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Abstract– The effects of inductance on repeater  inser tion in RLC trees is the focus of this paper . An algor ithm 
is introduced to inser t and size repeaters within an RLC tree to optimize a var iety of possible cost functions 
such as minimizing the maximum path delay, the skew between branches, or  a combination of area, power , 
and delay. The algor ithm has a complexity propor tional to the square of the number  of possible repeater  
positions and determines a repeater  solution that is close to the global minimum. The repeater  inser tion 
algor ithm is used to inser t repeaters within several copper-based interconnect trees to minimize the 
maximum path delay based on both an RC model and an RLC model. The two buffer ing solutions are 
compared using the AS/X dynamic circuit simulator . I t is shown that as inductance effects increase, the area 
and power  consumed by the inser ted repeaters to minimize the path delays of an RLC tree decreases. By 
including inductance in the repeater  inser tion methodology, the interconnect is modeled more accurately as 
compared to an RC model, permitting average savings in area, power , and delay of 40.8%, 15.6%, and 6.7%, 
respectively, for  a var iety of copper-based interconnect trees from a 0.25 µµµµm CM OS technology. The average 
savings in area, power , and delay increases to 62.2%, 57.2%, and 9.4%, respectively, when using five times 
faster  devices with the same interconnect trees. 

I . Introduction 
 
 It has become well accepted that interconnect delay dominates gate delay in current deep 
submicrometer VLSI circuits [1]-[7]. With the continuous scaling of technology and increased 
die area, the crosssectional area of the interconnect decreases while the length of the global 
interconnect increases which quadratically increases the resistance of the interconnect with 
technology scaling. Meanwhile, the gate parasitic impedances decrease due to the shrinking of 
the minimum feature size [4]. The combined effect of these trends is that interconnect has 
become the primary performance bottleneck, contributing an increasingly significant portion to 
the total cycle delay. Furthermore, this situation is expected to become worse [4]-[7].  
 Repeater insertion is becoming an increasingly common design methodology for driving 
long resistive interconnect [8]-[14]. Since the propagation delay has a square dependence on the 
length of an RC interconnect line, subdividing the line into shorter sections is an effective 
strategy to reduce the total propagation delay. The interconnect can be subdivided into shorter 
sections by inserting repeaters, which breaks the quadratic dependence of the delay on the 
interconnect length but adds additional parasitic impedances due to the inserted repeaters. Thus, 
an optimum number and size of repeaters exist that minimizes the total propagation delay of the 
line [10]-[11]. As the gate parasitic impedances decrease with respect to the interconnect 
parasitic impedances, more repeaters are inserted to further minimize the overall interconnect 
delay. In that sense, the repeater insertion methodology can be viewed as an effective means for 
exploiting the decreasing gate delay so as to minimize the increasing interconnect delay. Another 
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reason to insert repeaters within interconnect trees is to decouble large capacitances from the 
critical path so as to minimize the overall delay of the critical path [8], [13].  
 Currently, inductance is becoming more important with faster on-chip rise times and 
longer wire lengths [15]-[28]. Wide wires are frequently encountered in clock distribution 
networks, data buses, and other structures that use upper metal layers [29]. These wires are low 
resistance lines that can exhibit significant inductive effects. Furthermore, performance 
requirements are pushing the introduction of new materials for low resistance interconnect [30]-
[32] and new dielectrics to reduce the interconnect capacitance. These technological advances 
increase the effects of inductance, as has been described in [19]-[21], [27].  
 The focus of this paper is twofold: to describe a CAD system for repeater insertion in 
RLC trees in order to optimize a variety of cost functions and to characterize the effects of 
neglecting inductance on the repeater insertion process. The results from applying the repeater 
insertion tool to several industrial trees are also interpreted. The paper is organized as follows. In 
section II, the basic repeater insertion algorithm which can be used with any delay model for the 
interconnect and transistor devices is described. The specific models used in this paper for the 
transistors and the interconnect are described in section III. The results of applying the tool to 
insert repeaters in several practical copper-based interconnect trees are presented in section IV. 
Finally, a summary is given in section V. 
 
I I . Algor ithm for  Repeater  Inser tion in RLC Trees 
 
 A generic algorithm to insert repeaters in a general RLC tree is presented in this section. 
The algorithm can be used with different delay models such as the Elmore delay, moment 
matching methods, and/or the effective capacitance model to evaluate the transient response of 
the buffered RLC tree. The algorithm has a quadratic complexity with the number of possible 
repeater positions in an RLC tree and achieves a repeater solution that is reasonably close to the 
global optimum repeater solution. In subsection A, the repeater insertion problem is defined. The 
algorithm for repeater insertion used in this paper is discussed in subsection B. The complexity 
and optimality of the algorithm are discussed in subsection C. 
 
