
ECE440 - Introduction to Random Processes

Midterm Exam

October 30, 2024

Instructions:

• This is an open book, open notes exam.
• Calculators are not needed; laptops, tablets and cell-phones are not allowed.
• Perfect score: 100 (out of 101, extra point is a bonus point).
• Duration: 90 minutes.
• This exam has 10 numbered pages, check now that all pages are present.
• Make sure you write your name in the space provided below.
• Show all your work, and write your final answers in the boxes when provided.

Name: SOLUTIONS

Problem Max. Points Score Problem Max. Points Score
1. 16 5. 10
2. 8 6. 12
3. 13 7. 30
4. 12

Total 101

GOOD LUCK!
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1. Suppose that XN = X0, X1, . . . , Xn, . . . is a Markov chain with state space S = {1, 2} and
transition probability matrix

P =

(
1/6 5/6
2/3 1/3

)
.

(a) (12 points) Compute the stationary distribution of XN.

π =

[
4

9
,
5

9

]⊤
The unique stationary distribution π = [π1, π2]

⊤ (the Markov chain is ergodic) satisfies(
π1

π2

)
=

(
1/6 2/3
5/6 1/3

)(
π1

π2

)
, π1 + π2 = 1.

Solving the linear system yields π = [4/9, 5/9]⊤.

(b) (4 points) Suppose that X0 has the distribution obtained in part (a). E [X2] =?

14

9

If the initial distribution is π, then π will be the distribution for all subsequent time instants
n ≥ 1. Hence, the expectation is E [X2] = 1× 4

9
+ 2× 5

9
= 14

9
.

2. (a) (3 points) We say that events A and B where P (A) > 0 and P (B) > 0 are positively
correlated if

P
(
A
∣∣B) > P (A) .

Prove or disprove that if A and B are positively correlated, then the following inequality holds:

P
(
B
∣∣A) > P (B) .

From Bayes’ rule and the positive correlation assumption it follows that

1 <
P
(
A
∣∣B)

P (A)
=

P
(
B
∣∣A)

P (B)
,

which immediately implies P
(
B
∣∣A) > P (B) .

(b) (5 points) Let I {A} and I {B} be indicator random variables of events A and B in part (a),
where

I {A} =

{
1, if event A occurs,
0, otherwise and I {B} =

{
1, if event B occurs,
0, otherwise .

Prove that Cov[I {A}, I {B}] > 0 if and only if events A and B are positively correlated.
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From the definition, the covariance of I {A} and I {B} is

Cov[I {A}, I {B}] = E [I {A} × I {B}]− E [I {A}]E [I {B}]
= P (A ∩B)− P (A)P (B) ,

where we used I {A} × I {B} = I {A ∩B} and that the expectation of an indicator random
variable is the probability of the indicated event. Now, since P (A ∩B) = P

(
A
∣∣B)P (B) then

we find

Cov[I {A}, I {B}] = P (A ∩B)− P (A)P (B)

=
[
P
(
A
∣∣B)− P (A)

]
P (B) ,

which will be strictly positive if and only if P
(
A
∣∣B) > P (A) (recall we assume P (B) > 0),

meaning that A and B are positively correlated.

3. Consider the continuous random variables X and Y with joint probability density function

fXY (x, y) =

{
e−x, 0 ≤ y ≤ x,
0, otherwise.

(a) (2 points) Sketch the region of (x, y) ∈ R2 where fXY (x, y) is non-zero.

The support of fXY (x, y) corresponds to the region (x, y) ∈ R2 such that 0 ≤ y ≤ x.

x

y

0

(b) (3 points) Find the marginal probability density function fX(x).

fX(x) =

{
xe−x, x ≥ 0,
0, otherwise.

To obtain the marginal pdf fX(x) we integrate fXY (x, y) over all values of y for each x, namely

fX(x) =

∫ ∞

−∞
fXY (x, y)dy =

∫ x

0

e−xdy = xe−x, x ≥ 0.

Notice how the integration limits are given by the support 0 ≤ y ≤ x identified in part (a).
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(c) (4 points) Find the conditional probability density function fY |X(y
∣∣x), where x > 0.

fY |X(y
∣∣x) = { 1

x
, x > 0, 0 ≤ y ≤ x,

0, otherwise.

From the definition of conditional pdf, we have

fY |X(y
∣∣x) = fXY (x, y)

fX(x)
.

