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Stationary random processes

» All joint probabilities invariant to time shifts, i.e., for any s

P(X(t14+5s) <x1,X(t2 +5) < x2y..., X(th +5) < xn)
P(X(t]_) < X1,X(t2) < X2, ...,

X(tn) < xn)
= If above relation holds X(t) is called strictly stationary (SS)
> First-order stationary = probs. of single variables are shift invariant

P(X(t+s5) < x) = P(X(t) < x)

» Second-order stationary =- joint probs. of pairs are shift invariant

P(X(t1+5) <x, X(t2 +5) < x) = P(X(t1) < x1, X(12) < %)



Pdfs and moments of stationary processes

For SS process joint cdfs are shift invariant. Hence, pdfs also are

v

fx(e+s)(X) = fx () (%) = fx(0)(x) == fx(x)

» As a consequence, the mean of a SS process is constant

wu(t) :=E[X(t)] = / xfx () (x)dx = / xfx(x)dx = p
» The variance of a SS process is also constant
var [X(£)] = / (x — 1)? Fgey(x)dx = / (x — 1) Fe(x)dx = o

» The power (second moment) of a SS process is also constant
(o) (o)
E [X?(t)] == / X fx ey (x)dx = / X*fx(x)dx = o + pi?



Joint pdfs of stationary processes

» Joint pdf of two values of a SS random process

fx(e)x (1) (X1, X2) = Fx(0)x(t2—t1) (X1, X2)

= Used shift invariance for shift of t;
= Notethat ty =0+t and b = (o —t1) + t1

> Result above true for any pair t1, t
= Joint pdf depends only on time difference s := t, — t;

» Writing t; =t and t, = t + s we equivalently have

fx(e)x (t+5) (X1, X2) = Fx(o)x(s) (X1, X2) = fx(x1, %27 5)



Stationary processes and limit distributions

v

Stationary processes follow the footsteps of limit distributions

v

For Markov processes limit distributions exist under mild conditions
» Limit distributions also exist for some non-Markov processes

v

Process somewhat easier to analyze in the limit as t — oo

= Properties can be derived from the limit distribution

v

Stationary process ~ study of limit distribution
= Formally initialize at limit distribution

= In practice results true for time sufficiently large

v

Deterministic linear systems =- transient + steady-state behavior
= Stationary systems akin to the study of steady-state

v

But steady-state is in a probabilistic sense (probs., not realizations)
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Autocorrelation function

» From the definition of autocorrelation function we can write

Rx(t1, t2) = E[X(t1)X(t2)] = / / X1 Fx (1) X (1) (X1, X2) dx1 dxo
» For SS process fx(t)x(t,)(-) depends on time difference only

Rx(tl, tz) :/ / X1X2fX(0)X(t2,t1)(X1,X2) dxidx; = E [X(O)X(tz— tl)]

= Rx(t1, t2) is a function of s = t, — t; only
Rx(tl, tg) = Rx(o, th — tl) = Rx(S)
» The autocorrelation function of a SS random process X(t) is Rx(s)

= Variable s denotes a time difference / shift / lag
= Rx(s) specifies correlation between values X(t) spaced s in time



Autocovariance function

v

Similarly to autocorrelation, define the autocovariance function as

Cx(t, ) = E [(X(8) — p(t)) (X(2) — p(t2))]

v

Expand product to write Cx(t1, t2) as
Cx(ti, &) = E[X(0)X(&2)] + p(tr) p(t2) — E[X(01)] u(t2) — E [X(22)] (1)
For SS process u(t1) = p(t2) = p and E[X(t1)X(t2)] = Rx(t2 — t1)

v

Cx(tl, t2) = Rx(tz — t1) — ;LZ = Cx(tz — tl)

= Autocovariance function depends only on the shift s =t, — t;

v

We will typically assume that x4 = 0 in which case
Rx(s) = Cx(s)

= If 4 # 0 can study process X(t) — p whose mean is null



Wide-sense stationary processes

» Def: A process is wide-sense stationary (WSS) when its
= Mean is constant = p(t) = p for all ¢
= Autocorrelation is shift invariant = Rx(t1, &) = Rx(t> — t1)