A. Problem Definition 
 
 The problem of inserting repeater in an RLC tree to minimize a given cost function is 
formulated and defined in this subsection. The terms and mathematical notations used in this 
paper are also defined. An arbitrary tree is shown in Fig. 1. The tree has n wires with the input 
source driving the root wire. Each wire w drives two wires, a left wire left(w) and a right wire 
right(w). If a left (right) wire does not exist then left(w)=0 (right(w)=0). A leaf is a wire that has 
left(w)=0 and right(w)=0. The tree has r leaf wires, each of which drives one of the sinks of the 
tree. A binary branching factor is used without loss of generality since any tree can be 
transformed into a binary tree by inserting zero impedance wires [8], [13]. At each sink 1 ≤ i ≤ r, 
the propagation delay tdi is defined as the 50% delay of the output signal at sink i with respect to 
the input signal at the root of the tree. Within a tree, there are m pre-specified repeater positions 
where repeaters can be inserted to minimize a given cost function. The possible repeater 
positions are represented by the circles shown in Fig. 1 and are placed at the beginning of each 
wire to allow for maximum capacitive decoupling of the critical paths [8], [13]. Each wire can be 
subdivided into several shorter wires to permit repeater insertion within long wires [13]. In some 
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cases, no possible repeater positions can be assigned to some wires due to layout constraints. 
Those wires are labeled to indicate that no repeaters can be inserted along the wires. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. An arbitrary tree with n wires. The possible repeater positions are represented by circles. 

 
 
 The repeater insertion problem can be defined as: determine the set of repeater sizes hj, 1 
≤ j ≤ m, that minimizes a given cost function C(h1, h2, …, hj, …,hm). The repeaters are 
considered to be symmetric inverters with widths hj and a minimum sized channel length. The 
repeater sizes hj are continuous numbers. The special repeater size hj = 0 indicates that no 
repeater is inserted at node j. The sizes of the repeaters are to be found in the range 1 ≤ hj ≤ hmax 
where hmax is the maximum allowable size of any repeater. A variety of cost functions can be 
used. Examples are: minimize(maxi tdi) which aims to minimize the maximum path delay, 
minimize(maxi,k(tdi-tdk)) where 1 ≤ i,k ≤ r which is equivalent to minimizing the skew between 

branches i and k, minimize(tdk) where k is a critical output, or minimize (f(tdi) + 
=

m

j jh
1

) which 

considers the area of the repeaters. Other cost functions can include power and slew rate. 
 
B. Repeater  Inser tion Algor ithm 
 
 According to the problem definition described in the previous subsection, the sizes hj that 
minimize the cost function C(h1, h2, …, hj, …,hm) need to be calculated. The algorithm to 
calculate the optimum sizes of the repeaters to minimize the cost function is provided in Fig. 2. 
Referring to Fig. 1, the algorithm starts with the initial condition hj = 0 ∀ j which corresponds to 
an unbuffered tree. The cost function C(h1, h2, …, hj, …,hm) is evaluated for several sizes of the 
repeater at node 1, h1, with all other repeater sizes h2, …, hm equal to zero (no repeaters). A 
binary search is applied which permits the value of h1 that minimizes the cost function to be 
reached within a few steps where each step involves choosing a new value for h1 and evaluating 
the cost function. The number of steps depends on hmax and is typically less than ten steps. If the 
case of no repeater at node 1 (h1 = 0) provides the lowest cost, h1 remains equal to zero. Thus, 
the algorithm can only improve the cost function at each step. Next, the size of the repeater at 
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node 2, h2, that minimizes the cost is determined in the same manner with h1 set to the value 
calculated from the previous step and all other repeater sizes set to zero. The process is repeated 
for all m possible repeater positions. At each possible repeater position the size that minimizes 
the cost function is determined while all of the previous optimum repeater sizes remain constant. 
The process of covering all possible m repeater positions is defined as an iteration. Since in each 
step (determining the best repeater at node j) of an iteration the algorithm improves the cost 
function, the repeater solution at the end of an iteration generates a lower cost than at the 
beginning of an iteration. After the first iteration is completed, a second iteration starts by 
changing the sizes of the repeaters at the possible repeater positions to determine the repeater 
sizes h1, h2, …, hm that minimize the cost function. However, in the second iteration, the initial 
repeater solution is the output of the previous iteration. Thus, at the second iteration (as 
compared to the first iteration), the capacitive loading and driving resistance at the node at which 
the best repeater size is sought are closer to the values for minimum cost, enabling the optimum 
repeater sizes to be more accurately calculated. The iterations are repeated until there is no 
change in the size of any repeater as compared to the previous iteration. The algorithm typically 
converges within two or three iterations. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Proposed algorithm for inserting repeaters in an RLC tree. 
 
 
C. Complexity and Optimality of Proposed Algor ithm 
 
 The algorithm consists of several iterations. Each iteration scans the m possible repeater 
positions to determine the repeater sizes that minimize the objective cost. The number of 
necessary steps to find the repeater size at a possible repeater position which minimizes the cost 
is denoted B and is on average ten for the typical range of allowable repeater size (1 ≤ hj ≤ hmax). 
The cost function is evaluated each time the repeater size is changed at each of the B step. Thus, 
the complexity of an iteration is  

)()()( function the cost evaluatingOBmOiteration ⋅⋅=Θ . (1) 

The complexity of evaluating the cost function depends upon the delay model used for the 
drivers and the interconnect. As shown in section III, for the specific delay model used here, the 
cost function can be evaluated in a time proportional to the number of wires in the tree, n. Thus, 
the complexity of a single iteration is 

Iteration  

– Find best repeater size at node j  

– Compare the cost of the best repeater to a no repeater case 

– j = j + 1 until all possible repeater positions are exhausted 

– Repeat until no repeater change in the whole tree can improve the 
cost function 
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)()( BnmOiteration ⋅⋅=Θ . (2) 

As mentioned previously, the number of iterations for convergence is typically two or three. The 
memory requirement of the algorithm is proportional to the number of wires, n.  
 The algorithm terminates when no change in the size of a single repeater can improve the 
cost function. This can be expressed mathematically as 

j
dh

hhhhdC

j

mj          0
),...,,...,,( 21 ∀= . 