Using the expression for the marginal pdf derived in part (b), we readily obtain the result

fY |X(y
∣∣x) = { 1

x
, x > 0, 0 ≤ y ≤ x,

0, otherwise.

(d) (4 points) E
[
Y
∣∣X = 2

]
=?

1

From the definition of conditional expectation for continuous random variables, we have

E
[
Y
∣∣X = 2

]
=

∫ ∞

−∞
yfY |X(y

∣∣ 2)dy =

∫ 2

0

y

2
dy = 1.

4. Consider a Markov chain XN = X0, X1, . . . , Xn, . . . with state space S = {1, 2, 3, 4, 5, 6} and
transition probability matrix

P =


1/3 0 1/3 0 0 1/3
1/2 1/4 1/4 0 0 0
0 0 0 0 1 0
1/4 1/4 1/4 0 0 1/4
0 0 1 0 0 0
0 0 0 0 0 1

 .

(a) (6 points) Draw the corresponding state transition diagram.
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(b) (6 points) Specificy the communication classes and determine whether they are transient or
recurrent.

State 6 is absorbing, hence it comprises its own recurrent communication class R1 = {6}.
Similarly, states 3 and 5 communicate but no other state is accessible from them. Hence, they
form a second recurrent communication class R2 = {3, 5}. State 1 only comunicates with itself,
so it comprises its own transient class T1 = {1} (being at state 1, there is a positive probability
of being absorbed by classes R1 or R2). The same is true for states 2 and 4, which yield two
additional transient classes T2 = {2} and T3 = {4}.

5. Let XN = X1, X2, . . . , Xn, . . . be an i.i.d. sequence of Poisson(2) random variables.

(a) (6 points) Consider the sample mean

X̄n =
1

n

n∑
i=1

Xi.

How large should n be so that P
(
|X̄n − 2| ≥ 0.1

)
≤ 10−3? [Hint: Use Chebyshev’s inequality]

2× 105

Recall that for Xi ∼ Poisson(2), then E [Xi] = 2 and var [Xi] = 2. Now, for the sample mean
X̄n of n i.i.d. Poisson(2) random variables we have E

[
X̄n

]
= 2 and var

[
X̄n

]
= 2

n
. From

Chebyshev’s inequality,

P
(
|X̄n − 2| ≥ 0.1

)
≤

var
[
X̄n

]
(0.1)2

=
2

n× 10−2
.

For the probability in the right-hand-side to equal 10−3, then we must have n = 2× 105.

(b) (4 points) Calculate

lim
n→∞

1

n

n∑
i=1

X2
i
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and provide justification for the existence of the limit.

6

Because XN is i.i.d., then YN = X2
1 , X

2
2 , . . . , X

2
n, . . . is also i.i.d. By the strong law of large

numbers the limit exists and is equal to

lim
n→∞

1

n

n∑
i=1

X2
i = E

[
X2

1

]
= var [X1] + (E [X1])

2 = 6, w.p. 1.

6. (a) (4 points) Consider a standard Normal random variable Z ∼ N (0, 1). Compute P (−1 < Z < 1)
and write your result in terms of the cumulative distribution function

Φ(z) = P (Z ≤ z) =
1√
2π

∫ z

−∞
e−u2/2du.

2Φ(1)− 1

Using the definition of Φ(z) and the symmetry properties of the Normal pdf, we find
P (−1 < Z < 1) = P (Z < 1)− P (Z < −1)

= P (Z < 1)− P (Z > 1)

= P (Z < 1)− (1− P (Z < 1))

= 2Φ(1)− 1.

(b) (8 points) Suppose that we are trying to transmit a signal over a communication channel.
During the transmission, the channel introduces additive noise from 100 independent corruption
sources. Each individual source produces an amount of noise that is Uniformly distributed
between a = −1 and b = 1. If the total amount of noise is greater than 10 or less than −10, then
the received signal is useless. Find the approximate probability that the absolute value of the
total amount of noise from the 100 sources is less than 10, in which case the transmitted signal
can be correctly decoded. Write your result in terms of Φ, and justify your approximations.