» Consequently, autocovariance of WSS process is also shift invariant

Cx(tl, t2) =

= Rx(t2 — t1) — p*

» Most of the analysis of stationary processes is based on Rx(t, — t1)
= Thus, such analysis does not require SS, WSS suffices



Wide-sense stationarity versus strict stationarity

v

SS processes have shift-invariant pdfs
= Mean function is constant

= Autocorrelation is shift-invariant

v

Then, a SS process is also WSS

= For that reason WSS is also called weak-sense stationary

v

The opposite is obviously not true in general

v

But if Gaussian, process determined by mean and autocorrelation

= WSS implies SS for Gaussian process

v

WSS and SS are equivalent for Gaussian processes



Gaussian wide-sense stationary process

» WSS Gaussian process X(t) with mean 0 and autocorrelation R(s)

» The covariance matrix for X(t; +s), X(t2 +5),..., X(t, + 5) is

R(ti+s,t1+s) R(ti+s,to+s) ... R(ti+s,ta+s)

R(t +s,t1+s) R(t+s,to+s) ... R(ta+s,th+s)
C(ti+s,...,tats) = . . ) .

R(tn+s,t1+5s) R(th+s,ta+s) ... R(tn+s,ta+s)

» For WSS process, autocorrelations depend only on time differences

R(t1 —t1) R(t2—1t1) ... R(ta—t1)

R(ti—t) R(t—1t) ... R(th—t2)
Clti+s,...,th+5) = : : . : =C(t1,...,tn)

R(t1 .— tn) R(t .— ta) ... R(ta _ tn)

= Covariance matrices C(t1,..., t,) are shift invariant



Gaussian wide-sense stationary process (continued)

v

The joint pdf of X(t1 +5), X(t2+s),..., X(tn +5) is
fx(trrs) X(tnts) Xty - ooy xn) = N(0,C(t1 45, .., ta +5)i [x1, -+, X0 )
= Completely determined by C(t; +s,...,t, + 5)

Since covariance matrix is shift invariant can write

v

fX(t1+s) ..... X(tn+5)(X17 sy Xn) = N(07 C(t17 ey tn)v [X17 ... 7XI7]T)
Expression on the right is the pdf of X(t1), X(t2), ..., X(t,). Then

v

fx(z1+s) ..... X(tn+s)(X17 s 7Xn) = fX(tl) ,,,,, X(t,,)(Xh cee 7Xn)

v

Joint pdf of X(t1), X(t2), ..., X(t,) is shift invariant
= Proving that WSS is equivalent to SS for Gaussian processes



Brownian motion and white Gaussian noise

Ex: Brownian motion X(t) with variance parameter o

= Mean function is u(t) =0 for all t >0
= Autocorrelation is Rx(t1, t2) = o min(ty, to)
» While the mean is constant, autocorrelation is not shift invariant

= Brownian motion is not WSS

Ex: White Gaussian noise W(t) with variance parameter o2
= Mean function is p(t) = 0 for all t
= Autocorrelation is Ry/(t1, t) = 025(t2 —t)
» The mean is constant and the autocorrelation is shift invariant
= White Gaussian noise is WSS
= Also SS because white Gaussian noise is a GP



Properties of autocorrelation function

For WSS processes:
(i) The autocorrelation for s = 0 is the power of the process

Rx(0) = E [X*(t)]

(ii) The autocorrelation function is symmetric = Rx(s) = Rx(—s)

Proof.
Commutative property of product and shift invariance of Rx(t1, t»)

Rx(s) = Rx(t, t+ S)
=E[X(t)X(t+s)]
=E[X(t + s)X(t)]
= Rx(t+s,t) = Rx(—s)



Properties of autocorrelation function (continued)

For WSS processes:
(iii)) Maximum absolute value of the autocorrelation function is for s = 0
|[Rx ()] < Rx(0)

Proof.
Expand the square E {(X(t +s)+ X(t))2]

E [(X(t +s)+ X(t))z} =E [XZ(t + s)] +E [XQ(t)] £ 2E[X(t + )X (1)]
= Rx(O) + Rx(O) + 2Rx(5)
Square E [(X(H— s) =+ X(t))2] is always nonnegative, then
0<E [(X(t +s)+ X(t))z] = 2Rx(0) £ 2Rx(s)