(3) 

This relation means that the algorithm reaches a minimum in the cost function. There is no 
guarantee, however, that this minimum is the global minimum. To improve the final repeater 
solution, the two repeaters at the left and right possible repeater positions of each wire are 
simultaneously changed. The process of determining two repeater sizes that minimize the cost 
simultaneously requires B2 steps with the binary search algorithm used here. Since there are m / 2 
possible repeater position pairs, the complexity of this modified algorithm is  

)
2

() 2(
2B

nmOalgordernd ⋅⋅=Θ . 
(4) 

This modified algorithm does not reach the first minimum near the initial point. Rather, the 
modified algorithm searches for a minimum closer to the global minimum. The price is increased 
processing time. In general, a set of higher order algorithms can be achieved by simultaneously 
changing more repeaters. The complexities of these algorithms are 
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(5) 

The algorithm that changes m repeaters simultaneously is guaranteed to reach the global 
minimum. However, the processing time is exponential with the number of possible repeater 
positions and is prohibitively high even for relatively small trees. The set of algorithms above 
has been examined for small trees (seven to eight possible repeater positions) and compared to 
the exhaustive algorithm that changes all m repeaters simultaneously. The results demonstrate 
that the second order algorithm consistently reaches the global or a near global minimum. The 
higher order algorithms introduced no or only a slight improvement in the final repeater solution 
as compared to the second order algorithm. The CPU run time of the second order algorithm is 
20 sec on an S/490 IBM machine with one giga byte of RAM for a large tree with 250 possible 
repeater positions. For typical trees with less than fifty possible repeater positions, the CPU time 
is less than one second. Hence, the second order algorithm is used in the examples discussed in 
this paper.  
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I I I . Delay Model 
 
 As mentioned in the previous section, the repeater insertion algorithm can be used with 
any delay model. The specific delay model used in this paper is discussed in this section. In 
subsection A, the model of the devices (the repeaters) used here is discussed. The method used to 
combine the repeater model with an RLC tree and to calculate the delay is discussed in 
subsection B.  
 
A. Repeater  Model 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. A symmetric CMOS inverter driving an RLC Network. 
 
 The problem of evaluating the delay at a sink of a buffered tree simplifies to adding the 
delay of several structures as shown in Fig. 3 along the path from the input to the sink. The 
structure shown in Fig. 3 is a symmetric inverter (repeater) driving an RLC tree (which is a sub-
tree of the original RLC tree). Evaluating the delay of such a structure is complicated by a 
combination of linear and nonlinear elements constituting the circuit. It is common to replace the 
nonlinear transistors by equivalent linear resistors, e.g., [6], [8], [10], [11], [13]. However, such 
an approximation strongly affects the final repeater solution, significantly increasing the final 
cost achieved by the repeater insertion algorithm. Thus, in this subsection, a method [33] is 
discussed that significantly improves the accuracy of the transistor model as compared to a linear 
resistor approximation. The proposed method approximates the nonlinear transistor characteristic 
by a two piecewise linear curve as shown in Fig. 4. Assuming a step input, the input signal is 
constant at the supply voltage VDD for the entire switching time. Thus, the gate-to-source voltage 
of the NMOS transistor is VDD and the PMOS transistor is off for the entire switching time. The 
curve shown in Fig. 4 is the drain-to-source current IDS versus the source-to-drain voltage of the 
NMOS transistor VDS where VGS is equal to VDD.  
 The method used here calculates the delay of two linear networks, one assuming the 
transistor operates in the linear region for the entire switching time and the other assuming the 
transistor operates in the saturation region for the entire switching time. The two linear circuit 
models used for approximating the transistor in the linear and saturation regions are shown in 
Fig. 5 (a) and (b), respectively. These linear and saturation transistor models are combined with 
the RLC tree driven by the repeater, resulting in two linear RLC networks. A delay value is found 
for each RLC network using a linear network analysis method and are denoted tpdlin and tpdsat for 
the linear and saturation regions of operation, respectively. The parameters used to define the 
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Linear 
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Network 
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device model in the linear and saturation regions are Cin, Rlin, Cout, Isat, and Rsat. Isat, Rsat, and Rlin, 
respectively, and are shown in Fig. 4. These parameters describe the saturation current of a 
transistor with VGS equal to VDD and the  equivalent output resistance of a transistor in the 
saturation and linear regions, respectively. Cin and Cout are the input and output capacitances of 
the repeater. These parameters are calculated in terms of the corresponding parameters, Cin0, 
Rlin0, Cout0, Isat0, and Rsat0, of a minimum size symmetric inverter. An inverter h times wider than 
a minimum size inverter has Cin=Cin0h, Rlin=Rlin0 / h, Cout=Cout0h, Isat=Isat0h, and Rsat=Rsat0 / h. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Piecewise linear approximation of an NMOS transistor for VGS = VDD. 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. Equivalent circuit models of an NMOS transistor when operating (a) in the linear region 

and (b) in the saturation region for VGS = VDD. 
 
