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Abstract -Closed form solutions for the 50% delay, rise time,  based on the Elmore delay is also near-optimal based on a more
overshoot characteristics, and settling time of signals in aRLC accurate €.9., SPICE-computed [24]) delay for routing constructions
tree are presented. These solutions have the same accuracy [25] and wire sizing optimizations [23]. Simulations [26] have shown
characteristics as the Elmore delay forRC trees and preserves  that the clock skew derived under the Elmore delay model has a high
the simplicity and recursive characteristics of the Elmore delay. ~ correlation with SPICE-derived skew data.

The solutions introduced here cover all damping conditions of an _ The popularity of the Elmore delay is primarily due to the
RLC circuit including the underdamped response, which is not ~ €Xistence of a simple tractable formula for the delay [29] that has
considered by the Elmore delay due to the non-monotone nature ~ '€CUrsive properties [27], making the calculation of the circuit delays
of the response. Also, the solutions have significantly improved highly efficient even in Igrge circuits. However, no equivalent
accuracy compared to the Elmore delay for an overdamped formula fc.)r'delay calculation has.been determined RaC trees
response. The solutions introduced here foRLC trees can be which satisfies all of these properties. The absence of an equivalent

practically used for the same application that the EImore delay is ge:ay ?Odel foRLCtrees is primarily due to the fa(1:t5tha:]_thﬁ Elmore
Used iNRC trees. elay does not cover non-monotone responses [15] which can occur

in RLC circuits. The focus of this paper is therefore the introduction

. of a simple tractable delay formula fRLC trees that preserves the

|. Introduction ~useful characteristics of the Elmore delay and maintain the same
It has become well accepted that interconnect delay dominategccuracy characteristics. The rise time of the signals RL&@tree is

gate delay in current deep submicrometer VLSI circuits [1]-[9]. With giso characterized as well as the overshoots and the settling time (for
the continuous scaling of technology and increased die area, thigp underdamped response).
situation is expected to become worse. In order to properly design  Thjs paper is organized as follows. In section I, an equivalent
complex circuits, more accurate interconnect models and signakecond order approximation of &LC tree is developed. Closed
propagation characterization are required. Initially, interconnect hasorm solutions for the 50% delay, rise time, overshoot characteristics,
been modeled as a single lumped capacitance in the analysis of thgg settling time of the signals within &0.C tree are introduced in

performance of on-chip interconnects. CurrerR,models are used  gection I11. Finally, some conclusions are offered in section IV.
for high resistance nets and capacitive models are used for low

resistance interconnect [10], [11]. However, inductance is becoming
more important with faster on-chip rise times and longer wire
lengths. Wide wires are frequently encountered in clock distribution

networks and in upper metal layers. These wires are low resistivg,,qfion |f the transfer function of the systenG), the normalized

wires that can exhibit significant inductive effects. Furthermore, yonqfer functiorg(s) is G(8)/G(0), which can generally be described
performance requirements are pushing the introduction of new,

materials for low resistance interconnect [12]. Inductance is therefore 5 n
becoming an integral element in VLS| design methodologies, see g(s) = l+as+a,s”+...+a;s ' (1)
e.g, [6], [13], [14]. 1+bs+b,s? +..+b, s"

An interconnect line in a VLSI circuit is in general a tree rather yvhereal andb, are real anan > n. For a monotone system and a unit

than a single line. Thus, the process of characterizing signa - .
; . . . : step input Elmore showed that the 50% propagation delay can be
waveforms in tree structured interconnect is of primary 'mportance'approximated byT, = b, - a. In 1987, Wyatt [16] used the

One of the more popular delay models used within industrnR@r relationshins tha. anda. are

trees is the Elmore delay model [15], [16]. Despite not being highly P oAl a .

accurate, the Elmore delay is widely used by industry for fast delay b, = Zl 1 )
1= pi

