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Stationary random processes

I All joint probabilities invariant to time shifts, i.e., for any s

P (X (t1 + s) ≤ x1,X (t2 + s) ≤ x2, . . . ,X (tn + s) ≤ xn) =

P (X (t1) ≤ x1,X (t2) ≤ x2, . . . ,X (tn) ≤ xn)

⇒ If above relation holds X (t) is called strictly stationary (SS)

I First-order stationary ⇒ probs. of single variables are shift invariant

P (X (t + s) ≤ x) = P (X (t) ≤ x)

I Second-order stationary ⇒ joint probs. of pairs are shift invariant

P (X (t1 + s) ≤ x1,X (t2 + s) ≤ x2) = P (X (t1) ≤ x1,X (t2) ≤ x2)
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Pdfs and moments of stationary processes

I For SS process joint cdfs are shift invariant. Hence, pdfs also are

fX (t+s)(x) = fX (t)(x) = fX (0)(x) := fX (x)

I As a consequence, the mean of a SS process is constant

µ(t) := E [X (t)] =

∫ ∞
−∞

xfX (t)(x)dx =

∫ ∞
−∞

xfX (x)dx = µ

I The variance of a SS process is also constant

var [X (t)] :=

∫ ∞
−∞

(x − µ)2 fX (t)(x)dx =

∫ ∞
−∞

(x − µ)2 fX (x)dx = σ2

I The power (second moment) of a SS process is also constant

E
[
X 2(t)

]
:=

∫ ∞
−∞

x2fX (t)(x)dx =

∫ ∞
−∞

x2fX (x)dx = σ2 + µ2
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Joint pdfs of stationary processes

I Joint pdf of two values of a SS random process

fX (t1)X (t2)(x1, x2) = fX (0)X (t2−t1)(x1, x2)

⇒ Used shift invariance for shift of t1

⇒ Note that t1 = 0 + t1 and t2 = (t2 − t1) + t1

I Result above true for any pair t1, t2

⇒ Joint pdf depends only on time difference s := t2 − t1

I Writing t1 = t and t2 = t + s we equivalently have

fX (t)X (t+s)(x1, x2) = fX (0)X (s)(x1, x2) = fX (x1, x2; s)
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Stationary processes and limit distributions

I Stationary processes follow the footsteps of limit distributions

I For Markov processes limit distributions exist under mild conditions
I Limit distributions also exist for some non-Markov processes

I Process somewhat easier to analyze in the limit as t →∞
⇒ Properties can be derived from the limit distribution

I Stationary process ≈ study of limit distribution

⇒ Formally initialize at limit distribution

⇒ In practice results true for time sufficiently large

I Deterministic linear systems ⇒ transient + steady-state behavior

⇒ Stationary systems akin to the study of steady-state

I But steady-state is in a probabilistic sense (probs., not realizations)
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Autocorrelation function

I From the definition of autocorrelation function we can write

RX (t1, t2) = E [X (t1)X (t2)] =

∫ ∞
−∞

∫ ∞
−∞

x1x2fX (t1)X (t2)(x1, x2) dx1dx2

I For SS process fX (t1)X (t2)(·) depends on time difference only

RX (t1, t2) =

∫ ∞
−∞

∫ ∞
−∞

x1x2fX (0)X (t2−t1)(x1, x2) dx1dx2 = E [X (0)X (t2−t1)]

⇒ RX (t1, t2) is a function of s = t2 − t1 only

RX (t1, t2) = RX (0, t2 − t1) := RX (s)

I The autocorrelation function of a SS random process X (t) is RX (s)

⇒ Variable s denotes a time difference / shift / lag

⇒ RX (s) specifies correlation between values X (t) spaced s in time
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Autocovariance function

I Similarly to autocorrelation, define the autocovariance function as

CX (t1, t2) = E
[(
X (t1)− µ(t1)

)(
X (t2)− µ(t2)

)]
I Expand product to write CX (t1, t2) as

CX (t1, t2) = E [X (t1)X (t2)] +µ(t1)µ(t2)−E [X (t1)]µ(t2)−E [X (t2)]µ(t1)

I For SS process µ(t1) = µ(t2) = µ and E [X (t1)X (t2)] = RX (t2 − t1)

CX (t1, t2) = RX (t2 − t1)− µ2 = CX (t2 − t1)

⇒ Autocovariance function depends only on the shift s = t2 − t1

I We will typically assume that µ = 0 in which case

RX (s) = CX (s)

