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Abstract - Closed form solutions for the 50% delay, rise time,
overshoot characteristics, and settling time of signals in an RLC
tree are presented. These solutions have the same accuracy
characteristics as the Elmore delay for RC trees and preserves
the simplicity and recursive characteristics of the Elmore delay.
The solutions introduced here cover all damping conditions of an
RLC circuit including the underdamped response, which is not
considered by the Elmore delay due to the non-monotone nature
of the response. Also, the solutions have significantly improved
accuracy compared to the Elmore delay for an overdamped
response. The solutions introduced here for RLC trees can be
practically used for the same application that the Elmore delay is
used in RC trees.

I. Introduction
It has become well accepted that interconnect delay dominates

gate delay in current deep submicrometer VLSI circuits [1]-[9]. With
the continuous scaling of technology and increased die area, this
situation is expected to become worse. In order to properly design
complex circuits, more accurate interconnect models and signal
propagation characterization are required. Initially, interconnect has
been modeled as a single lumped capacitance in the analysis of the
performance of on-chip interconnects. Currently, RC models are used
for high resistance nets and capacitive models are used for low
resistance interconnect [10], [11]. However, inductance is becoming
more important with faster on-chip rise times and longer wire
lengths. Wide wires are frequently encountered in clock distribution
networks and in upper metal layers. These wires are low resistive
wires that can exhibit significant inductive effects. Furthermore,
performance requirements are pushing the introduction of new
materials for low resistance interconnect [12]. Inductance is therefore
becoming an integral element in VLSI design methodologies, see
e.g., [6], [13], [14].

An interconnect line in a VLSI circuit is in general a tree rather
than a single line. Thus, the process of characterizing signal
waveforms in tree structured interconnect is of primary importance.
One of the more popular delay models used within industry for RC
trees is the Elmore delay model [15], [16]. Despite not being highly
accurate, the Elmore delay is widely used by industry for fast delay
estimation. With IC’s composed of tens of millions of gates it is
impractical to use time consuming methods to accurately evaluate the
delay at each node in the circuit. The Elmore delay model is therefore
used to quickly estimate the relative delays of different paths in the
circuit, permitting more exhaustive simulations to be performed for
only the critical paths. Also, the Elmore delay is widely used as a
delay model for the synthesis of VLSI circuits such as buffer
insertion in RC trees and wire sizing [17]-[28]. The wide use of the
Elmore delay as a basis for VLSI design methodologies is primarily
because the Elmore delay has a high degree of fidelity [17]: an
optimal or near-optimal solution reached by a design methodology
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based on the Elmore delay is also near-optimal based on a more
accurate (e.g., SPICE-computed [24]) delay for routing constructions
[25] and wire sizing optimizations [23]. Simulations [26] have shown
that the clock skew derived under the Elmore delay model has a high
correlation with SPICE-derived skew data.

The popularity of the Elmore delay is primarily due to the
existence of a simple tractable formula for the delay [29] that has
recursive properties [27], making the calculation of the circuit delays
highly efficient even in large circuits. However, no equivalent
formula for delay calculation has been determined for RLC trees
which satisfies all of these properties. The absence of an equivalent
delay model for RLC trees is primarily due to the fact that the Elmore
delay does not cover non-monotone responses [15] which can occur
in RLC circuits. The focus of this paper is therefore the introduction
of a simple tractable delay formula for RLC trees that preserves the
useful characteristics of the Elmore delay and maintain the same
accuracy characteristics. The rise time of the signals in an RLC tree is
also characterized as well as the overshoots and the settling time (for
an underdamped response).

This paper is organized as follows. In section II, an equivalent
second order approximation of an RLC tree is developed. Closed
form solutions for the 50% delay, rise time, overshoot characteristics,
and settling time of the signals within an RLC tree are introduced in
section III. Finally, some conclusions are offered in section IV.