II. Second Order Approximation for RLC Trees
In 1948, Elmore [15] introduced a general approach for
calculating the propagation delay of a linear system given its transfer

estimation. With IC’s composed of tens of millions of gates it is and B £ Z’

impractical to use time consuming methods to accurately eyaluate th espectively, wher@, andz are the poles and zeros of the transfer
delay at each node in the circuit. The Elmore delay model is therefor unction. respectively. Thus. Wvatt treafBd=b.-a. as the reciprocal
used to quickly estimate the relative delays of different paths in theOf the démingnt oleykthe éle %/hat hasrtﬁ#ie_sﬁqglllest absolutpe value) of
circuit, permitting more exhaustive simulations to be performed for P P

only the critical paths. Also, the Elmore delay is widely used as athe system. Using this approximation, the unit step response of the

delay model for the synthesis of VLSI circuits such as buffer system becomes
insertion iNRC trees and wire sizing [17]-[28]. The wide use of the et) =1- exp(—L) ®)
Elmore delay as a basis for VLSI design methodologies is primarily '

because the Elmore delay has a high degreédefity [17]: an D

optimal or near-optimal solution reached by a design methOdomgytl\lgr?hngge'asnﬁcﬁ)(gt/g dprggagE?rtrz%?ede'lriyea\slngtl:agéf)rg;?r?;?iirn S
A .

therefore more accurate than the Elmore delay. FdR@rree, the

) . . . _time constanT_ at nods is calculated in [29] and given b
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Wyatt's approximate first order transfer function forR@tree is -m, 1 1

1 (=———— and W, = —" (11)
gi(5)=8 C.R +ll (5) 2 my -m, \/mlz_mz
Z k= ik Hence, for a system with a non-monotonic response a second order

approximation can be found if the first and second moments of the

The Elmore (Wyatt) delay does not properly charactdrz€ ystem are known.

networks due to the possibility of a non-monotone response of ary
RLC network[15]. To illustrate this point, consider the simple single
sectionRLC circuit depicted in Fig. 1. This circuit has a second order
transfer function given by

1

§=—— - . 6)
9(s) s’LC +sRC+1

Note that the coefficient of is RC, which does not include the

inductancel. Thus, the Elmore time constant (and thus the Wyatt

L, R

approximation) does not depend on the inductance. However, L, R 1
inductance can have a significant effect on the response of the circuit. 4 TTT=VV “ |
To clarify the effect of inductance, the transfer function of the circuit c
can be reconfigured as Vi ' I
w? =
g(s) = . ' 7 -
s* +s2w, + W %
where
1 RC 1
== and W, =——- )

2.JLC " JLC

The poles of the transfer function are

_ _ [72 _
Po=w,[-{ £y{" —1]. ©) Fig. 2. GeneraRLCtree

Note that if{ is less than one, the poles are complex and oscillations
occur in the response which violates the monotone response For the generaRLC tree shown in Fig. 2, the voltage drop at
condition of the Elmore delay. In that case the response isany nodé as compared to the input voltage is
underdamped and oversho_ots occuc i§ greater than one, the poles V,, (s) -V, (s) = Z CV. ()R, + L] (12)
are real and the response is an overdamped respogss. dfjual to
one, the response is a critically damped respodgiss. called the whereL, is the common inductance from the input to the nodesl
damping factor of the system. From (8), as the inductance increaseg, If the input is a unit impulse&/, (s) is equal to 1.0 and the voltages
{ decreases which violates the assumption of a monotonic response.at the nodes of the tree are the unit impulse responses of these nodes
Thus, the normalized transfer functig(s) at node is given byV,(s)
and is

+ _,TTM\/\]— + gi(s):l_zckvk(s)s[Rki +LkiS]:1+f'ﬂ::_S+mi252+....' (13)
\V C The first and second moments at nodan be found from

n Vout
i _dg(s) . _1d%gi(s)
- == and m, == —=> (14)
= - ™= s o “ 2 ds |,
Fig. 1. SimpleRLC circuit Differentiating (13) with respect and substituting = 0,