 

In the general case, neither tpdsat nor tpdlin can solely characterize the propagation delay of 
a nonlinear CMOS gate driving an RLC tree since the NMOS transistor operates partially in the 
saturation region and partially in the linear region. However, a combination of both tpdsat and tpdlin 
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has been shown to accurately characterize the propagation delay [33]. The resulting delay for the 
general case in terms of tpdsat and tpdlin is [33] 

)1.1exp(
pdsat

pdlin
pdsatpdlinpd t

t
ttt −+= . 

(6) 

In general, this method is highly accurate (errors within 3%) for fast input signals. Additional 
error may result from the linear analysis method used to determine tpdsat and tpdlin of an RLC 
network.  
 
B. Delay of an RLC Tree 
 
 The linear analysis method used to evaluate the delays tpdsat and tpdlin of the two RLC trees 
resulting from the saturation and linear region approximations, respectively, is described in this 
subsection. A second order transfer function that approximates the transfer function at a node i of 
an RLC tree is introduced in [34] and is  

22

2

2
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ninii
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i
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ωωζ
ω

++
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(7) 

The variables ζi and ωni that characterize the second order approximation of the transfer function 
at node i are 

  

  

2

1=

k
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k
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i
LC

RC
ζ , 

(8) 

  

1=

k
ikk

ni
LC

ω , 
(9) 

where Rik (Lik) is the common resistance (inductance) from the input to nodes i and k. For 
example, in Fig. 6, R77 = R1 + R3 + R7, R67 = R1 + R3, and R27 = R1. The summation variable k 
operates over all of the capacitors in the circuit. 
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Fig. 6. General RLC tree. 
 
 The second order approximation is compared in Fig. 7 to AS/X [35] simulations of the 
output node 7 of the tree shown in Fig. 6. A balanced tree with equal left and right branch 
impedances is used. The supply voltage is 2.5 volts. Note the accuracy that the second order 
approximation exhibits as compared to AS/X simulations for the case of a balanced tree. If the 
tree is unbalanced, the second order approximation is less accurate. The accuracy characteristics 
of this solution is similar to the Elmore [36] (Wyatt [37]) delay model for RC trees [34].  
 

 
 

Fig. 7. AS/X simulations of the RLC tree shown in Fig. 6 as compared to the second order 
approximation and the Wyatt RC model.  
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 The 50% propagation delay and the 10% to 90% rise time of the signal at node i of an 
RLC tree are given in closed form in [34] for a step input and are 

niipdi

i

et ωζ
ζ

/)39.1047.1( 85.0 +=
−

, 
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ii
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/)39.45017.6( 64.04.0
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+−=
−−

. 
(11) 

The error in these expressions is less than 3% for balanced trees. The error can exceed 20% for 
highly unbalanced trees [34].  
 Referring to (8) and (9), evaluating the delay and rise time at node i depends on 
evaluating two summations at node i which are 

=
k

ikkRCi RCT , (12) 

=
k

ikkLCi LCT 2 . (13) 

These two summations can be rewritten as 

=
k

kTkRCi RCT , (14) 

=
k

kTkLCi LCT 2 , (15) 

where the summation index k operates over all of the wires that belongs to the path from the 
input to node i. Rk and LK are the resistance and inductance of wire k. CTk is the total capacitance 
seen at the beginning of wire k. For example, in Fig. 6, TRC7 = R1(C1+C2+…+C7) + 
R6(C3+C6+C7) + R7C7. This form of expressing the summations is computationally efficient since 
these summations can be calculated recursively at all of the nodes of an RLC tree in a time 
linearly proportional with the number of branches in the tree [8], [38], [39].  
 The summations in (14) and (15) of a tree rooted at section w1 are calculated in two steps. 
The first step is to calculate the total load capacitance of each section. Pseudo-code of the 
procedure that performs this task is provided in Fig. 8. 
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Fig. 8. Pseudo-code for calculating the total load capacitance at all of the sections of a tree 
 