II. Second Order Approximation for RLC Trees
In 1948, Elmore [15] introduced a general approach for

calculating the propagation delay of a linear system given its transfer
function. If the transfer function of the system is G(s), the normalized
transfer function g(s) is G(s)/G(0), which can generally be described
as
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where ai
 and bi

 are real and m > n. For a monotone system and a unit
step input Elmore showed that the 50% propagation delay can be
approximated by TD

 = b1
 - a1

. In 1987, Wyatt [16] used the
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respectively, where pi
 and zi

 are the poles and zeros of the transfer
function, respectively. Thus, Wyatt treated TD

 = b1
-a1

 as the reciprocal
of the dominant pole (the pole that has the smallest absolute value) of
the system. Using this approximation, the unit step response of the
system becomes

)exp(1)(
DT

t
te −−= , (3)

which models a 50% propagation delay as equal to 0.693TD
 rather

than TD
 as anticipated by Elmore. The Wyatt approximation is

therefore more accurate than the Elmore delay. For an RC tree, the
time constant TDi

 at node i is calculated in [29] and given by

∑=
k

ikkDi RCT , (4)

where k is an index that covers each capacitor in the circuit and Rik
 is

the common resistance from the input to the nodes i and k. Thus,
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Wyatt’s approximate first order transfer function for an RC tree is
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The Elmore (Wyatt) delay does not properly characterize RLC
networks due to the possibility of a non-monotone response of an
RLC network [15]. To illustrate this point, consider the simple single
section RLC circuit depicted in Fig. 1. This circuit has a second order
transfer function given by
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Note that the coefficient of s1 is RC, which does not include the
inductance L. Thus, the Elmore time constant (and thus the Wyatt
approximation) does not depend on the inductance. However,
inductance can have a significant effect on the response of the circuit.
To clarify the effect of inductance, the transfer function of the circuit
can be reconfigured as
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The poles of the transfer function are

]1[ 2
2,1 −±−= ζζωnP . (9)

Note that if ζ is less than one, the poles are complex and oscillations
occur in the response which violates the monotone response
condition of the Elmore delay. In that case the response is
underdamped and overshoots occur. If ζ is greater than one, the poles
are real and the response is an overdamped response. If ζ is equal to
one, the response is a critically damped response. ζ is called the
damping factor of the system. From (8), as the inductance increases,
ζ decreases which violates the assumption of a monotonic response.

Fig. 1. Simple RLC circuit

At least a second order approximation is required to characterize
a non-monotone response, because a non-monotone response
involves complex poles which appear in conjugate pairs in a real
system. Thus, a second order system such as (7) is used to
approximate a system with a non-monotone response. It is therefore
necessary to determine ζ and ωn in order to make the second order
approximation as accurate as possible as compared to the exact
transfer function.

Matching the moments of a transfer function to the moments of
a higher order system permits the transfer function to approximate
any linear system, see e.g., [30]. The greater the number of moments
that are matched, the better the transfer function approximates the
system. The transfer function in (7) is thus expanded in powers of s
where the first two moments of the transfer function are equated to
the first two moments of the system which are assumed to be m1 and
m2. The expansion of the transfer function in (7) is
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The parameters that characterize the second order approximation of a
non-monotonic system, ζ and ωn, can be calculated in terms of the
moments of the non-monotonic system and are
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Hence, for a system with a non-monotonic response a second order
approximation can be found if the first and second moments of the
system are known.

Fig. 2. General RLC tree

For the general RLC tree shown in Fig. 2, the voltage drop at
any node i as compared to the input voltage is
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k
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where Lik is the common inductance from the input to the nodes i and
k. If the input is a unit impulse, Vin(s) is equal to 1.0 and the voltages
at the nodes of the tree are the unit impulse responses of these nodes.
Thus, the normalized transfer function gi(s) at node i is given by Vi(s)
and is
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The first and second moments at node i can be found from

 
)(

!2

1
                and                

)(

0

2

2

2

0

1

==

==
s

ii

s

ii

ds

sgd
m

ds

sdg
m . (14)

Differentiating (13) with respect to s and substituting s = 0,
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Note that Vk(s) s=0 = 1, and that dVk(s)/ds s=0 = km1  since
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moments of a general RLC tree at node i are
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Since Elmore (Wyatt) approximates the first term in im2  by
2
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s2 if (5) is expanded into powers of s), a similar approach is used
here. Thus, the second moment is approximated by
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Substituting the first and second moments of a general RLC tree
into (11), ζi and ωni which characterize a second order approximation
of the transfer function at node i are
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Note the analogy with ζ and ωn for a single RLC section in (8). The