⇒ If µ 6= 0 can study process X (t)− µ whose mean is null
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Wide-sense stationary processes

I Def: A process is wide-sense stationary (WSS) when its

⇒ Mean is constant ⇒ µ(t) = µ for all t

⇒ Autocorrelation is shift invariant ⇒ RX (t1, t2) = RX (t2 − t1)

I Consequently, autocovariance of WSS process is also shift invariant

CX (t1, t2) = E [X (t1)X (t2)] + µ(t1)µ(t2)− E [X (t1)]µ(t2)− E [X (t2)]µ(t1)

= RX (t2 − t1)− µ2

I Most of the analysis of stationary processes is based on RX (t2 − t1)

⇒ Thus, such analysis does not require SS, WSS suffices
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Wide-sense stationarity versus strict stationarity

I SS processes have shift-invariant pdfs

⇒ Mean function is constant

⇒ Autocorrelation is shift-invariant

I Then, a SS process is also WSS

⇒ For that reason WSS is also called weak-sense stationary

I The opposite is obviously not true in general

I But if Gaussian, process determined by mean and autocorrelation

⇒ WSS implies SS for Gaussian process

I WSS and SS are equivalent for Gaussian processes (More coming)
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Gaussian wide-sense stationary process

I WSS Gaussian process X (t) with mean 0 and autocorrelation R(s)

I The covariance matrix for X (t1 + s),X (t2 + s), . . . ,X (tn + s) is

C(t1+s, . . . , tn+s) =


R(t1 + s, t1 + s) R(t1 + s, t2 + s) . . . R(t1 + s, tn + s)
R(t2 + s, t1 + s) R(t2 + s, t2 + s) . . . R(t2 + s, tn + s)

...
...

. . .
...

R(tn + s, t1 + s) R(tn + s, t2 + s) . . . R(tn + s, tn + s)


I For WSS process, autocorrelations depend only on time differences

C(t1 + s, . . . , tn + s) =


R(t1 − t1) R(t2 − t1) . . . R(tn − t1)
R(t1 − t2) R(t2 − t2) . . . R(tn − t2)

...
...

. . .
...

R(t1 − tn) R(t2 − tn) . . . R(tn − tn)

 = C(t1, . . . , tn)

⇒ Covariance matrices C(t1, . . . , tn) are shift invariant
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Gaussian wide-sense stationary process (continued)

I The joint pdf of X (t1 + s),X (t2 + s), . . . ,X (tn + s) is

fX (t1+s),...,X (tn+s)(x1, . . . , xn) = N (0,C(t1 + s, . . . , tn + s); [x1, . . . , xn]T )

⇒ Completely determined by C(t1 + s, . . . , tn + s)

I Since covariance matrix is shift invariant can write

fX (t1+s),...,X (tn+s)(x1, . . . , xn) = N (0,C(t1, . . . , tn); [x1, . . . , xn]T )

I Expression on the right is the pdf of X (t1),X (t2), . . . ,X (tn). Then

fX (t1+s),...,X (tn+s)(x1, . . . , xn) = fX (t1),...,X (tn)(x1, . . . , xn)

I Joint pdf of X (t1),X (t2), . . . ,X (tn) is shift invariant

⇒ Proving that WSS is equivalent to SS for Gaussian processes
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Brownian motion and white Gaussian noise

Ex: Brownian motion X (t) with variance parameter σ2

⇒ Mean function is µ(t) = 0 for all t ≥ 0

⇒ Autocorrelation is RX (t1, t2) = σ2 min(t1, t2)

I While the mean is constant, autocorrelation is not shift invariant

⇒ Brownian motion is not WSS (hence not SS)

Ex: White Gaussian noise W (t) with variance parameter σ2

⇒ Mean function is µ(t) = 0 for all t

⇒ Autocorrelation is RW (t1, t2) = σ2δ(t2 − t1)

I The mean is constant and the autocorrelation is shift invariant

⇒ White Gaussian noise is WSS

⇒ Also SS because white Gaussian noise is a GP
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Properties of autocorrelation function

For WSS processes:

(i) The autocorrelation for s = 0 is the power of the process

RX (0) = E
[
X 2(t)

]
= E [X (t)X (t + 0)]

(ii) The autocorrelation function is symmetric ⇒ RX (s) = RX (−s)

Proof.
Commutative property of product and shift invariance of RX (t1, t2)

RX (s) = RX (t, t + s)

= E [X (t)X (t + s)]

= E [X (t + s)X (t)]