Rearranging terms = Rx(0) > FRx(s)
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Definition of Fourier transform

v

Def: The Fourier transform of a function (signal) x(t) is

X(f) = f(x(t)) = /OO X(t)eﬂ'%ft dt

— 00

v

The complex exponential is
e /2™t — cos(—2rft) + jsin(—2rft)

= cos(2xft) — jsin(2xft)
=1/ - 2rft

v

The Fourier transform is complex valued
= It has a real and a imaginary part (rectangular coordinates)
= It has a magnitude and a phase (polar coordinates)

» Argument f of X(f) is referred to as frequency



EIES

Ex: Fourier transform of a constant x(t) = ¢

F(c) = / ce 7™ dt = ¢i(f)

Ex: Fourier transform of scaled delta function x(t) = cd(t)

F(cs(t)) = /_oo co(t)e ™ dt = ¢

Ex: For a complex exponential x(t) = e*™®* with frequency fo we have

F(e27) = /oo it 2 g — /OO e PR g = §(F — )

Ex: For a shifted delta 6(t — to) we have

Fote - 0) = [ oo - e de = e

—o0

= Note the symmetry (duality) in the first two and last two transforms



Fourier transform of a cosine

Ex: Fourier transform of a cosine x(t) = cos(2nfyt)
> Begin noticing that we may write cos(2rfyt) = 120t 4 1e=j2mht

» Fourier transformation is a linear operation (integral), then

/1 . 1 . _
]—'(cos(27rfot)) :/ <26127rf0t + 26127rfot) e J2mft gy

1 1
= 50(f =) + 0(F + fo)
= A pair of delta functions at frequencies f = +f; (tones)

» Frequency of the cosine is fy = “Justifies” the name frequency for f



Inverse Fourier transform

» Def: The inverse Fourier transform of X(f) = F(x(t)) is
x(t) :/ X(f)eP™ df

= Exponent's sign changes with respect to Fourier transform
» We show next that x(t) can be recovered from X(f) as above

> First substitute X(f) for its definition

/ X ()™ df = / ( / x(u)e—ﬂ”f“du) > df



Inverse Fourier transform (continued)

> Nested integral can be written as double integral

/ X ()™ df = / / x(u)e 2 e dy df

> Rewrite as nested integral with integration w.r.t. f carried out first

/ X (&> df = / x(u) < / ef2“f(f“)df> du

» Innermost integral is a delta function

/jc X(f)e?  df = /Oo x(u)d(t — u) du = x(t)

— 00



Frequency components of a signal

> Interpretation of Fourier transform through synthesis formula

X)) = [ X(O)eTdf ~ A x D X(F)e

n=—o00
= Signal x(t) as linear combination of complex exponentials

» X(f) determines the weight of frequency f in the signal x(t)

X0 (F)] [ Xa(F)|

[N, LA A

Ex: Signal on the left contains low frequencies (changes slowly in time)

Ex: Signal on the right contains high frequencies (changes fast in time)
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» Def: A system characterizes an input-output relationship

» This relation is between functions, not values
= Each output value y(t) depends on all input values x(t)
= A mapping from the input signal to the output signal

x(t) y(t)

—> System |——




Time-invariant system

> Def: A system is time invariant if a delayed input yields a delayed output

> If input x(t) yields output y(t) then input x(t—s) yields y(t—s)

= Think of output applied s time units later

z(t — s)

E—

System

y(t —s)

——>

N
|



Linear system

» Def: A system is linear if the output of a linear combination of
inputs is the same linear combination of the respective outputs

> If input xq(t) yields output y;(t) and xx(t) yields y»(t), then

31X1(t) + 32X2(t) = alyl(t) + 32y2(t)

a121(t) + azxa(t) a1y1(t) + asys(t)
— System [——




Linear time-invariant system

» Linear + time-invariant system = linear time-invariant system (LTI)

» Denote as h(t) the system's output when the input is §(t)
= h(t) is the impulse response of the LTI system

o(t) h(t)

—> LTI —

1) Response to §(t — u) = h(t — u) due to time invariance
2) Response to x(u)d(t — u) = x(u)h(t — u) due to linearity

3) Reponse to x(u1)d(t — u1) + x(u2)d(t — tn)
= x(u1)h(t — u1) + x(u2)h(t — uo)



