =C\N(5)+M(s) D, (s)+M,(s)-D(s) )

Thus, by knowing the parameters of the left and right
sub-trees, M/(s), D(s), M, (s), and D (s), equations (16), (21)
and (17) can be used in that order to find N;(s), M,(s), and
D(s), respectively. The parameters of the left and right
sub-trees M(s), D(s), M,(s), and D,(s) can be determined in
turn in terms of their left and right sub-trees by using the
structure in FIG. 8 and equations (16), (21) and (17). This
process is repeated recursively until the left and right
sub-trees are non-existent. If the left sub-tree does not exist,
then M(s)=0 and D(s)=1. If the right sub-tree does not exist,
then M,(s)=0 and D,(s)=1.

After this recursion process terminates, the denominator
and numerator across each capacitance C, in the tree rep-
resent the transfer function for the sub-tree rooted at the
RLC section k. For example, for the tree in FIG. 7, D(s) and
N(s) at node 33-1 represent the transfer function at node
33-1 for the entire tree. However, D(s) and N(s) at node 33-2
represent the transfer function at node 33-2 for the sub-tree
composed of the RLC sections 34-2, 34-4 and 34-5.

Also, D(s) and N(s) at node 33-4 represent the transfer
function at node 33-4 for the sub-tree composed of RLC
section 34-4. Thus, after the recursion process terminates,
the only relevant parameters to the entire RLC tree are D(s)
and N(s) across the capacitor closest to the input (C, in the
case of the tree in FIG. 7). The denominators and numerators
at all other nodes are incorrect. The denominators at these
nodes need not be corrected since they are the same as the
denominator at the node closest to the input. However, the
numerators differ at each node and need to be corrected.
According to rule 3, all the numerators in the left sub-tree
have to be multiplied by D,(s) and all the numerators in the
right sub-tree have to be multiplied by D(s). This process is
repeated recursively starting at the root of the tree and
advancing towards the sinks.
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Thus, the process of determining the transfer function at
all of the nodes of the RLC tree includes two steps. The first
step is to calculate the common denominator of the RLC tree
and is accomplished by the function Cal_Denominator,
described below with reference to FIG. 18, which uses the
recursive equations in (16), (21), and (17). The common
denominator is the denominator at the node closest to the
input of the RLC tree after the recursion terminates. The
second step is to correct the numerators of the transfer
functions at the nodes of the RLC tree. This task is achieved
by the function Correct Numerators, described below with
reference to FIG. 19.

The recursive operation will be summarized with refer-
ence to the flow chart spanning FIGS. 20A and 20B. The
operation starts in step S1. In step S3, the RLC tree is
divided into left and right sub-trees. In step S5, each of those
left and right sub-trees is further divided into left and right
sub-trees. The division continues until it is determined in
step S7 that the RLC tree is completely divided. In step S9,
for each node, the numerator and denominator of the transfer
function are determined as described above until it is deter-
mined in step S11 that the numerator and denominator are
determined for all nodes. In step S13, the denominator at the
node closest to the input is taken to be the denominator of
all of the transfer functions. In steps S15 and S17, the
numerators of the transfer functions are corrected. At each
node, the numerator of the transfer function of the left
sub-tree is multiplied by the denominator of the transfer
function of the right sub-tree in step S15, and the numerator
of the transfer function of the right sub-tree is multiplied by
the denominator of the transfer function of the left sub-tree
in step S17, until it is determined in step S19 that the
numerators have been corrected for all sub-trees. Then, the
transfer functions are determined in step S21 in the manner
described above, and in step S23, the operation ends.

C. Transfer Function Truncation and Approximation
Order

It has been shown how to calculate the exact transfer
functions at all the nodes of an RLC tree in the previous
subsection. However, calculating the exact transfer function
can be time consuming since n can be in the order of
thousands for typical large industrial RLC trees. In practice,
there is no need to calculate the thousands of poles charac-
terizing an RLC tree, since the transient behavior can be
accurately characterized by a small number of dominant
poles (typically several tens of poles). Dominant poles are
low frequency poles (or poles with smaller magnitude).
Thus, a low frequency approximation is required that can
correctly anticipate the set of dominant poles without cal-
culating the exact high order transfer function.