o . . mi == CkRika(S)| !
At least a second order approximation is required to characterize s=0
a non-monotone response,edause a non-monotone response (15)
involves complex poles which appear in conjugate pairs in a real m =-S5 C R de () C. LV (S)|
system. Thus, a second order system such as (7) is used to 2 Z Kk ds Z k =ik Tk s=0"
approximate a system with a nhon-monotone response. It is therefore .
necessary to determingand w, in order to make the second order Note that V(O _, = 1, and thatdV(s)/dsd_, = m; since
?rgﬁrs?;lrr?ﬁl&?or?s accurate as possible as compared to the exas L (s)=g,(s) =1+ mfs+ mgsz + ... Thus, the first and second
Matching the moments of a transfer function to the moments offfoments of a gener&iLCtree at nodeare
a higher order system permits the transfer function to approximate m'l = —Z C.Ry .
any linear system, saxg, [30]. The greater the number of moments
that are matched, the better the transfer function approximates the i _
system. The transfer function in (7) is thus expanded in powess of m, = Z Z Cy RikCJ Rkj B Z CiLi-
where the first two moments of the transfer function are equated to )

the first two moments of the system which are assumed g bad Since Elmore (Wyatt) approximates the first term m'2 by
m,. The expansion of the transfer function in (7) is

9(s) =1—s%%+52%1+(225)2 E mlemstms 4. (10) E'ZCK R, g(this approximation can be seen in the coefficient of
n wn

The parameters that characterize the second order approximation ofda if (5) is expanded into powers @f, a similar approach is used
non-monotonic systeny, and w, can be calculated in terms of the here. Thus, the second moment is approximated by
moments of the non-monotonic system and are

s=0

(16)
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_ 2 Thus, if the time is scaled hy,, the step response at nddeith a
m, = E'ZC,( Ry @ - ZCK Ly a7 supply voltage oW, becomes a function of only one variaiflend

is
. Substituting the fjrst and seco.nd moments of a germreltree . oy s Voo %xp[t'(—z‘ 7o expl(~¢, - /75'2‘1)]5 (20)
into (11), ¢ andw, which characterize a second order approximation S’ =Voo 22F 10 ¢+ i1 L1 f
of the transfer function at nodare S A o
c whereS’(t) is the time scaled response at nodedt’ is time scaled
1 Z kR 1 by w,. The time scaled 50% delay and rise time can be calculated by
( = —— and w; =—— (18) equatingS' (t) to 0.5/, 0.1vV,,, and 0.¥,,, respectively. The time
2 /Z C. Ly \/ZCT scaled 50% delay at nodand the rise time are only functions of one
variable, . The 50% delay and the rise time calculated for several

Note the analogy witl{ and w, for a singleRLC section in (8). The  values of{ are plotted as functions &f in Fig. 4. A curve fitting

time constantRC and \/LC are replaced by the summations of the method is applied to characterize the time scaled 50% delay and rise
equivalent time constants in the tree. Note also that (18) becomes (&}me as functions of and these functions are

for a single section. This second order approximation has the same G 1)
accuracy characteristics as that of the Elmore (Wyatt) approximation t' i =1.047e °% +1.39C;,

for anRCtree. For a step input and a supply voltag¥ gf the time

. ; . e e

domain response at node derived from the second order . - - (22)
approximation is t';, =6.017e %4 -5e %% +4.39(,

~ Voo CBxplo,t(=, ++/22 -1 explw,t(-, —+/22 -D1E wheret’  andt’, are the time scaled 50% delay and rise time at node

SO =Voo 2 lizz_lg} e S é (19) i, respectively. The 50% delay and rise time at riagi be found by

This closed form solution is compared to AS/X [31] simulations dIViding ', andt’ by a, anzd are
of the tree shown in Fig. 2 at output node 7. The simulations are _ 707é5 (23)
shown in Fig. 3 for a balanced tree with several valueg, ¢the Lo = (1.047€ © +1.3%;)/ w,
equivalent damping factor at node 7). The Elmore (Wyatt) solution is R N 24)
also shown for comparison. Note the accuracy that the solution t, =(6.017 04 —5e 064 +4.395i)/wm.

exhibits as compared to the AS/X simulations for the case of a o ) .
balanced tree. The error in the propagation delay is less than 3% fd¥ote that the 50% delay and the rise time at riatkn be described
this balanced tree example. This solution becomes less accurate f8f

unbalancedRLC trees. In general this solution fRLC trees has the L

same accuracy characteristics as that of the Elmore (Wyatt) delay Ui =(1.047e °%)/ w, +0-695Z CiRy» (25)
with respect tdRC trees. Note also that the solution in (19) tends to

the Elmore (Wyatt) approximation for largé (low inductance N i

effects), which shows that the general solution introduced here for ant,, =(6.017% %4 —5e °64) /¢ + 2.195Z C.Ry - (26)
RLCtree includes the special case ofRDtree.