Output of a linear time-invariant system

» Any function x(t) can be written as

» Thus, the output of a LTI with impulse response h(t) to input x(t) is

y(t) = /x x(u)h(t — u) du = (x * h)(t)

— 00

» The above integral is called the convolution of x(t) and h(t)

= It is a “product” between signals, denoted as (x * h)(t)

Xt h(t) _>/ h(t — u)du = (x * h)(t)




Fourier transform of output

v

The Fourier transform Y'(f) of the output y(t) is given by

Y(f) = /O:o (/O; x(u)h(t — u) du> e I ft gt

Write nested integral as double integral & change variable t — v+ v

v

Y(f) = / / x(u)h(v)e 2 ) dy duy

Write e J27f(utv) = g=j2nfug—j2mfv 5n( reorder terms to obtain

Y(f) = ( /_ o; x(u)e 2 du) ( /_ o; h(v)e I dv)

The factors on the right are the Fourier transforms of x(t) and h(t)

v

v



Frequency response of linear time-invariant system

» Def: The frequency response of a LTI system is

oo

H(F) = F(h(t)) = /_ h(t)e 27" dt

= Fourier transform of the impulse response h(t)

» Input signal with spectrum X(f), LTI system with freq. response H(f)
= We established that the spectrum Y (f) of the output is

X(f)




More on frequency response

» Frequency components of input get “scaled” by H(f)

» Since H(f) is complex, scaling is a complex number
> Represents a scaling part (amplitude) and a phase shift (argument)

» Effect of LTI on input easier to analyze
= "Usual product” instead of convolution

X(f) ——> H(f) — Y(f) = H(f)X(f)

IX(F) [H(F)I 1Y (F)l

[ LN, A
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Linear filters

> Linear filter (system) with = impulse response h(t)
= frequency response H(f)

v

Input to filter is wide-sense stationary (WSS) random process X(t)
= Process has zero mean and autocorrelation function Rx(s)

v

Output is obviously another random process Y(t)

v

Describe Y(t) in terms of = properties of X(t)
= filter's impulse and/or frequency response

v

Q: Is Y(t) WSS? Mean of Y(t)? Autocorrelation function of Y(t)?

= Easier and more enlightening in the frequency domain

AN h(t)/H(f) I

Rx(s) Ry (s)




Power spectral density

v

Def: The power spectral density (PSD) of a WSS random process is
the Fourier transform of the autocorrelation function

o0

Sx(f) = F(Rx(s)) :/ Rx(s)e 2™ ds

— 00

v

Does Sx(f) carry information about frequency components of X(t)?
= Not clear, Sx(f) is Fourier transform of Rx(s), not X(t)

v

But yes. We'll see Sx(f) describes spectrum of X(t) in some sense

v

Q: Can we relate PSDs at the input and output of a linear filter?

Sx(f)

s H() b— Sy(f) = ..




Example: Power spectral density of white noise

» Autocorrelation of white noise W(t) is = Rw(s) = 025(s)

» PSD of white noise is Fourier transform of Ry (s)

Sw(f) = / 025(s)e 27 ds — o

— 0o

= PSD of white noise is constant for all frequencies

» That's why it's white = Contains all frequencies in equal measure

Sw(f)




Dark side of the moon

PINK FLOYD

ROCHESTER

=

r's _\
DARK SIDE OF THE MOON




Power of a process

» The power of WSS process X(t) is its (constant) second moment

P =E[X*(t)] = Rx(0)
» Use expression for inverse Fourier transform evaluated at t =0
Rx(s) = / Sx(f)ej2ﬂ'fs df = Rx(0) = / SX(f)ej27rf0 df

» Since €% =1, can write Rx(0) and therefore process’ power as

Sx(f)
P

P_/ZSX(f)df F*\ f

= Area under PSD is the power of the process




Mean of filter's output

v

Q: If input X(t) to a LTI filter is WSS, is output Y(t) WSS as well?
= Check first that mean py(t) of filter's output Y(t) is constant

v

Recall that for any time t, filter's output is

Y(t) = /Ooh(u)X(t —u)du

—0o0

v

The mean function py(t) of the process Y (t) is

i =EY(O1=E | [ H)X(c- o) do]