Assume that the exact transfer function at a specific node
of the RLC tree is given by
L+ais+ass® + ... + aps™ (22)

T(s) =
© 1+bis+bys? + ...+ bys»

where b,-b, and a,-a,, are positive real constants. The
system order n is equal to the total number of capacitors and
inductors in the tree. The order of the numerator polynomial
m is less than n and is dependent on the node at which the
transfer function is calculated. A q™ order approximate
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transfer function is found by direct truncation of the exact
transfer function T(s) in equation (22) and is given by
L+ais+as® + ..+ a5 (23)

T.(s) =
a(s) L+bis+bas?+ ...+ bys?

where q<n. The numerator order x=m if m=q-1; otherwise,
x=q-1. The order of the numerator has to be less than the
denominator order for a causal approximation. If s (or
frequency) is small enough, the terms with higher power of
s in the denominator and numerator polynomials (b q+1sq+1—
b,s"a,, 5" a,,s™) are negligible with respect to the lower
power terms in T,(s). Thus, for low frequencies, T (s) is an
accurate representation of T(s). The range of frequencies for
which T (s) is accurate increases as q increases.

The calculation of a g™ order approximation for the
transfer functions at all the nodes of an RLC tree can be
accomplished by an order limited polynomial multiplication.
To understand the concept, assume that A and B are two
polynomials of orders n, and n,, respectively. The polyno-
mial C is given by A‘B and has an order of n_=n_,+n,. The
polynomials A, B, C are given by

ng . ) . e X (24)
A :Za;s‘, B :Zb;s‘, and C = Zc;s‘
i=0 i=0 i=0
where the coefficients c; are
25)

Mg
ci = Z ajb;_j
J=0

Note that b,_; is equal to zero if i~j is out of the range 0 to
n,. For a q limited polynomial multiplication, the highest
power of s sought in C is g rather than n_ and coefficients of
higher powers of s needn’t be calculated. Also, A and B can
be q limited since higher powers than s? in both polynomials
cannot produce powers of s in C less than or equal to q.
Hence, if a q” order approximation is sought, all the
polynomial multiplications of the method described in the
previous subsection are q limited. These q limited polyno-
mial multiplications are much less expensive in terms of
computer time than full polynomial multiplications since q
is typically much less than n. The number of scalar multi-
plications required for a q limited polynomial multiplication
is at most q(q+1)/2 when the polynomial orders n, and n,, are
equal to q. As will be explained below, the actual number of
scalar multiplications performed by the present method is
much less than the number of multiplications anticipated
using the q(gq+1)/2 complexity of a polynomial multiplica-
tion.

D. Determining the Poles, Residues, and the
Transient Response

Once the common denominator of order g, Ds), is
determined as described in the previous subsections, the first
q dominant low frequency poles of the RLC tree can be
calculated as the roots of the polynomial D (s). A numerical
method for finding the roots of a polynomial can be used to
find he RLC tree poles P,~P,. The residues corresponding to
each pole at the specific node can easily be calculated by
direct substitution in the numerator of the transfer function
at this node. The residues corresponding to the pole p; at
node j of an RLC tree can be calculated as
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i Nj(s = pi) (26)

K
DP;

where

q 27
DP =b,| | (pi=p)
r=1

rEi

where b, is the coefficient of s? in D (s). Note that DP; is
independent of the node at which the residues are evaluated.
Thus, DP; can be evaluated once and used to calculate the
residues at any number of nodes, which reduces the com-
putational complexity when the transient response is
required at many nodes.

The poles of the circuit and the corresponding residues at
node j of an RLC tree can be used to characterize the transfer
function at node j as

9
=1

The above transfer function can be used to calculate the time
domain response at node j for an arbitrary input by multi-
plying the Laplace transform of the input by T(s) and
calculating the inverse Laplace transform of the resulting
expression. For example, for a unit step input, the output
response at node j, eft), is

o (28)

(s=pi)

<y 29
ej()=1+ Z —‘epi’]
pi
i=1
For an exponential input of the form
v, (H)=1-e* 30)

the transient response at node j is given by

q q .
o1
+ — P
pi pit+1

i=l i=1

dir (31

piT+1

—ifT

ejn=1+e

where T is the time constant of the input signal. Some of the
poles determined using the present method can be unstable
due to the truncation of the denominator polynomial, as will
be discussed in the next section. These unstable poles can be
simply discarded from the summations in equation (29) and
(31). However, all the poles should be included in calculat-
ing the residues using equations (26) and (27).