= RX (t + s, t) = RX (−s)
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Properties of autocorrelation function (continued)

For WSS processes:

(iii) Maximum absolute value of the autocorrelation function is for s = 0∣∣RX (s)
∣∣ ≤ RX (0)

Proof.
Expand the square E

[(
X (t + s)± X (t)

)2]
E
[(
X (t + s)± X (t)

)2]
= E

[
X 2(t + s)

]
+ E

[
X 2(t)

]
± 2E [X (t + s)X (t)]

= RX (0) + RX (0)± 2RX (s)

Square E
[(
X (t + s)± X (t)

)2]
is always nonnegative, then

0 ≤ E
[(
X (t + s)± X (t)

)2]
= 2RX (0)± 2RX (s)

Rearranging terms ⇒ RX (0) ≥ ∓RX (s)
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Definition of Fourier transform

I Def: The Fourier transform of a function (signal) x(t) is

X (f ) = F
(
x(t)

)
:=

∫ ∞
−∞

x(t)e−j2πft dt

I The complex exponential is (recall j2 = −1)

e−j2πft = cos(−2πft) + j sin(−2πft)

= cos(2πft)− j sin(2πft)

= 1∠− 2πft

I The Fourier transform is complex valued

⇒ It has a real and a imaginary part (rectangular coordinates)

⇒ It has a magnitude and a phase (polar coordinates)

I Argument f of X (f ) is referred to as frequency
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Examples

Ex: Fourier transform of a constant x(t) = c

F
(
c
)

=

∫ ∞
−∞

ce−j2πft dt = cδ(f )

Ex: Fourier transform of scaled delta function x(t) = cδ(t)

F
(
cδ(t)

)
=

∫ ∞
−∞

cδ(t)e−j2πft dt = c

Ex: For a complex exponential x(t) = e j2πf0t with frequency f0 we have

F
(
e j2πf0t

)
=

∫ ∞
−∞

e j2πf0te−j2πft dt =

∫ ∞
−∞

e−j2π(f−f0)t dt = δ(f − f0)

Ex: For a shifted delta δ(t − t0) we have

F
(
δ(t − t0)

)
=

∫ ∞
−∞

δ(t − t0)e−j2πft dt = e−j2πft0

⇒ Note the symmetry (duality) in the first two and last two transforms
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Fourier transform of a cosine

Ex: Fourier transform of a cosine x(t) = cos(2πf0t)

I Begin noticing that we may write cos(2πf0t) = 1
2e

j2πf0t + 1
2e
−j2πf0t

I Fourier transformation is a linear operation (integral), then

F
(

cos(2πf0t)
)

=

∫ ∞
−∞

(
1

2
e j2πf0t +

1

2
e−j2πf0t

)
e−j2πft dt

=
1

2
δ(f − f0) +

1

2
δ(f + f0)

⇒ A pair of delta functions at frequencies f = ±f0 (tones)

I Frequency of the cosine is f0 ⇒ “Justifies” the name frequency for f
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Inverse Fourier transform

I Def: The inverse Fourier transform of X (f ) = F(x(t)) is

x(t) =

∫ ∞
−∞

X (f )e j2πft df

⇒ Exponent’s sign changes with respect to Fourier transform

I We show next that x(t) can be recovered from X (f ) as above

I First substitute X (f ) for its definition∫ ∞
−∞

X (f )e j2πft df =

∫ ∞
−∞

(∫ ∞
−∞

x(u)e−j2πfu du

)
e j2πft df
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Inverse Fourier transform (continued)

I Nested integral can be written as double integral∫ ∞
−∞

X (f )e j2πft df =

∫ ∞
−∞

∫ ∞
−∞

x(u)e−j2πfue j2πft du df

I Rewrite as nested integral with integration w.r.t. f carried out first∫ ∞
−∞

X (f )e j2πft df =

∫ ∞
−∞

x(u)

(∫ ∞
−∞

e−j2πf (t−u) df

)
du

I Innermost integral is a delta function∫ ∞
−∞

X (f )e j2πft df =

∫ ∞
−∞

x(u)δ(t − u) du = x(t)
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Frequency components of a signal

I Interpretation of Fourier transform through synthesis formula

x(t) =

∫ ∞
−∞

X (f )e j2πft df ≈ ∆f ×
∞∑

n=−∞
X (fn)e j2πfnt

⇒ Signal x(t) as linear combination of complex exponentials

I X (f ) determines the weight of frequency f in the signal x(t)

f

|X1(f )|

f

|X2(f )|

Ex: Signal on the left contains low frequencies (changes slowly in time)