— 00

» Expectation is linear and X(t) is WSS, thus

() = [ HWEIX(— )] do = pox [ h(w)du = oy

— 00



Autocorrelation of filter's output

v

Compute autocorrelation function Ry (t, t+ s) of filter's output Y(t)
= Check that Ry (t,t+ s) = Ry(s), only function of s

v

Start noting that for any times t and s, filter's output is

Y(t) = / Th(u)X(t—u) duy,  Y(t+s) = / T h(u) X (t4+-5— ) du

— 00 — 00

v

The autocorrelation function Ry (t,t + s) of the process Y(t) is

Ry(t,t+s)=E[Y(t)Y(t+ s)]

v

Substituting Y(t) and Y(t + s) by their convolution forms

o

Ry(t, t+s) = E Uoo h(u)X (£ ul)dul/ h(u2)X (£ + 5 — uz) du

—00 —00



Autocorrelation of filter's output (continued)

» Product of integrals is double integral of product
Ry (t, t+s) {/ / X(t — u1)h(u )X(t+suz)du1duz}
» Exchange order of integral and expectation
v(t, t+s) = / / h(u)E X(t—ul)X(t+s U2):| h(up) duydus
» Expectation in the integral is autocorrelation function of input X(t)
]E|:X(t—U1)X(t+S—U2):| = Rx(t+s—uz—(t—u1)) = RX(S—U2+U1)
» Which upon substitution in expression for Ry (t,t + s) yields

t t—‘rS / / U1 RX S—U2+U1> (Uz) duyrduy = Ry(S)



Jointly wide-sense stationary processes

> Def: Two WSS processes X(t) and Y(t) are said jointly WSS if
Rxy(t,t+s) :=E[X(t)Y(t+ s)] = Rxy(s)
= The cross-correlation function is shift-invariant
» If input to filter X(t) is WSS, showed output Y(t) also WSS

» Also jointly WSS since the input-output cross-correlation is
Rxy(t,t+s) = { t)/ X(t+s—u)du
:/ h(u)Rx(s — u) du = Rxy(s)

= Cross-correlation given by convolution Rxy(s) = h(s) * Rx(s)



Autocorrelation of filter's output as convolution

v

Going back to the autocorrelation of Y(t), recall we found

Ry(s) = /OO h(uz){/x h(un)Rx (s — ua + uy) dun | du

—00 — 00

» Inner integral is cross-correlation Rxy(u2 — s)
Ry(s) = / h(u2)RXY(U2 — s)du2
» Noting that ny(u2 — S) = ny(—(s — UQ))

Ry(S) = /OO h(U2)ny(f(S — U2))dU2

— 00

v

Autocorrelation given by convolution Ry (s) = h(s) * Rxy(—s)
= Recall Ry(s) = Ry(—s), hence also Ry(s) = h(—s) * Rxy(s)



Power spectral density of filter's output

» Power spectral density of Y(t) is Fourier transform of Ry (s)
Sv(f) = F(Ry(s)) = / Ry(s)e 727 ds

v

Substituting Ry (s) for its value

Sy(f) = /_Z(/_Z /_27(u1)RX (s — 2+ u1) h(uy) dulduz> e 2 s

v

Change variable s by variable v = s — uy + 1y (dv = ds)

Sy(f) = / / /h(ul)RX(v)h(uz)e_ﬁ”f(”“?_“l)duldu2dv

v

Rewrite exponential as e /27f(vtie—u) — g=j2nfv g—j2nfu o+j2mfin



Power spectral density of filter's output (continued)

> Write triple integral as product of three integrals

5y(f):/ h(uy)e/?mfn dul/ Rx(v)e /2™ dv/ h(uy)e 2™ duy,

—0o0 —0o0 — 00
» Integrals are Fourier transforms

Sy(f) = F(h(—u1)) x F(Rx(v)) x F(h(u2))
> Note definitions of = X(t)'s PSD = Sx(f) = F(Rx(s))
= Filter's frequency response = H(f) := F(h(t))
Also note that = H*(f) := F(h(—t)))
> Latter three observations yield (also use H*(f)H(f) = |H(f ‘
Sv(F) = H'(A)Sx(FH(F) = [H(F)["Sx(F)