E. Complexity and Stability Characteristics

The method just disclosed has a complexity linearly
proportional to the order of the tree n, which is twice the
number of RLC sections in the tree since each RLC section
has one capacitor and one inductor. This linear complexity
results because the method traverses each node in the tree
only once as illustrated above. At each node of the RLC tree,
polynomial multiplication is required to calculate the com-
mon denominator as given by equation (16), (21) and (17).
Although polynomial multiplication has an apparent com-
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plexity proportional to q° for a ¢ order approximation, the
average number of scalar multiplications required per node
for a polynomial multiplication is much lower than g*for any
RLC tree. To explain this argument, consider the following
cases. A node of an RLC tree with the right sub-tree
nonexistent has M,=0 and D,=1. Thus, equations (16), (21)
and (17) transform into

Ni(5)=D(s) (32)
M =C Ny (s)+M[s) (33)
D(s)=N,(s)+(sR+s°L )M, (34)

respectively. Note that there is no polynomial multiplication
at a node of a tree driving only one branch. The present
method is therefore specifically efficient for single lines and
in the cases where branches of a tree are subdivided into
several series RLC sections to model the distributed nature
of the interconnect impedance.

A binary tree (such as the one shown in FIG. 7) with a
total of r branches has r/2 leaves. These 1/2 leaves are driven
by r/4 branches, which in turn are driven by r/8 branches and
so on. Determining N(s), M(s), and D(s) at the /2 leaves
requires only two scalar multiplications independent of the
approximation order sought since for leaf i, N(s)=1, M(s)=
C,, and D(s)=14R,C;s+L,C;s>. Using these values in the next
level with the r/4 branches, the number of scalar multipli-
cations needed to find N(s), M(s), and D(s) is ten multipli-
cations for a fourth order approximation or higher. Thus, for
a binary tree, the average number of scalar multiplications
required by the present method is much less than g* multi-
plications per polynomial multiplication. For example, cal-
culating a fourth order approximation at all the nodes of a
binary tree requires a total number of scalar multiplications,
SM, given by

r

1

(35)

r r
SM4=2-§+10- +25-4—1 =9.75r

Thus, the average number of scalar multiplications per
branch of the tree is 9.75. The number of scalar multiplica-
tions calculated based on the q* polynomial multiplication
complexity is 62r which is a huge overestimation. The
overestimation is even worse for higher values of q. For
=60, the actual number of scalar multiplications is 160r
multiplications, while the q* model would predict 1000r
multiplications. As the branching factor of an RLC tree
increases, the overestimation by the q, model increases. This
trend results because the leaves of the tree (which requires
only two scalar multiplications) constitute a larger fraction
of the total number of the branches in the tree as the
branching factor increases. For example, a tree with a
branching factor of ten has almost %oof its branches as
leaves. For a general tree with a random branching factor at
each node, the average number of scalar multiplications per
node is much less than the q*model.

The above analysis shows that the complexity of calcu-
lating the transfer functions at all the nodes of an RLC tree
is almost linear with the order of approximation sought, q.
This feature makes the expense of calculating higher order
approximations minimal. Also, the method depends on
simple polynomial multiplications, which are numerically
accurate for very high orders of approximation.

An analysis of the stability of the approximations calcu-
lated using the present method shows that an approximation
with an order less than five is guaranteed to be stable.
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Assume that the exact common denominator of an RLC tree
is given by

D(s)=1+bs5+bys™+ . . . +b,s" (36)
The common denominator of a g order approximation is
therefore given by

D ()=1+b,s5+b,s™+ . . . +b,s7 (37
For a second order approximation, the condition for stability
is that b, and b, are positive. Since b; and b, are the
coefficients of s and s* in the exact common denominator
D(s), b, and b, are guaranteed to be positive, because a
passive RLC tree is guaranteed to be stable and stability
requires that all the coefficients of s in the denominator be
positive. Therefore, a second order approximation is always
stable. For a third order approximation, the Routh-Hurwitz
criterion for stability requires that b b,>b;. The coefficients
b, b, and by are given by