Ex: Signal on the right contains high frequencies (changes fast in time)
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Systems

I Def: A system characterizes an input-output relationship

I This relation is between functions, not values

⇒ Each output value y(t) depends on all input values x(t)

⇒ A mapping from the input signal to the output signal

System 
x(t) y(t)
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Time-invariant system

I Def: A system is time invariant if a delayed input yields a delayed output

I If input x(t) yields output y(t) then input x(t−s) yields y(t−s)

⇒ Think of output applied s time units later

System 
y(t � s)x(t � s)
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Linear system

I Def: A system is linear if the output of a linear combination of
inputs is the same linear combination of the respective outputs

I If input x1(t) yields output y1(t) and x2(t) yields y2(t), then

a1x1(t) + a2x2(t) ⇒ a1y1(t) + a2y2(t)

System 
a1x1(t) + a2x2(t) a1y1(t) + a2y2(t)
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Linear time-invariant system

I Linear + time-invariant system = linear time-invariant system (LTI)

I Denote as h(t) the system’s output when the input is δ(t)

⇒ h(t) is the impulse response of the LTI system

δ(t)
LTI

h(t)

1) Response to δ(t − u) ⇒ h(t − u) due to time invariance

2) Response to x(u)δ(t − u) ⇒ x(u)h(t − u) due to linearity

3) Reponse to x(u1)δ(t − u1) + x(u2)δ(t − u2)

⇒ x(u1)h(t − u1) + x(u2)h(t − u2)
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Output of a linear time-invariant system

I Any function x(t) can be written as

x(t) =

∫ ∞
−∞

x(u)δ(t − u) du

I Thus, the output of a LTI with impulse response h(t) to input x(t) is

y(t) =

∫ ∞
−∞

x(u)h(t − u) du = (x ∗ h)(t)

I The above integral is called the convolution of x(t) and h(t)

⇒ It is a “product” between signals, denoted as (x ∗ h)(t)

x(t)
h(t)

∫ ∞
−∞

x(u)h(t − u)du = (x ∗ h)(t)
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Fourier transform of output

I The Fourier transform Y (f ) of the output y(t) is given by

Y (f ) =

∫ ∞
−∞

(∫ ∞
−∞

x(u)h(t − u) du

)
e−j2πft dt

I Write nested integral as double integral & change variable t → u + v

Y (f ) =

∫ ∞
−∞

∫ ∞
−∞

x(u)h(v)e−j2πf (u+v) dv du

I Write e−j2πf (u+v) = e−j2πfue−j2πfv and reorder terms to obtain

Y (f ) =

(∫ ∞
−∞

x(u)e−j2πfu du

)(∫ ∞
−∞

h(v)e−j2πfv dv

)
I The factors on the right are the Fourier transforms of x(t) and h(t)
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Frequency response of linear time-invariant system

I Def: The frequency response of a LTI system is

H(f ) := F(h(t)) =

∫ ∞
−∞

h(t)e−j2πft dt

⇒ Fourier transform of the impulse response h(t)

I Input signal with spectrum X (f ), LTI system with freq. response H(f )

⇒ We established that the spectrum Y (f ) of the output is

Y (f ) = H(f )X (f )

X (f )
H(f ) Y (f ) = H(f )X (f )
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More on frequency response

I Frequency components of input get “scaled” by H(f )
I Since H(f ) is complex, scaling is a complex number
I Represents a scaling part (amplitude) and a phase shift (argument)

I Effect of LTI on input easier to analyze

⇒ “Usual product” instead of convolution

X (f ) H(f ) Y (f ) = H(f )X (f )

f

|X (f )|

f

|H(f )|

f

|Y (f )|
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Linear filters

I Linear filter (system) with ⇒ impulse response h(t)
⇒ frequency response H(f )

I Input to filter is wide-sense stationary (WSS) random process X (t)

⇒ Process has zero mean and autocorrelation function RX (s)

I Output is obviously another random process Y (t)

I Describe Y (t) in terms of ⇒ properties of X (t)
⇒ filter’s impulse and/or frequency response

I Q: Is Y (t) WSS? Mean of Y (t)? Autocorrelation function of Y (t)?

⇒ Easier and more enlightening in the frequency domain

X (t)

RX (s)
h(t)/H(f )

Y (t)

RY (s)
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Power spectral density

I Def: The power spectral density (PSD) of a WSS random process is
the Fourier transform of the autocorrelation function

SX (f ) = F
(
RX (s)

)
=

∫ ∞
−∞

RX (s)e−j2πfs ds

I Does SX (f ) carry information about frequency components of X (t)?