= Key identity relating the input and output PSDs



Example: White noise filtering

Ex: Input process X(t) = W(t) = white Gaussian noise with variance o2

= Filter with frequency response H(f). Q: PSD of output Y(t)?
» PSD of input = Sy/(f) = o>
> PSD of output = Sy (f) = [H(F)|*Sw(f) = [H(f)|s>

= Output’s spectrum is filter's frequency response scaled by o2

Sx(f) H) Sy (f) = [H(f)[?Sx(f)
Sx(f) |H(f)|7 SY(f)T
—t—f f f

Ex: System identification = LTI system with unknown response

» White noise input = PSD of output is frequency response of filter



Interpretation of power spectral density

» Consider a narrowband filter with frequency response centered at fy

H(f) =1 for fy—h/2<f<fo+ h/2
—fo—h/2<F < —fo+h/2

> Input is WSS process with PSD Sx(f). Output’'s power Py is
Py :/ Sy(f) df:/ |H(F)|*Sx (f) df~ h(sx(fo)Jrsx(,fo))

= Sx(f) is the power density the process X(t) contains at frequency f

Sx(f) Sy (f) = [H(f)?Sx(f)




Properties of power spectral density

For WSS processes:
() The power spectral density is a real-valued function

Proof.
Recall that Rx(s) = Rx(—s) and /% = cos(6) + jsin(f)

Sx(F) = / Rx(s)e 2™ ds

— 0o

= /OO Rx(s) cos(—2mfs) ds

— 00

= /Oo Rx(s) cos(2wfs) ds

integral vanishes since Rx(—s)sin(—2nfs) = —Rx(s)sin(2rfs) [

(ii) The power spectral density is an even function, i.e., Sx(f) = Sx(—f)



Properties of power spectral density (continued)

For WSS processes:

(iii) The power spectral density is a non-negative function, i.e., Sx(f) >0

Proof.
Pass WSS X(t) through narrowband filter centered at fy

H(f)=1 for: fo—h/2<f < fo+h/2
—fh—h2<f<—fh+h/2

For h — 0, output's power Py can be approximated as
0< Py = [ [HOISx()of
~ h(Sx(f) + Sx(~h)) = 2hSx(f)

Since fy is arbitrary and Py >0 = Sx(f) >0 O



Example: Interference rejection filter

Ex: WSS signal S(t) corrupted by additive, independent interference
I(t) = Acos(2nfyt + ), 6 ~ Uniform(0, 27)
= Randomly phased sinusoidal interference /(t) (fixed A, fo > 0)
» Corrupted signal X(t) = S(t) + /(t). Q: Filter out interference?
» Sinusoidal interference has period T = 1/f. Use differencing filter
Y(t)=X(t) - X(t—T)
= Difference I(t) — I(t — T) =0 for all t

> Wish to determine the PSD of the output Sy (f) = |H(f)|*Sx(f)



Differencing filter

» The differencing filter is an LTI system with impulse response
Y(t)=X(t)—=X(t—T) = h(t)=6(t)—o(t—T)

» By taking the Fourier transform, the frequency response becomes

i = [ 60 ot~ Te e =1 e

—00

» The magnitude-squared of H(f) is |H(f)|?> = 2 — 2cos(27fT)

5

4

|H(F)*

)

A 0 X Z
T T 7 T T

= As expected, it exhibits zeros at multiples of f =1/T = £,



Randomly phased sinusoid

> Interference /(t) = Acos(2rfot + ), with 6 ~ Uniform(0, 27)
= Once 6 is drawn, process realization specified for all ¢

AWAIFAWA
VAAVARVARVIRVE

ANANAWANWA
\VAAVAR

» Above are four different sample paths of /(t)



Randomly phased sinusoid is wide-sense stationary

» Q: Is /(t) a wide-sense stationary process?
= Compute y(t) and Ry(t1, t2) and check

» Cosine integral over a cycle vanishes, hence
2w
1
1a(t) = E[1(8)] = / Acos(2mfot +6) 5 df =0
0 Y3

> Use cos(f1) cos(62) = (cos(61 + 62) + cos(61 — 62))/2 to obtain

Ri(t1, t2) = A’E [cos(2nfyt; + 6) cos(2mfyty + 6)]
A2
= 7cos(27rfb(t2 —t))

A2
=5 cos(2nfo(t, — t1))