S| (3%
=) —

= Pi

n n 1 (39)
b= 25

F ks PiPk

W (40)

by=-

o1 ks PiPiPk

respectively, where py, po, . . . , P,, are the poles of the exact
common denominator and have negative real parts due to the
stability of a passive RLC circuit. Thus, the quantity b;b,—b,
is given by

n_n n 1 nn 1 41
blbz—b3 =- Z + =
T s PiPiPe T SR SR PiPiP
IPI
=1 71 4 PiPiPk

Note that the quantity b,b,—b; is positive since p;, P, - - - »
p,, have negative real parts. Thus, a third order approxima-
tion is also guaranteed to be stable. The same procedure can
be repeated for a fourth order system, and it can be shown
that stability is also guaranteed for a fourth order system.
These low order approximations are useful for RC trees
since the signals within an RC tree can typically be approxi-
mated by few dominant poles due to the monotone nature of
the responses. Approximations of order five or higher are not
guaranteed to be stable. However, since the present method
is numerically stable for any order of approximation and
since its computational complexity increases slowly with the
approximation order, high order approximations can always
be determined using the present method to correctly detect
all the poles in the frequency range of interest.

F. Experimental Results

The present method will now be applied to calculate the
transient response of several RC and RLC trees. The result-
ing transient responses are compared to SPICE simulations
to evaluate the accuracy of the present method. The present
method is used first to evaluate the transient response of the
RC circuit 43 in FIG. 9 which represents a distributed RC
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transmission line driven by a lumped resistance R,, repre-
senting the driving gate with a load capacitance C, repre-
senting the input capacitance of the driven gate. The line has
a total resistance of R, and a total capacitance of C,. The
transient response calculated based on the previous method
with approximation orders of two, three and four are com-
pared to the known SPICE technique in FIGS. 10A-10C,
which show the results of the present method and of SPICE
with dashed curves and solid curves, respectively. Note that
a second order approximation has a minor error in the
transient response as compared to SPICE and that the third
and fourth order approximations are practically exact.

FIG. 11 shows another circuit 45 simulated by the present
method. In FIG. 11, resistance values are in ohms, induc-
tance values are in nH and capacitance values are in pF. The
transient response at several nodes of the tree are calculated
based on the present method and compared to SPICE in
FIGS. 12A-12D, which also show the results of the present
method and of SPICE with dashed curves and solid curves,
respectively. A fourth order approximation was used to
calculated the transient responses in FIGS. 12A-12D. Note
that a fourth order approximation is accurate as compared to
SPICE simulations. In general, a fourth order approximation
is sufficiently accurate for most RC trees. The guaranteed
stability of a fourth order approximation is therefore a
valuable feature for RC circuits. Note that despite the fact
that an RC circuit cannot produce complex poles, a reduced
order approximation based on the present method can result
in complex poles for an RC circuit. However, the resulting
complex poles for RC circuits always produce monotone
responses.

The circuit in FIG. 13 representing an RLC transmission
line with a lumped resistance and a load capacitance is
simulated using the present method. The transient response
calculated based on the present method with approximation
orders of 4, 15, 25, and 35 are compared to SPICE in FIGS.
14A-14D, which show the results of the present method and
of SPICE with dashed curves and solid curves, respectively.
Note that an approximation order between 25 and 35 is
required for an underdamped response with a second order
oscillations to achieve a SPICE-like accuracy. Such higher
order approximations cannot be achieved by AWE due to its
numerical instability with high approximation orders. Other
methods capable of calculating such high order approxima-
tions have a much higher computational complexity as
compared to the present method. The computational effi-
ciency of the present method and its numerical accuracy for
very high orders of approximation makes it suitable for
simulating RLC trees. Several simulations of the circuit in
FIG. 13 are shown in FIGS. 15A-15B with different line
parameters and source and load impedances. In FIG. 15A,
R=30 Q, L,=7 nH, C,=1 pF, R,=20 Q, C,=0.5 pF, and
approximation order=20. In FIG. 15B, R,=20 Q, [.,=8 nH,
C,=1pF,R,=10 €, C,=0.4 pF, and approximation order=25.
FIGS. 15A and 15B show the results of the present method
and of SPICE with dashed curves and solid curves, respec-
tively

A general RLC tree as defined in Table I below will now
be considered. The tree has several RLC sections, each of
which comprises a row of the table and has an ID number.
The ID numbers of the left and right RLC sections driven by
an RLC section are given in the fifth and sixth columns. A
zero in these columns means that the left or right sections are
non-existent.