time constants RC and LC  are replaced by the summations of the
equivalent time constants in the tree. Note also that (18) becomes (8)
for a single section. This second order approximation has the same
accuracy characteristics as that of the Elmore (Wyatt) approximation
for an RC tree. For a step input and a supply voltage of VDD, the time
domain response at node i derived from the second order
approximation is
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This closed form solution is compared to AS/X [31] simulations
of the tree shown in Fig. 2 at output node 7. The simulations are
shown in Fig. 3 for a balanced tree with several values of ζ7 (the
equivalent damping factor at node 7). The Elmore (Wyatt) solution is
also shown for comparison. Note the accuracy that the solution
exhibits as compared to the AS/X simulations for the case of a
balanced tree. The error in the propagation delay is less than 3% for
this balanced tree example. This solution becomes less accurate for
unbalanced RLC trees. In general this solution for RLC trees has the
same accuracy characteristics as that of the Elmore (Wyatt) delay
with respect to RC trees. Note also that the solution in (19) tends to
the Elmore (Wyatt) approximation for large ζi (low inductance
effects), which shows that the general solution introduced here for an
RLC tree includes the special case of an RC tree.

 

Fig. 3. AS/X simulations as compared to (19) for several values of ζ.
The Elmore (Wyatt) solution is also shown.

III. Signal Characterization in RLC Trees for a Step Input
The time domain step response in (19) is used to characterize the

50% delay and the rise time of signals within an RLC tree. The rise
time is defined here as the time for the signal to rise from 10% to
90% of the final value. The overshoots and the settling time for the
case of an underdamped response are also characterized. In the step
response described by (19), note that time is always multiplied by ωni.

Thus, if the time is scaled by ωni, the step response at node i with a
supply voltage of VDD becomes a function of only one variable ζi and
is
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where Si’ (t) is the time scaled response at node i and t’  is time scaled
by ωni. The time scaled 50% delay and rise time can be calculated by
equating Si’ (t) to 0.5VDD, 0.1VDD, and 0.9VDD, respectively. The time
scaled 50% delay at node i and the rise time are only functions of one
variable, ζi. The 50% delay and the rise time calculated for several
values of ζi are plotted as functions of ζi in Fig. 4. A curve fitting
method is applied to characterize the time scaled 50% delay and rise
time as functions of ζi and these functions are
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where t’ pdi and t’ ri are the time scaled 50% delay and rise time at node
i, respectively. The 50% delay and rise time at node i can be found by
dividing t’ pdi and t’ ri by ωni and are
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Note that the 50% delay and the rise time at node i can be described
as
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For large ζi (low inductance effects), these solutions approach the
Elmore (Wyatt) approximation of the 50% delay and the rise time for
an RC tree at node i. This relationship demonstrates that the general
solutions for the 50% delay and the rise time introduced here includes
the Elmore (Wyatt) delay for the special case of an RC tree. Note also
that the general solutions introduced here includes all types of
responses (underdamped non-monotone, critically damped, and
overdamped) in one continuous equation, which is useful in
applications such as buffer insertion, wire sizing, and other VLSI-
based design, synthesis, and analysis methodologies.

Fig. 4. Numerical solutions as compared to (21) and (22) versus ζi.
a) The time scaled 50% delay, t’ pdi, compared to (21). b) The time

scaled rise time, t’ ri,. compared to (22).

For the case of an underdamped non-monotone response (ζi < 1),
overshoots and undershoots occur which must also be characterized.
Also, another parameter can be used to characterize non-monotone
responses which is defined as the time when the oscillations about the
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steady state are smaller than x of the steady state value. This
parameter is usually called the settling time and x is typically chosen
to be 0.1 [32]. The value of the maximum or minimum oscillations
can be found by differentiating (19) with respect to time and equating
the result to zero. The values for the maximum or minimum
oscillations at node i as a percentage of the final value are given by
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where %Oi represents the maximum overshoots for n odd and
minimum undershoots for n even at node i. The time at which the nth

overshoot occurs at node i is given by
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The settling time can be calculated by equating %Oi to x*100 to
determine the value of n which represents the first overshoot that is
less than x times the steady state value. The time of this overshoot is
the settling time and can be calculated by substituting n from %Oi =
x*100 in (29). Thus, the settling time at node i is given by

nii
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x
t
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For x = 0.1, tsi is

nii
sit

ωζ
3.2= . (30)

IV. Conclusions
A general method to characterize the response of a linear non-

monotone system that is equivalent to the Elmore delay is presented.
The generated delay expressions for RLC trees have the same
accuracy characteristics that the Elmore (Wyatt) approximation has
for RC trees. Simple analytical expressions of signals in an RLC tree
are provided for the 50% delay, rise time, overshoot characteristics,
and settling time. These expressions consider both monotone and
non-monotone signal responses. The delay expressions are
continuous and hence are useful for design, analysis, and synthesis in
VLSI-based design methodologies.
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