⇒ Not clear, SX (f ) is Fourier transform of RX (s), not X (t)

I But yes. We’ll see SX (f ) describes spectrum of X (t) in some sense

I Q: Can we relate PSDs at the input and output of a linear filter?

SX (f )
H(f ) SY (f ) = ...
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Example: Power spectral density of white noise

I Autocorrelation of white noise W (t) is ⇒ RW (s) = σ2δ(s)

I PSD of white noise is Fourier transform of RW (s)

SW (f ) =

∫ ∞
−∞

σ2δ(s)e−j2πfs ds = σ2

⇒ PSD of white noise is constant for all frequencies

I That’s why it’s white ⇒ Contains all frequencies in equal measure

σ2

f

SW (f )
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Dark side of the moon
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Power of a process

I The power of WSS process X (t) is its (constant) second moment

P = E
[
X 2(t)

]
= RX (0)

I Use expression for inverse Fourier transform evaluated at t = 0

RX (s) =

∫ ∞
−∞

SX (f )e j2πf s df ⇒ RX (0) =

∫ ∞
−∞

SX (f )e j2πf 0 df

I Since e0 = 1, can write RX (0) and therefore process’ power as

P =

∫ ∞
−∞

SX (f ) df

f

SX (f )
P

⇒ Area under PSD is the power of the process
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Mean of filter’s output

I Q: If input X (t) to a LTI filter is WSS, is output Y (t) WSS as well?

⇒ Check first that mean µY (t) of filter’s output Y (t) is constant

I Recall that for any time t, filter’s output is

Y (t) =

∫ ∞
−∞

h(u)X (t − u) du

I The mean function µY (t) of the process Y (t) is

µY (t) = E [Y (t)] = E
[∫ ∞
−∞

h(u)X (t − u) du

]
I Expectation is linear and X (t) is WSS, thus

µY (t) =

∫ ∞
−∞

h(u)E [X (t − u)] du = µX

∫ ∞
−∞

h(u) du = µY
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Autocorrelation of filter’s output

I Compute autocorrelation function RY (t, t + s) of filter’s output Y (t)

⇒ Check that RY (t, t + s) = RY (s), only function of s

I Start noting that for any times t and s, filter’s output is

Y (t) =

∫ ∞
−∞

h(u1)X (t−u1) du1, Y (t+s) =

∫ ∞
−∞

h(u2)X (t+s−u2) du2

I The autocorrelation function RY (t, t + s) of the process Y (t) is

RY (t, t + s) = E [Y (t)Y (t + s)]

I Substituting Y (t) and Y (t + s) by their convolution forms

RY (t, t+s) = E
[∫ ∞
−∞

h(u1)X (t − u1) du1

∫ ∞
−∞

h(u2)X (t + s − u2) du2

]
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Autocorrelation of filter’s output (continued)

I Product of integrals is double integral of product

RY (t, t+s) = E
[∫ ∞
−∞

∫ ∞
−∞

h(u1)X (t − u1)h(u2)X (t + s − u2) du1du2

]
I Exchange order of integral and expectation

RY (t, t+s) =

∫ ∞
−∞

∫ ∞
−∞

h(u1)E
[
X (t−u1)X (t+s−u2)

]
h(u2) du1du2

I Expectation in the integral is autocorrelation function of input X (t)

E
[
X (t−u1)X (t+s−u2)

]
= RX

(
t+s−u2−(t−u1)

)
= RX

(
s−u2+u1

)
I Which upon substitution in expression for RY (t, t + s) yields

RY (t, t + s) =

∫ ∞
−∞

∫ ∞
−∞

h(u1)RX

(
s−u2+u1

)
h(u2) du1du2 = RY (s)

Introduction to Random Processes Stationary Processes 41



Jointly wide-sense stationary processes

I Def: Two WSS processes X (t) and Y (t) are said jointly WSS if

RXY (t, t + s) := E [X (t)Y (t + s)] = RXY (s)

⇒ The cross-correlation function is shift-invariant

I If input to filter X (t) is WSS, showed output Y (t) also WSS

I Also jointly WSS since the input-output cross-correlation is

RXY (t, t + s) = E
[
X (t)

∫ ∞
−∞

h(u)X (t + s − u) du

]
=

∫ ∞
−∞

h(u)RX (s − u) du = RXY (s)