10

15

20

25

30

40

45

55

60

65

14
TABLE I
RLC Left Right
Section R L C Section Section
number (Q) (nH) ©F) number number
1 2 0.07 0.2 2 0
2 4 0.06 0.1 4 3
3 7 0.04 0.3 6 7
4 5 0.05 0.1 5 0
5 6 0.03 0.05 12 11
6 6 0.06 0.03 10 9
7 3 0.06 0.06 8 0
8 8 0.04 0.1 15 16
9 12 0.05 0.01 0 0
10 9 0.04 0.02 14 0
11 2 0.05 0.03 13 0
12 7 0.03 0.08 0 0
13 11 0.07 0.02 20 0
14 10 0.03 0.01 19 0
15 7 0.04 0.03 17 18
16 10 0.02 0.01 0 0
17 12 0.02 0.01 0 0
18 3 0.04 0.1 24 0
19 15 0.04 0.02 22 23
20 5 0.06 0.07 21 0
21 5 0.06 0.07 0 0
22 5 0.05 0.05 0 0
23 8 0.04 0.03 27 26
24 8 0.05 0.02 25 0
25 8 0.06 0.02 30 0
26 2 0.04 0.02 0 0
27 7 0.03 0.04 28 29
28 16 0.02 0.06 0 0
29 5 0.05 0.06 0 0
30 8 0.04 0.02 0 0

The transient response at several nodes of the RLC tree
depicted in Table I are evaluated based on the present
method and compared to SPICE in FIGS. 16A-16D, which
show the results of the present method and of SPICE with
dashed curves and solid curves, respectively. A 40” order
approximation is used and is highly accurate compared to
SPICE. Finally, a 45" order approximation is used to
evaluate the transient response of a large copper intercon-
nect tree from a 0.25 ym CMOS IBM technology. The tree
has 673 capacitors and 673 inductors. The transient
responses based on the method and SPICE are compared in
FIG. 17, which also shows the results of the present method
and of SPICE with dashed curves and solid curves, respec-
tively. Note that the present method is capable of accurately
characterizing the transient response of large industrial RLC
trees with underdamped responses.

The implementation of the preferred embodiment on a
computing device will now be disclosed.

A general RLC tree is composed of several RLC sections
connected together. Each RLC section has a series
resistance, inductance, and capacitance with the capacitance
grounded as shown in FIG. 2. It is required to calculate the
transfer functions across all the capacitors in the RLC tree.
The function to calculate the common denominator of an
RLC tree rooted at the RLC section w is Cal__Denominator
and uses the algorithm explained above. The pseudo-code
that performs this task is shown in FIG. 18.

The function is initially called by Cal_Denominator(w,)
and recursively calculates the common denominator. The
structure “section” has the elements R, L, and C, which
represent the resistance, inductance, and capacitance of an
RLC section, respectively. The structure also has the arrays
N, M and D, which represent the polynomials of the
numerator, M in equation (21) and the denominator of the
transfer function across the capacitor of the RLC section,
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respectively. The operation represents polynomial mul-
tiplication. An efficient limited order polynomial multipli-
cation function should be used as discussed above. The
functions, left(w) and right(w), return pointers to the left and
right sections driven by w, respectively. If no left (right)
section is driven by w, left(w)=0(right(w)=0). The function
uses equations (16), (21) and (17) and the recursion termi-
nation conditions described by the method in subsection B
above.

The second step is to correct the numerators of the transfer
functions at the nodes of the RLC tree. The function
performing this task is described in FIG. 19. The function is
initially called the Correct-Numerators(w,,1) and recur-
sively corrects the numerators at all the nodes of the RLC
tree as described in subsection B of section II. Note that the
Correct_ Numerators function has to be called after the
Cal_Denominator function has been called.

The preferred embodiment can be implemented on any
computing device capable of running code based on the
pseudo-code of FIGS. 18 and 19. Like known circuit analy-
sis software such as SPICE, the preferred embodiment can
be written in a suitable computer language such as Fortran
or C++ and ported to Unix, Linux, or MS Windows 95/98/
NT.

A block diagram of a suitable computing device 101 is
shown in FIG. 21. An input 103 allows the user to input the
circuit configuration in any manner such as those known in
the art of computer-implemented circuit analysis and can
include one or more of a keyboard, a mouse, a digitizing
tablet, and the like. A processor 105 includes a CPU 107
(such as a microprocessor chip) and persistent storage 109
for storing the operating system, the software to implement
the circuit analysis, and various circuit configurations to be
analyzed. An output 111 provides the user with the results of
the analysis and can include one or more of a display, a
printer, and the like. Other components to be included are
well known to those skilled in the art and will therefore not
be listed here.