» Thus /(t) is WSS with PSD given by

Si(f) = F(Ri(s)) = A{a(f —f)+ A;d(f +1)



Power spectral density of filter's output

> Since S(t) and /(t) are independent and ,(t) =0

Rx(s) =E[(S(t) + 1(t))(S(t+s) + I(t + 5))]
= Rs(s) + Ri(s)

= Also Sx(f) = Ss(f) + Si(f)
> Therefore the PSD of the filter output Y(t) is
Sv(F) = [H(OPSx(F) = [H(F)P(Ss(F) + Si(F))
=2(1 — cos(27fT))(Ss(f) + Si(f))
» Filter annihilates the tones in S;(f) = A{é(f —fo) + A{é(f + 1), so
Sy(f) =2(1 — cos(2nfT))Ss(f)

= Unfortunately, the signal PSD has also been modified



The matched and Wiener filters

Stationary random processes

Autocorrelation function and wide-sense stationary processes
Fourier transforms

Linear time-invariant systems

Power spectral density and linear filtering of random processes

The matched and Wiener filters



A simple model of a radar system

Radar System |—

v

Air-traffic control system sends out a known radar pulse v(t)

» No plane in radar's range = Radar output X(t) = N(t) is noise
= Noise is zero-mean WSS process N(t), with PSD Sy(f)

v

Plane in range = Reflected pulse in output X(t) = v(t) + N(t)

v

Q: System to decide whether X(t) = v(t) + N(t) or X(t) = N(t)?



Filter design criterion

T\

| X(t) = o(t) + N(2) Y(t
( Radar \j———> ey 1D
\ ,
\"’\/”/

> Filter radar output X(t) with LTI system h(t). System output is
Y(t) = / h(t — 5){v(s) + N(s)]ds = vo(t) + No(t)
» Filtered signal (radar pulse) and noise related components

vo(t) = /oo h(t — s)v(s)ds, No(t) = /OO h(t — s)N(s)ds

— 00 — 00

» Design filter to maximize output signal-to-noise ratio (SNR) at ty



Filtered signal and noise components

» The filtered noise power E [Ng(to)] is given by
E [N (to)] / Sno () df _/ |H(F)[>Sn(f)df
> If V(f) = F(v(t)), filtered radar pulse at time t,
vo(to):/ H(f)V(f)e* o df

» Multiply and divide by /Sn(f), use complex conjugation
V(f)ej27rfto
V/Sn(f)

* —j27 fty *
V*(fe 0 o
Sn(f)

vo(to) = /jo H(f)\/Sn(f) df

S AGETG

— 00




Cauchy-Schwarz inequality

» The Cauchy-Schwarz inequality for complex functions f and g states

e wa < [ irwrd [ leopa

= Equality is attained if and only if f(t) = ag(t)
> Recall the filtered signal component at time tg

mm:/mHm¢&m

— 00

* —j2rfty *
V*(fe df
Sn(f)

» Use the Cauchy-Schwarz inequality to obtain the upper-bound

df

()P < [ HPswnar [ IS0



The matched filter

> Since E [NZ(to)] = [~ |H(f)[*Sn(f)df, bound SNR

vo(to) P _ B [Ne()] S5 L o 7/"" V(AP
E[N§(to)] ~ E [Ng(to)] - Joso Sw(f)

» The maximum SNR is attained when
f)e_f27rft°

f) SN =0 SN(f)

» The sought matched filter has frequency response

V*(f)e—ﬂrrftg
Sn(f)

= H(f) is "matched” to the known radar pulse and noise PSD

H(f) =«



Example: Matched filter for white noise

Ex: Suppose noise N(t) is white, with PSD Sy(f) = 02. Let a = 02
> The frequency response of the matched filter simplifies to
H(f) = V*(f)e 7"
> The inverse Fourier transform of H(f) yields the impulse response

h(t) = v(ty — t)

0 t 0 t

» Simply a time-reversed and translated copy of the radar pulse v(t)



Analysis of matched filter output

» PSD of filtered noise is Sy, (f) = |H(f)|>Sn(f). For matched filter
aV(F)? aV(f)?
f = f =

v

Inverse Fourier transform yields autocorrelation function of Ny(t)