For large (low inductance effects), these solutions approach the
Elmore (Wyatt) approximation of the 50% delay and the rise time for
an RC tree at nodé. This relationship demonstrates that the general
solutions for the 50% delay and the rise time introduced here includes
the Elmore (Wyatt) delay for the special case oR&@rtree. Note also

that the general solutions introduced here includes all types of
responses (underdamped non-monotone, critically damped, and
overdamped) in one continuous equation, which is useful in

400 T T

,,TAS/X RLCtree| = |-
(19) S

Wyatt approximation | . |

oo L . ‘ Z(: 0'2‘, o ‘ ‘ ‘ applications such as buffer insertion, wire sizing, and other VLSI-
ou o ww e based design, synthesis, and analysis methodologies.
e e & 4 T T T T T :
o T [ t . '
w Ie [ i NI |
- SEs /
1.00 — L0 = 2r / .
T [ (21)—><— Numerical|
B T [ Solutions | = T
e 1F q Numerical
0.00 20.00 40.00 60.00 0.00 Solutions
Time (ns) 0 ! ! ! ! ! ‘ ‘ ‘ ‘ ‘
0 05 o 15 2 25 3 00 0.5 1 15 2 25 3
Fig. 3. AS/X simulations as compared to (19) for several valués of (@) Z e
The Elmore (Wyatt) solution is also shown. i (b)

. T Fig. 4. Numerical solutions as compared to (21) and (22) vérsus
Il. Signal Characterization in RLC Trees for a Step Input a) The time scaled 50% deldy;,, compared to (21). b) The time
The time domain step response in (19) is used to characterize the scaled rise time’ compared to (22).

50% delay and the rise time of signals withinRIoC tree. The rise e
time is defined here as the time for the signal to rise from 10% to For the case of an underdamped non-monotone respprse)(

90% of the final value. The overshoots and the settlin_g time for the,yershoots and undershoots occur which must also be characterized
case of an underdamped response are also characterized. In the sjgR,, - another parameter can be used to characterize non-monotone

response described by (19), note that time is always multiplieg.by  responses which is defined as the time when the oscillations about the
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steady state are smaller thanof the steady state value. This
parameter is usually called the settling time arnsl typically chosen

to be 0.1 [32]. The value of the maximum or minimum oscillations [10]
can be found by differentiating (19) with respect to time and equating
the result to zero. The values for the maximum or minimum [11]
oscillations at nodeas a percentage of the final value are given by

%0, = (-)™ ELOOexpE—LZiE

n=12,... 27)
2 0 ’ ' 12
O l_Zi O [12]
where %0, represents the maximum overshoots forodd and
minimum undershoots far even at nod& The time at which tha" [13]
overshoot occurs at nodés given by
[14]

t. :L.
Oi wni Il_ZiZ (28)

The settling time can be calculated by equatin@, % x*100 to [15]
determine the value aof which represents the first overshoot that is
less tharx times the steady state value. The time of this overshoot iﬁ 16]
the settling time and can be calculated by substitutirgm %0, =

x*100 in (29). Thus, the settling time at nade given by [17]
t, =N, (29)
. Ziwni [18]
Forx=0.1,t is
t, = 2.3 . (30)
Ziwni [19]

IV. Conclusions

A general method to characterize the response of a linear non;
monotone system that is equivalent to the Elmore delay is presented:.
The generated delay expressions REC trees have the same
accuracy characteristics that the Elmore (Wyatt) approximation has
for RCtrees. Simple analytical expressions of signals iRla@ tree [21]
are provided for the 50% delay, rise time, overshoot characteristics,
and settling time. These expressions consider both monotone and
non-monotone signal responses. The delay expressions are
continuous and hence are useful for design, analysis, and synthesis )
VLSI-based design methodologies.
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