⇒ Cross-correlation given by convolution RXY (s) = h(s) ∗ RX (s)

Introduction to Random Processes Stationary Processes 42



Autocorrelation of filter’s output as convolution

I Going back to the autocorrelation of Y (t), recall we found

RY (s) =

∫ ∞
−∞

h(u2)

[∫ ∞
−∞

h(u1)RX

(
s − u2 + u1

)
du1

]
du2

I Inner integral is cross-correlation RXY (u2 − s)

RY (s) =

∫ ∞
−∞

h(u2)RXY (u2 − s)du2

I Noting that RXY (u2 − s) = RXY (−(s − u2))

RY (s) =

∫ ∞
−∞

h(u2)RXY (−(s − u2))du2

I Autocorrelation given by convolution RY (s) = h(s) ∗ RXY (−s)

⇒ Recall RY (s) = RY (−s), hence also RY (s) = h(−s) ∗ RXY (s)
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Power spectral density of filter’s output

I Power spectral density of Y (t) is Fourier transform of RY (s)

SY (f ) = F
(
RY (s)

)
=

∫ ∞
−∞

RY (s)e−j2πfs ds

I Substituting RY (s) for its value

SY (f ) =

∫ ∞
−∞

(∫ ∞
−∞

∫ ∞
−∞

h(u1)RX

(
s − u2 + u1

)
h(u2) du1du2

)
e−j2πfs ds

I Change variable s by variable v = s − u2 + u1 (dv = ds)

SY (f ) =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

h(u1)RX (v)h(u2)e−j2πf (v+u2−u1) du1du2dv

I Rewrite exponential as e−j2πf (v+u2−u1) = e−j2πfve−j2πfu2e+j2πfu1
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Power spectral density of filter’s output (continued)

I Write triple integral as product of three integrals

SY (f ) =

∫ ∞
−∞

h(u1)e j2πfu1 du1

∫ ∞
−∞

RX (v)e−j2πfv dv

∫ ∞
−∞

h(u2)e−j2πfu2 du2

I Integrals are Fourier transforms

SY (f ) = F
(
h(−u1)

)
×F

(
RX (v)

)
×F

(
h(u2)

)
I Note definitions of ⇒ X (t)’s PSD ⇒ SX (f ) = F

(
RX (s)

)
⇒ Filter’s frequency response ⇒ H(f ) := F

(
h(t)

)
Also note that ⇒ H∗(f ) := F

(
h(−t)

)
)

I Latter three observations yield (also use H∗(f )H(f ) =
∣∣H(f )

∣∣2)

SY (f ) = H∗(f )SX (f )H(f ) =
∣∣H(f )

∣∣2SX (f )

⇒ Key identity relating the input and output PSDs
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Example: White noise filtering

Ex: Input process X (t) = W (t) = white Gaussian noise with variance σ2

⇒ Filter with frequency response H(f ). Q: PSD of output Y (t)?

I PSD of input ⇒ SW (f ) = σ2

I PSD of output ⇒ SY (f ) =
∣∣H(f )

∣∣2SW (f ) =
∣∣H(f )

∣∣2σ2

⇒ Output’s spectrum is filter’s frequency response scaled by σ2

SX(f) SY (f) = |H(f)|2SX(f)
H(f)

SX(f)

f f f

SY (f)|H(f)|2

Ex: System identification ⇒ LTI system with unknown response

I White noise input ⇒ PSD of output is frequency response of filter
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Interpretation of power spectral density

I Consider a narrowband filter with frequency response centered at f0

H(f ) = 1 for: f0 − h/2 ≤ f ≤ f0 + h/2

− f0 − h/2 ≤ f ≤ −f0 + h/2

I Input is WSS process with PSD SX (f ). Output’s power PY is

PY =

∫ ∞
−∞

SY (f ) df =

∫ ∞
−∞

∣∣H(f )
∣∣2SX (f ) df≈ h

(
SX (f0) + SX (−f0)

)
⇒ SX (f ) is the power density the process X (t) contains at frequency f

f

SY (f)

SX(f) SY (f) = |H(f)|2SX(f)
H(f)

SX(f)

f f

|H(f)|2

�f0�f0 f0 f0
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Properties of power spectral density

For WSS processes:

(i) The power spectral density is a real-valued function

Proof.
Recall that RX (s) = RX (−s) and e jθ = cos(θ) + j sin(θ)