The function is initially called by Cal_Cap_Loads(w1) and recursively calculates the capacitive 
load at each section. w.C is the capacitance of the section w. The functions, left(w) and right(w), 
return the left and right sections driven by w, respectively. If no left (right) section is driven by 
w, left(w)=0 (right(w)=0). If w is a leaf, left(w)=0 and right(w)=0. The time required to calculate 
the total capacitive load of each section is proportional to the number of RLC sections in the tree 
m and requires no multiplication operations. Note that a binary branching factor is assumed 
without loss of generality since any general tree can be transformed into a binary tree by 
inserting wires with zero impedances [8], [13]. 
 The second step is to calculate and store the summations in (14) and (15) at the nodes of 
the tree. The function performing this task is described in Fig. 9. The function is initially called 
by Cal_Summations(w1,0,0). w.R and w.L are the resistance and inductance of section w, 
respectively. The computational time required to calculate the summations is proportional to the 
number of RLC sections in the tree, m. The total number of multiplications required to evaluate 
the second order approximation at all of the nodes of an RLC tree is 2m. Alternatively, the 
number of multiplications is equal to the order of the characteristic equation describing the RLC 
tree since the order of an RLC tree with m RLC sections is 2m (each RLC section has an inductor 
and a capacitor). 

float Cal_Cap_Loads (section w) 
{  
 if(right(w)=0 and left(w)=0)     /*  if w is a leaf * / 
  return w.C; 
 
 if(right(w)≠0) 
  CTR=Cal_Cap_Loads(right(w)); 
 else 
  CTR=0;        /*  No right branch is driven by w * / 
 
 if(left(w)≠0) 
  CTL=Cal_Cap_Loads(left(w)); 
 else 
  CTL=0;        /*  No left branch is driven by w * / 
 
 w.CT=CTR+CTL; 
 
 return w.CT; 
}  
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Fig. 9. Pseudo-code for calculating the delays at the sinks of an RLC tree. 
 
 
IV. Results and Discussion  
 The results of applying the CAD-based repeater insertion tool to several industrial 
copper-based interconnect trees are summarized and discussed in this section. The RLC trees 
described in this paper are copper interconnect wires based on an IBM 0.25 µm CMOS 
technology. The depth of the trees (the maximum path length from the input to the sinks) is 
between 0.5 cm to 1.5 cm and considers a wide range of critical global signals typically 
encountered in VLSI circuits. Long wires within the trees are partitioned with a maximum 
segment length of 0.5 mm to permit repeaters to be inserted within these long wires for improved 
performance [13].  
 A repeater solution is determined to minimize the maximum path delay of each tree based 
on the RLC delay model discussed in the previous section. The total area of the repeaters inserted 
within each tree is described in terms of the area of a minimum size repeater. The tool also 
generates an AS/X [35] input file which is used to simulate the maximum path delay and the 
power consumption of the buffered RLC tree. The total inserted repeater area, the maximum path 
delay, and the power consumption of the buffered trees are depicted in Table 1. The tool is also 
used with AS/X to determine the total repeater area, the maximum path delay, and the power 
consumption of the buffered RLC trees when inductance is neglected and repeaters are inserted 
based on an RC model. The results based on the RC model are also listed in Table 1. Finally, 
AS/X simulations of the unbuffered RLC trees are used to determine the maximum path delay 
when repeater insertion is not employed. These results are listed in Table 1 as well. 
 Two important trends can be observed from the data listed in Table 1. The first trend is 
that inserting repeaters significantly reduces the maximum path delay as compared to the 
maximum path delay of an unbuffered tree. This behavior illustrates the importance of repeater 
insertion as an effective methodology to reduce interconnect delay. According to Tables 2 and 3, 
the average saving in the maximum path delay when inserting repeaters based on an RLC model 
as compared to an unbuffered tree is about 40% where the maximum saving is 76% for TGL1 
which is a large asymmetric tree. The second important trend apparent in the data listed in Table 

 
Cal_Summations(section w, float TRcprev, float TLCprev) 
{  
 TRC=TRcprev+w.R*w.CT; 
 TLC=TRcprev+w.L*w.CT; 
 
  
 if(right(w)≠0) 
  Cal_ Summations (right(w),TRC,TLC); 
 
 if(left(w)≠0) 
  Cal_ Summations (left(w),TRC,TLC); 
}  
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1 is that inserting repeaters based on an RLC model as compared to an RC model consistently 
introduces savings in all of the three primary design criteria: area, power, and delay. This 
behavior demonstrates the importance of including inductance in a high speed repeater insertion 
methodology. According to Table 3, including inductance in the interconnect model saves an 
average 40.8% of the repeater area, 15.6% of the power dissipated by the buffered trees, and 
6.7% of the maximum path delay as compared to using an RC model. 
 The reduced repeater area when including inductance in the interconnect model is due to 
the quadratic dependence of the delay on the length of an RC wire which tends to a linear 
dependence as inductance effects increase [40]. The 50% delay of an RC line is given by 