2Φ(
√
3)− 1

Let Ui, i = 1, . . . , 100, be the i.i.d. Uniform[−1, 1] noise sources, with E [Ui] = 0 and var [Ui] =
E [U2

i ] =
1
3
. Let S100 =

∑100
i=1 Ui denote the total amount of noise that corrupts the transmitted

signal. We are asked to approximate the probability P (|S100| ≤ 10) = P (−10 ≤ S100 ≤ 10). By
rescaling S100 and relying on the Central Limit Theorem, we obtain (Z ∼ N (0, 1) below)

P (−10 ≤ S100 ≤ 10) = P

(
− 10√

var [S100]
≤ S100√

var [S100]
≤ 10√

var [S100]

)

= P

(
− 10√

1/3× 100
≤ S100√

var [S100]
≤ 10√

1/3× 100

)
≈ P

(
−
√
3 ≤ Z ≤

√
3
)
= 2Φ(

√
3)− 1.
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7. Consider a branching process model for the evolution of a population and let Xn be the
number of individuals in generation n. Suppose the k-th individual in generation n creates Qk,n+1

individuals in generation n+1, and that the Qk,n are i.i.d. across individuals and generations, and
independent of X0. Let µ = E [Qk,n] > 0 and σ2 = var[Qk,n]. Under the preceding assumptions,
XN = X0, X1, . . . , Xn, . . . is a Markov chain with state space S = {0, 1, 2, . . .} for which

Xn+1 = Q1,n+1 + . . .+QXn,n+1 if Xn > 0,

and Xn+1 = 0 if Xn = 0. Let Mn = E [Xn] and Vn = var[Xn]. Throughout, assume that X0 = 1.

(a) (6 points) Derive an expression for Mn+1 in terms of Mn and µ.

Mn+1 = µMn

The number of individuals in generation n+ 1 is given by the compound random variable

Xn+1 =
Xn∑
k=1

Qk,n+1.

To compute Mn+1 = E [Xn+1] we condition on Xn. Because the Qk,n+1 are i.i.d. we find that
E
[
Xn+1

∣∣Xn

]
= µXn. Hence, from the law of iterated expectations we obtain

Mn+1 = E [Xn+1] = E
[
E
[
Xn+1

∣∣Xn

]]
= E [µXn] = µE [Xn] = µMn.

(b) (10 points) Derive an expression for Vn+1 in terms of Vn, Mn, µ and σ2.

Vn+1 = σ2Mn + µ2Vn

Likewise, to compute Vn+1 = var[Xn+1] we condition on Xn. Because the Qk,n+1 are i.i.d. we
find that var

[
Xn+1

∣∣Xn

]
= σ2Xn. Using the conditional variance formula

var [Xn+1] = E
[
var
[
Xn+1

∣∣Xn

]]
+ var

[
E
[
Xn+1

∣∣Xn

]]
= E

[
σ2Xn

]
+ var [µXn]

= σ2E [Xn] + µ2var [Xn] = σ2Mn + µ2Vn.

(c) (8 points) Prove that Mn = µn and that Vn = σ2µn−1(1 + µ+ . . .+ µn−1). Show your work.

[Hint: You can argue by mathematical induction. Base case: Show that the claim holds true for
n = 1. Inductive step: Supposing the claim is true for n, then show it also holds for n+ 1.]

From the recursion Mn = µMn−1 derived in part (a), it immediately follows that Mn = µnM0.
But since X0 = 1, then M0 = E [X0] = 1 and so Mn = µn as desired.

7



From the variance recursion in part (b) and substituting the expression for Mn−1 just derived,
we have

Vn = σ2µn−1 + µ2Vn−1.

We now proceed by mathematical induction. To establish the base case, note that X0 = 1 and
thus V0 = var [X0] = 0. So V1 = σ2 as desired. For the inductive step, we assume Vn =
σ2µn−1(1 + µ + . . . + µn−1) holds and want to show Vn+1 = σ2µn(1 + µ + . . . + µn). To this
end,

Vn+1 = σ2µn + µ2Vn

= σ2µn + µ2
(
σ2µn−1(1 + µ+ . . .+ µn−1)

)
= σ2µn + σ2µn

(
µ+ µ2 + . . .+ µn

)
= σ2µn(1 + µ+ . . .+ µn)

completing the proof.

(d) (6 points) limn→∞ Vn =? Discuss the cases µ > 1, µ = 1, and 0 < µ < 1.

Using the expression for Vn derived in part (c) it readily follows that

lim
n→∞

Vn =

{
0, 0 < µ < 1,
∞, µ ≥ 1.
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