SX (f ) =

∫ ∞
−∞

RX (s)e−j2πfs ds

=

∫ ∞
−∞

RX (s) cos(−2πfs) ds+j

∫ ∞
−∞

RX (−s) sin(−2πfs) ds

=

∫ ∞
−∞

RX (s) cos(2πfs) ds

Gray integral vanishes since RX (−s) sin(−2πfs) = −RX (s) sin(2πfs)

(ii) The power spectral density is an even function, i.e., SX (f ) = SX (−f )
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Properties of power spectral density (continued)

For WSS processes:

(iii) The power spectral density is a non-negative function, i.e., SX (f ) ≥ 0

Proof.
Pass WSS X (t) through narrowband filter centered at f0

H(f ) = 1 for: f0 − h/2 ≤ f ≤ f0 + h/2

− f0 − h/2 ≤ f ≤ −f0 + h/2

For h→ 0, output’s power PY can be approximated as

0 ≤ PY =

∫ ∞
−∞

∣∣H(f )
∣∣2SX (f ) df

≈ h
(
SX (f0) + SX (−f0)

)
= 2hSX (f0)

Since f0 is arbitrary and PY ≥ 0 ⇒ SX (f ) ≥ 0
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Example: Interference rejection filter

Ex: WSS signal S(t) corrupted by additive, independent interference

I (t) = A cos(2πf0t + θ), θ ∼ Uniform(0, 2π)

⇒ Randomly phased sinusoidal interference I (t) (fixed A, f0 > 0)

I Corrupted signal X (t) = S(t) + I (t). Q: Filter out interference?

I Sinusoidal interference has period T = 1/f0. Use differencing filter

Y (t) = X (t)− X (t − T )

⇒ Difference I (t)− I (t − T ) = 0 for all t

I Wish to determine the PSD of the output SY (f ) =
∣∣H(f )

∣∣2SX (f )
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Differencing filter

I The differencing filter is an LTI system with impulse response

Y (t) = X (t)− X (t − T ) ⇒ h(t) = δ(t)− δ(t − T )

I By taking the Fourier transform, the frequency response becomes

H(f ) =

∫ ∞
−∞

(δ(t)− δ(t − T ))e−j2πftdt = 1− e−j2πfT

I The magnitude-squared of H(f ) is |H(f )|2 = 2− 2 cos(2πfT )

⇒ As expected, it exhibits zeros at multiples of f = 1/T = f0
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Randomly phased sinusoid

I Interference I (t) = A cos(2πf0t + θ), with θ ∼ Uniform(0, 2π)

⇒ Once θ is drawn, process realization specified for all t

I Above are four different sample paths of I (t)
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Randomly phased sinusoid is wide-sense stationary

I Q: Is I (t) a wide-sense stationary process?

⇒ Compute µI (t) and RI (t1, t2) and check

I Cosine integral over a cycle vanishes, hence

µI (t) = E [I (t)] =

∫ 2π

0

A cos(2πf0t + θ)
1

2π
dθ = 0

I Use cos(θ1) cos(θ2) = (cos(θ1 + θ2) + cos(θ1 − θ2))/2 to obtain

RI (t1, t2) = A2E [cos(2πf0t1 + θ) cos(2πf0t2 + θ)]

=
A2

2
cos(2πf0(t2 − t1))+

A2

2
E [cos(2πf0(t1 + t2) + 2θ)]

=
A2

2
cos(2πf0(t2 − t1))

I Thus I (t) is WSS with PSD given by

SI (f ) = F
(
RI (s)

)
=

A2

4
δ(f − f0) +

A2

4
δ(f + f0)
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Power spectral density of filter’s output

I Since S(t) and I (t) are independent and µI (t) = 0

RX (s) = E [(S(t) + I (t))(S(t + s) + I (t + s))]

= RS(s) + RI (s)

⇒ Also SX (f ) = SS(f ) + SI (f )

I Therefore the PSD of the filter output Y (t) is

SY (f ) = |H(f )|2SX (f ) = |H(f )|2(SS(f ) + SI (f ))

= 2 (1− cos(2πfT ))(SS(f ) + SI (f ))

I Filter annihilates the tones in SI (f ) = A2

4 δ(f − f0) + A2

4 δ(f + f0), so

SY (f ) = 2 (1− cos(2πfT ))SS(f )

⇒ Unfortunately, the signal PSD has also been modified
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The matched and Wiener filters

Stationary random processes

Autocorrelation function and wide-sense stationary processes

Fourier transforms

Linear time-invariant systems

Power spectral density and linear filtering of random processes

The matched and Wiener filters
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A simple model of a radar system