0.35RCl2 [1], [6], [11] and by l LC  [40] for an LC line when the line is driven by an ideal 
source with an open-circuit load. R, L, and C are the resistance, inductance, and capacitance per 
unit length of the line and l is the length of the line. These two cases of an RC line and an LC line 
are the limiting cases for inductance effects with the RC case representing no inductance effects 
and the LC case representing maximum inductance effects. In the RC case, the square 
dependence on the interconnect length causes the delay to increase rapidly with wire length. It is 
therefore necessary to partition the line into multiple shorter sections by inserting repeaters, 
thereby reducing the total delay. However, for an LC line, the dependence is linear and no gain is 
achieved by breaking the line into shorter sections. Inserting repeaters in an LC line only 
degrades the delay due to the added gate delay. Thus, an LC line requires zero repeater area for 
minimum propagation delay.  
 In the general case of an RLC line, the repeater area for minimum propagation delay is 
between the maximum repeater area in the RC case and the zero repeater area in the LC case. 
The repeater area for minimum propagation delay of an RLC line decreases as inductance effects 
increase due to the sub-quadratic dependence of the propagation delay on the length of the 
interconnect [40]. Hence, inserting repeaters based on an RC model and neglecting inductance 
results in larger repeater area than necessary to achieve a minimum delay. The magnitude of the 
excess repeater area when using an RC model depends upon the relative magnitude of the 
inductance within the tree. For the specific copper-based interconnect RLC trees used here, 
almost half the repeater area can be saved by including inductance in the interconnect model. 
Note that a single line analysis can be used to interpret the behavior of a repeater insertion 
solution in a tree since in both cases repeaters are inserted to break the RC delay of long wires 
(paths and branches in the case of a tree).  
 Additionally, repeaters are inserted in a tree to decouple capacitance from the critical 
path. The effect of capacitance decoupling on improving the critical path delay is less significant 
when inductance effects increase. This trend is due to the LC time constant at node i of a tree 
(   

�

k
ikk LC ) [34], which has a square root behavior as compared to the linear behavior of an RC 

time constant, 
k

ikkRC . Reducing the capacitance coupling has less effect on the LC time 

constant as compared to the RC time constant due to this square root behavior. As inductance 
effects increase, the square root behavior of the LC time constant dominates the behavior of the 
propagation delay. Thus, as inductance effects increase, the area of the inserted repeaters for 
capacitive decoupling also decreases. 
 A reduction in the power consumed by the buffered trees when including inductance in 
the interconnect model as compared to an RC model is a direct consequence of the reduced 
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repeater area. The dynamic power consumption, which is linearly dependent on the total 
capacitance of the interconnect and the repeaters, decreases due to the reduced input and output 
capacitance of the repeaters. The short-circuit power consumption is significantly less for a 
smaller repeater since the short-circuit power consumed by a CMOS inverter is quadratically 
dependent on the width of the repeater [41]-[43]. The decreased delay achieved by including 
inductance is due to more accurate modeling of the interconnect thereby enabling improved 
repeater insertion which eliminates the excess repeater area that would result when using an RC 
interconnect model. This excess repeater area increases the total delay due to the increased gate 
capacitance. 
 The optimum number of sections kopt that an RLC line should be partitioned into and the 
size of each inserted repeater hopt to achieve the minimum total propagation delay have been 
characterized in [40] and are 

( )[ ] ,
16.01

1
24.0 3

/0

0

RLt

t
opt

TCR

CR
h

+
=  

(16) 

and 

( )[ ] .
18.01

1

2 3.0 3
/00 RL

tt
opt

TCR

CR
k

+
=  

(17) 

where 

00
/

/

CR

RL
T tt

RL = . 
(18) 

R0 and C0 are the output resistance and input capacitance of a minimum size repeater, 
respectively, and Rt, Lt, and Ct are the total resistance, inductance, and capacitance of the line, 
respectively. Note in (16) and (17) that hopt and kopt are equivalent to the expressions in [10], [11] 
for an RC line when TL/R is equal zero (Lt = 0). The error factors in the optimum size of each 
repeater and the optimum number of sections as compared to the corresponding optimum 
repeater expressions based on an RC interconnect model are plotted in Fig. 10. Both the size and 
number of the repeaters decrease as the inductance effects increase.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10. The error factors in a) the optimum size of each repeater hopt and b) the optimum number 

of sections kopt, respectively, as compared to the corresponding optimum repeater expressions 
based on an RC interconnect model. 
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 Another interesting aspect of (16), (17), and (18) is that TL/R increases as the time 
constant R0C0 decreases, or alternatively, as faster repeaters are used. An increase in TL/R 
increases the discrepancy between an RC model and an RLC model as described by (16) and (17) 
even if the same interconnect trees are buffered to minimize the path delay. Thus, the analytical 
solutions in (16), (17), and (18) anticipate additional savings in repeater area by including 
inductance in the interconnect model as compared to an RC model for technologies with faster 
devices. To verify this trend, five times faster devices than the 0.25 µm devices are used as 
repeaters to minimize the maximum path delays for the same set of trees listed in Table 1. The 
results corresponding to the data listed in Table 1 are listed in Table 4. Note that the savings in 
area, power, and delay increases when including inductance in the interconnect model rather than 
using an RC model with faster devices as compared to the 0.25 µm CMOS technology. The 
average savings increases from 40.8% to 62.2% for the repeater area, from 15.6% to 57.2% for 
the power consumption, and from 6.7% to 9.4% for the maximum path delay when using five 
times faster devices as compared to a 0.25 µm CMOS technology. Thus, with a faster 
technology, the penalty of ignoring inductance increases for all three primary design criteria: 
area, power, and delay. Therefore, with technology scaling, the issue of including inductance in 
the repeater insertion methodology will become of paramount importance. 
 This trend can be explained intuitively by examining the special case of a line with large 
inductance effects. As previously discussed, the minimum total propagation delay can be 
achieved for such a line by not inserting repeaters independent of the intrinsic speed of the 
technology. If inductance is ignored and an RC model is used for such a line, the number of 
repeaters that are inserted will increase as the repeaters become faster since there is less of a 
penalty for inserting more repeaters. Thus, the discrepancy between the repeater solutions based 
on an RC and an RLC model (zero repeater area for dominant inductance effects) increases as 
faster repeaters are used. In general, the area required by the repeaters to minimize the total 
propagation delay based on an RC model as compared to an RLC model increases more rapidly 
as the devices become faster. 
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Table 1. Simulation results of unbuffered trees, buffered trees based on an RLC model, and 
buffered trees based on an RC model. The area, power, and maximum path delay are compared. 
The area is generated by the repeater insertion program while the power and maximum path 
delay are simulated using AS/X. 
 