Rus() = [ Z |a5\,/v((?)| &2 df

» The matched filter signal output is
00 o] 2
w(e)= [ HEV(erar = [~ DL ety
-0 —oo SN(f)

v

Last two equations imply that vo(t) = (1/a)Rp,(t — to)

= Matched filter signal output o shifted autocorrelation



Linear estimation

T

( ™
-~ Unobserved A

- process V(t) J
— J

S~ S

A~

Observed y
V(t
process U(t)—>s  h(t) —>( )

» Estimate unobserved process V/(t) from correlated process U(t)
= Zero mean U(t) and V(t)
= Known (cross-) PSDs Sy(f) and Syy(f)

Ex: Say U(t) = V(t) + W(t), with W(t) a white noise process

» Restrict attention to linear estimators

() = /oo h(s)U(t — s)ds

— 00



Filter design criterion

RN h(t) —

» Criterion is mean-square error (MSE) minimization, i.e, find

minE [[V(1) = V()P] . s to V(t):/w h(s)U(t — s)ds

—00

» Suppose h(t) is any other impulse response such that

V(t) = /OO h(s)U(t — s)ds

—00

= MSE-sense optimality of filter h(t) means

E[IV(t) - V(0P| <E [Jv(e) - V()2



Orthogonality principle

Theorem ~
If for every linear filter h(t) it holds

oo

E[(V(t)—V(t))/ R(s)U(t — s)ds| = 0

then h(t) is the MSE-sense optimal filter.

» Orthogonality principle implicitly characterizes the optimal filter h(t)

» Condition must hold for all A, in particular for h — h implying

E[(V(t) = V(e)(V(e) - V(1)] =0



Orthogonality principle (proof)

Proof.
» The MSE for an arbitrary filter h(t) can be written as
E[IV(£) = V(8)P] = E [I(V(5)-V(£) + (V(2) - V()]
> Expand the squares, use linearity of expectation
E[[V(e) = V(8] =E [|V(5) - V(O] +E [|V(2) - V(8)]
+2E [(V(8) = V(O)(V(e) - V(2))]

> ButE [( V(t) — V(1)) (V(t) - \~/(t))] = 0 by assumption, hence

E[[V(e) = V(8] =E [|V() - V(O] +E [|V(2) - V(8)?]



Leveraging the orthogonality principle

> If h(t) is optimum, for any h(t) orthogonality principle implies

0=E { )/ t—s)ds]

=] / A&V ()~ V() (e - sy
—00
> Interchange order of expectation and integration, I~7(t) deterministic

/OO h(s)E [(V(t) — V() U(t — s)} ds =0

— 00

> Recall definitions of cross-correlation functions Ryy(s) and Ry, (s)

| RS Rw(s) ~ Ryy(s))ds =0

— 00



Matching cross-correlations condition

» For arbitrary I~1(t) orthogonality principle requires
o ~
| HORw(s) -~ Ryy(s))ds =0
— 00
> In particular, select h(t) = Ryy(t) — Ry (t) to get

o0
| (Ruls) = Ryy(s))ds =0
—00

= Above integral vanishes if and only if Ryy(s) = Ry,(s)
> At the optimum, cross-correlations Ryy(s) and Ry, (s) coincide

= Reasonable, since MSE is a second-order cost function



The Wiener filter

> Best filter yields estimates V/(t) for which Ryy(s) = Ry (s)

> Since V/(t) is the output of the LTI system h(t), with input U(t)

Roy(s) = /Oo h(t)Ru(s — £)dt = h(s) + Ru(s)

» Taking Fourier transforms
Syu(f) = H(F)Su(f)= Svu(f)
= The optimal Wiener filter has frequency response

H(f) = 55 \Lu((ff))




Glossary

vV V. YV YV ¥V VY VYV VvV VYV VvV VY

Strict stationarity

Shift invariance

Power of a process
Limit distribution

Mean function
Autocorrelation function
Wide-sense stationarity
Fourier transform
Frequency components
Linear time-invariant system
Impulse response

Convolution

vV V. vV Y Y YV VvV VYV VYV VvV VY

Frequency response

Power spectral density
Joint wide-sense stationarity
Cross-correlation function
System identification
Signal-to-noise ratio
Cauchy-Schwarz inequality
Matched filter

Linear estimation
Mean-square error
Orthogonality principle
Wiener filter
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