While a preferred embodiment of the present invention
has been set forth above, those skilled in the art who have
reviewed the present disclosure will readily appreciate that
other embodiments can be realized within the scope of the
invention. For example, while certain mathematical tech-
niques have been disclosed, the same decomposition into
right and left sub-trees and recursive analysis can be imple-
mented through different mathematical techniques.
Therefore, the present invention should be construed as
limited only by the appended claims.

We claim:

1. A method of calculating transfer functions within an
RLC tree, the RLC tree having an input and a plurality of
nodes, the method comprising:

(a) dividing the RLC tree into left and right sub-trees

joined by one of said nodes closest to the input;

(b) dividing each of the left and right sub-trees into left
and right sub-trees joined by one of said nodes;

(c) performing step (b) recursively until the RLC tree is
completely decomposed into left and right sub-trees
joined by said nodes; and

(d) determining the transfer functions in accordance with
the left and right sub-trees determined in step (c).

2. The method of claim 1, wherein step (d) comprises:

(i) at each of said nodes of the RLC tree, determining a
numerator and a denominator of the transfer function at
that node in accordance with the left and right sub-trees
joined by that node;
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(ii) taking a denominator of a transfer function of the node
closest to the input to be the denominator of all of the
transfer functions of the RLC tree; and

(iii) for each of said nodes, correcting the numerators of
5 the transfer functions of the left and right sub-trees
joined at that node in accordance with the denominators
determined in step (d)(i) of the transfer functions of the
right and left sub-trees joined at that node, respectively.

3. The method of claim 2, wherein said transfer functions
are calculated such that a transfer function for all of said
RLC tree has poles which are equal to zeros of a transfer
function at one of said nodes at which said RLC tree is
driven.

4. The method of claim 2, wherein said transfer functions
are calculated such that a transfer function for all of said
RLC tree has poles which are equal to zeros of transfer
functions at all nodes of parallel subcircuits within said RLC
tree which are driven at a same node at which said RLC tree
is driven.

5. The method of claim 2, wherein step (d)(iii) is per-
formed after steps (a)—(c) and (d)(i)—(d)(ii).

6. The method of claim 5, wherein step (d)(iii) comprises:

10
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(A) at the node closest to the input, multiplying all of the
numerators in the left sub-tree by the denominator in
the right sub-tree and multiplying all of the numerators
in the right sub-tree by the denominator in the left
sub-tree;

25

(B) for each of the left and right sub-trees, performing
step (d)(iii)(A) on the left and right sub-trees into which

30 T
that sub-tree is divided; and

(C) performing step (d)(iii)(B) recursively until step (d)
(iii)(B) has been performed for all of the nodes of the
RLC tree.

35 7. The method of claim 2, wherein:

the RLC tree has a total number of capacitors and induc-
tors equal to a quantity n;

the transfer functions are calculated in a low-frequency
approximation by calculating the transfer functions to
an order q which is lower than n.

8. The method of claim 7, wherein:

each node is associated with a number m which is equal
to the order of the numerator of an exact value of the
transfer function at that node; and

in the low-frequency approximation, the numerator at

each node is calculated to:
an order equal to m if m=q-1; or
an order equal to g-1 otherwise.

9. The method of claim 7, in which step (d)(iii) is done
through an order-limited multiplication in which all terms of
order higher than q are discarded.

10. The method of claim 7, wherein:

the denominator taken in step (d)(ii) is a polynomial D, of

order q;

the polynomial D, has roots which are taken to be

dominant low-order poles of the RLC tree; and

step (d)(iii) comprises:

(A) finding the poles;

(B) calculating residues of each pole at each node; and

(C) at each node, deriving an expression of the transfer
function at the node in terms of the residues of the
poles at the node.

11. The method of claim 10, further comprising (e) using
65 the expression of the transfer function derived in step

(d)(iii)(C) to calculate a transient response at each node for
an input signal applied to the input of the RLC tree.
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12. The method of claim 10, wherein step (¢) comprises:
(i) taking a Laplace transform of the input signal;

(ii) multiplying the Laplace transform of the input signal
by the expression of the transfer function derived in
step (d)(iii)(C) to form a product; and

(iii) taking an inverse Laplace transform of the product
formed in step (e)(ii).

13. The method of claim 12, wherein the expression of the
transfer function is derived independently of the input
signal.