Area 

(minimum size inverters) 

Power 

(pJ per Cycle) 

Maximum Delay 

(ps) 

 
 

Tree 
Name Un-

Buffered 

Tree 

Buffered 

Tree 

RLC 

Model 

Buffered 

Tree RC 

Model 

Un-

Buffered 

Tree 

Buffered 

Tree 

RLC 

Model 

Buffered 

Tree RC 

Model 

Un-

Buffered 

Tree 

Buffered 

Tree 

RLC 

Model 

Buffered 

Tree RC 

Model 

TSs1 0 352 380 13.86 23.26 25 488 288 297 
L1 0 102 250 8.15 11.19 13.76 342 267 272 

TS2 0 0 659 25.67 25.67 37.90 193 193 193.5 
L2 0 310 337 11.92 20.85 21.55 700 437 454 
L3 0 0 422 22.8 22.8 30.3 213 213 237 

TSm1 0 1246 1709 95 125 146 389 268 284 
TSm2 0 1630 2751 135 211 221.5 343 278 296 
TSL 0 1734 2471 147.5 196 227 431 292 304 
TSL1 0 2999 4120 164 237 275 781 360 382 
TGs1 0 649 842 38 51.2 57.8 262 231 256 
TGs2 0 0 553 40.20 40.20 59.80 212 212 247 
TGm1 0 1271 1854 89.1 120 139 460 306 344 
TGL1 0 3823 7506 201 295 378 1740 442 495 
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Table 2. Percentage savings in area, power, and maximum path delay introduced by inserting 
repeaters based on an RLC model rather than an RC model. The percentage savings in delay 
when inserting repeaters as compared to an unbuffered tree are also listed. 
 

 
 

Tree Name 

Per cent savings in 

delay of a 

buffered tree 

based on an RLC 

model as 

compared to an 

un-buffered tree 

Per cent savings in 

the area of 

repeaters inserted 

based on an RLC 

model as 

compared to using 

an RC model 

Per cent savings in 

power dissipation 

when repeaters are 

inserted based on 

an RLC model as 

compared to using 

an RC model 

Per cent savings in 

delay when 

repeaters are 

inserted based on 

an RLC model as 

compared to using 

an RC model 
TSs1 40.9 7.3 6.9 3 
L1 21.9 59.1 18.6 1.8 

TS2 0 100 32.26 0.26 
L2 37.6 8 3.2 3.7 
L3 0 100 24.75 10.4 

TSm1 31 27 14.3 5.9 
TSm2 18.9 40.7 4.7 6.2 
TSL 32.2 29.8 13.6 4 
TSL1 51 27 13.8 5.9 
TGs1 11.8 22.9 11.4 2.1 
TGs2 0 100 32.77 14.5 
TGm1 37.9 31.4 13.6 11.5 
TGL1 76 49.5 21.9 11.9 

 
Table 3. The total repeater area, total power, and total maximum path delay of all of the trees. 
The per cent savings shown here represent the average savings in area, power, and maximum 
path delay when using an RLC model for repeater insertion. 
 

Totals 
 Un- 

Buffered 
Savings 
in delay 

Buffered 
RLC  

Model 

Savings 
compared 

to RC 

Buffered 
RC Model 

Area (min inverters) 0 - 14116 40.8% 23854 
Max delay (ps) 6554 42.2% 3787 6.7% 4061 

Power (PJ/Cycle) - - 1379 15.6% 1632 
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Table 4. Simulation results of unbuffered trees, buffered trees based on an RLC model, and 
buffered trees based on an RC model with five times faster devices. The area, power, and 
maximum path delay are compared. The area is generated by the repeater insertion program 
while the power and maximum path delay are simulated using AS/X. 
 

Area 

(minimum size inverters) 

Power 

(pJ per Cycle) 

Maximum Delay 

(ps) 

 
 

Tree 
Name Un-

Buffered 

Tree 

Buffered 

Tree 

RLC 

Model 

Buffered 

Tree RC 

Model 

Un-

Buffered 

Tree 

Buffered 

Tree 

RLC 

Model 

Buffered 

Tree RC 

Model 

Un-

Buffered 

Tree 

Buffered 

Tree 

RLC 

Model 

Buffered 

Tree RC 

Model 

TSs1 0 1349 1997 13.86 21.4 24.4 488 144 145 
L1 0 569 1168 8.15 12.2 14.44 342 164 166 

TS2 0 740 2738 25.67 34 62 193 154 165 
L2 0 1137 1862 11.92 19.4 22.4 700 248 258 
L3 0 534 1799 22.8 28 40 213 206 218 

TSm1 0 5150 13468 95 177 348 389 222 240 
TSm2 0 7107 21654 135 482 1516 343 238 262 
TSL 0 12819 26674 147.5 382 832 431 220 240 
TSL1 0 9358 35844 164 242 688 781 268 308 
TGs1 0 2152 6392 38 60.8 115 262 198 224 
TGs2 0 2402 4410 40.20 77.6 138.8 212 187 262 
TGm1 0 5738 15184 89.1 141 302 460 212 232 
TGL1 0 18905 37037 201 330 588 1740 346 378 
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Table 5. Percentage savings in area, power, and maximum path delay introduced by inserting 
repeaters based on an RLC model rather than an RC model. The devices used for the repeaters 
are from a five times faster technology as compared to the 0.25 µm CMOS technology used to 
generate the data listed in Table 2. The percentage savings in delay when inserting repeaters as 
compared to an unbuffered tree are also listed. 
 

 
 

Tree Name 

Per cent savings in 

delay of a 

buffered tree 

based on an RLC 

model as 

compared to an 

un-buffered tree 

Per cent savings in 

the area of 

repeaters inserted 

based on an RLC 

model as 

compared to using 

an RC model 

Per cent savings in 

power dissipation 

when repeaters are 

inserted based on 

an RLC model as 

compared to using 

an RC model 

Per cent savings in 

delay when 

repeaters are 

inserted based on 

an RLC model as 

compared to using 

an RC model 
TSs1 70.5 32.4 12.2 0.68 
L1 52 51 15.5 1.2 

TS2 20 72.9 45 6.6 
L2 37.6 38.9 13.39 3.8 
L3 3.2 70.31 28 5.5 

TSm1 43 61.7 49.1 7.5 
TSm2 30.6 67 68 9.2 
TSL 49 52 54 8.3 
TSL1 65.7 74 64.8 21.4 
TGs1 24.4 66.3 47 11.6 
TGs2 11.7 45.5 44.1 28.62 
TGm1 53.9 62.2 53.3 8.6 
TGL1 80 49 43 10.8 

 
 
 
Table 6. The total repeater area, total power, and total maximum path delay of all of the trees 
using five times faster devices. The per cent savings shown here represent the average savings in 
area, power, and maximum path delay when using an RLC model for repeater insertion. 
 
 

Totals 
 Un- 

Buffered 
Savings 
in delay 

Buffered 
RLC  

Model 

Savings 
compared 

to RC 

Buffered 
RC Model 

Area (min inverters) 0 - 67960 62.2% 170227 
Max delay (ps) 6554 57.17% 2807 9.4% 3098 

Power (PJ/Cycle) - - 2007 57.2% 4691 
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V. Summary 
 
 The effect of inductance on repeater insertion in RLC trees is investigated in this paper. 
An algorithm is introduced to insert and size repeaters within an RLC tree to minimize a variety 
of possible cost functions. The algorithm has a polynomial complexity proportional to the square 
of the number of possible repeater positions and determines a repeater solution that is reasonably 
close to the global minimum. It is shown that as inductance effects increase, both the number of 
repeaters and the size of each repeater decrease. This trend means significantly less repeater area 
and power consumption due to decreased repeater capacitance. Also, less cost can be attained by 
including inductance in the design methodology rather than using an RC model since the 
interconnect is modeled more accurately. Hence, it is shown that including inductance in a 
repeater insertion design methodology as compared to using an RC model improves the overall 
repeater solution in terms of area, power, and delay. The average savings in area, power, and 
delay for the set of trees used in this paper are 40.8%, 15.6%, and 6.7%, respectively, when 
inserting repeaters based on an RLC delay model as compared to an RC delay model with 
repeaters from a 0.25 µm CMOS technology and copper interconnect. The average savings in 
area, power, and delay increases to 62.2%, 57.2%, and 9.4%, respectively, when using repeaters 
from a five times faster technology with the same set of interconnect trees.  
 Neglecting inductance in the interconnect model for repeater insertion is shown to cause 
significant error. Certain VLSI trends will make inductance even more significant, such as: 
1- Lower resistivity metal alloys for interconnect, copper interconnect being a primary example 

[30]-[32].  
2- Lower permeability dielectrics to insulate the interconnect which reduces the interconnect 

capacitance. Reducing the interconnect capacitance increases the effects of inductance [27]. 
3- Higher operating frequencies [19]-[21], [27]. 
4- Faster devices with technology scaling and the increasing use of SOI devices with 

significantly higher speed. Using faster devices increases the error caused by neglecting 
inductance in the repeater insertion methodology. 

5- Tighter timing constraints in VLSI circuits to meet higher frequency targets which require 
more accurate delay models. 

 Therefore, it is imperative that inductance be included in the interconnect impedance 
model when inserting repeaters to drive RLC trees in high speed circuits. 
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