14. The method of claim 2, wherein:

the RLC tree comprises a non-binary branch; and

the non-binary branch is converted into a binary branch
by insertion of at least one zero-impedance branch.
15. A system for calculating transfer functions within an
RLC tree, the RLC tree having an input and a plurality of
nodes, the system comprising:

input means for receiving an input representing a con-
figuration of the RLC tree;

processing means for receiving the input received by the
input means and for:

(a) dividing the RLC tree into left and right sub-trees
joined by one of said nodes closest to the input;

(b) dividing each of the left and right sub-trees into left
and right sub-trees joined by one of said nodes;

(¢) performing step (b) recursively until the RLC tree is
completely decomposed into left and right sub-trees
joined by said nodes; and

(d) determining the transfer functions in accordance
with the left and right sub-trees determined in step
(c); and

output means for outputting a result of steps (a)—(d).

16. The system of claim 15, wherein the processing means

performs step (d) by:

(i) at each of said nodes of the RLC tree, determining a
numerator and a denominator of the transfer function at
that node in accordance with the left and right sub-trees
joined by that node;

(ii) taking a denominator of a transfer function of the node
closest to the input to be the denominator of all of the
transfer functions of the RLC tree; and

(iii) for each of said nodes, correcting the numerators of
the transfer functions of the left and right sub-trees
joined at that node in accordance with the denominators
determined in step (d)(i) of the transfer functions of the
right and left sub-trees joined at that node, respectively.

17. The system of claim 16, wherein said transfer func-
tions are calculated such that a transfer function for all of
said RLC tree has poles which are equal to zeros of a transfer
function at one of said nodes at which said RLC tree is
driven.

18. The system of claim 16, wherein said transfer func-
tions are calculated such that a transfer function for all of
said RLC tree has poles which are equal to zeros of transfer
functions at all nodes of parallel subcircuits within said RLC
tree which are driven at a same node at which said RLC tree
is driven.

19. The system of claim 16, wherein step (d)(iii) is
performed after steps (a)—(c) and (d)(1)—(d)(ii).

20. The system of claim 19, wherein step (d)(iii) com-
prises:
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(A) at the node closest to the input, multiplying all of the
numerators in the left sub-tree by the denominator in
the right sub-tree and multiplying all of the numerators
in the right sub-tree by the denominator in the left

5 sub-tree;

(B) for each of the left and right sub-trees, performing
step (d)(iii)(A) on the left and right sub-trees in to
which that sub-tree is divided; and

(C) performing step (d)(iii)(B) recursively until step (d)
(iii)(B) has been performed for all of the nodes of the
RLC tree.

21. The system of claim 16, wherein:

10

the RLC tree has a total number of capacitors and induc-
tors equal to a quantity n;

the transfer functions are calculated in a low-frequency
approximation by calculating the transfer functions to
an order q which is lower than n.

22. The system of claim 21, wherein:

each node is associated with a number m which is equal
to the order of the numerator of an exact value of the
transfer function at that node; and

15
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in the low-frequency approximation, the numerator at
each node is calculated to:
an order equal to m if m=q1; or an order equal to q-1
otherwise.

23. The system of claim 21, in which step (d)(iii) is done
through an order-limited multiplication in which all terms of
order higher than q are discarded.

24. The system of claim 21, wherein:

25

the denominator taken in step (d)(ii) is a polynomial D, of
order q;

the polynomial D, has roots which are taken to be

35 dominant low-order poles of the RLC tree; and

step (d)(iii) comprises:
(A) finding the poles;
(B) calculating residues of each pole at each node; and
(C) at each node, deriving an expression of the transfer
function at the node in terms of the residues of the
poles at the node.

25. The system of claim 23, wherein the processing means
further performs step (e) of using the expression of the
transfer function derived in step (d)(iii)(C) to calculate a
transient response at each node for an input signal applied to
the input of the RLC tree.

26. The system of claim 25, wherein step (e) comprises:

40
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(i) taking a Laplace transform of the input signal;

(ii) multiplying the Laplace transform of the input signal
by the expression of the transfer function derived in
step (d)(iii)(C) to form a product; and

(iii) taking an inverse Laplace transform of the product
formed in step (e)(ii).

27. The system of claim 26, wherein the expression of the
transfer function is derived independently of the input
signal.

28. The system of claim 16, wherein:

50
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the RLC tree comprises a non-binary branch; and

the non-binary branch is converted into a binary branch
by insertion of at least one zero-impedance branch.

60
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