System Radar 

v(t)

Y (t)X(t)

I Air-traffic control system sends out a known radar pulse v(t)

I No plane in radar’s range ⇒ Radar output X (t) = N(t) is noise

⇒ Noise is zero-mean WSS process N(t), with PSD SN(f )

I Plane in range ⇒ Reflected pulse in output X (t) = v(t) + N(t)

I Q: System to decide whether X (t) = v(t) + N(t) or X (t) = N(t)?
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Filter design criterion

Radar 
Y (t)

h(t)
X(t) = v(t) + N(t)

I Filter radar output X (t) with LTI system h(t). System output is

Y (t) =

∫ ∞
−∞

h(t − s)[v(s) + N(s)]ds = v0(t) + N0(t)

I Filtered signal (radar pulse) and noise related components

v0(t) =

∫ ∞
−∞

h(t − s)v(s)ds, N0(t) =

∫ ∞
−∞

h(t − s)N(s)ds

I Design filter to maximize output signal-to-noise ratio (SNR) at t0

SNR =
v2
0 (t0)

E [N2
0 (t0)]
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Filtered signal and noise components

I The filtered noise power E
[
N2

0 (t0)
]

is given by

E
[
N2

0 (t0)
]

=

∫ ∞
−∞

SN0(f )df =

∫ ∞
−∞
|H(f )|2SN(f )df

I If V (f ) = F(v(t)), filtered radar pulse at time t0

v0(t0) =

∫ ∞
−∞

H(f )V (f )e j2πft0df

I Multiply and divide by
√

SN(f ), use complex conjugation

v0(t0) =

∫ ∞
−∞

H(f )
√
SN(f )

V (f )e j2πft0√
SN(f )

df

=

∫ ∞
−∞

H(f )
√
SN(f )

[
V ∗(f )e−j2πft0√

SN(f )

]∗
df
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Cauchy-Schwarz inequality

I The Cauchy-Schwarz inequality for complex functions f and g states∣∣∣ ∫ ∞
−∞

f (t)g∗(t)dt
∣∣∣2 ≤ ∫ ∞

−∞
|f (t)|2dt

∫ ∞
−∞
|g(t)|2dt

⇒ Equality is attained if and only if f (t) = αg(t)

I Recall the filtered signal component at time t0

v0(t0) =

∫ ∞
−∞

H(f )
√
SN(f )

[
V ∗(f )e−j2πft0√

SN(f )

]∗
df

I Use the Cauchy-Schwarz inequality to obtain the upper-bound

|v0(t0)|2 ≤
∫ ∞
−∞
|H(f )|2SN(f )df

∫ ∞
−∞

|V (f )|2
SN(f )

df
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The matched filter

I Since E
[
N2

0 (t0)
]

=
∫∞
−∞ |H(f )|2SN(f )df , bound SNR

SNR =
|v0(t0)|2
E [N2

0 (t0)]
≤

E
[
N2

0 (t0)
] ∫∞
−∞

|V (f )|2
SN (f )

df

E [N2
0 (t0)]

=

∫ ∞
−∞

|V (f )|2
SN(f )

df

I The maximum SNR is attained when

H(f )
√
SN(f ) = α

V ∗(f )e−j2πft0√
SN(f )

I The sought matched filter has frequency response

H(f ) = α
V ∗(f )e−j2πft0

SN(f )

⇒ H(f ) is “matched” to the known radar pulse and noise PSD
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Example: Matched filter for white noise

Ex: Suppose noise N(t) is white, with PSD SN(f ) = σ2. Let α = σ2

I The frequency response of the matched filter simplifies to

H(f ) = V ∗(f )e−j2πft0

I The inverse Fourier transform of H(f ) yields the impulse response

h(t) = v(t0 − t)

t t0

v(t)

0

h(t) = v(t0 � t)

t0

I Simply a time-reversed and translated copy of the radar pulse v(t)

Introduction to Random Processes Stationary Processes 61



Analysis of matched filter output

I PSD of filtered noise is SN0(f ) = |H(f )|2SN(f ). For matched filter

SN0(f ) =
|αV (f )|2
S2
N(f )

SN(f ) =
|αV (f )|2
SN(f )

I Inverse Fourier transform yields autocorrelation function of N0(t)

RN0(s) =

∫ ∞
−∞

|αV (f )|2
SN(f )

e j2πfsdf

I The matched filter signal output is

v0(t) =

∫ ∞
−∞

H(f )V (f )e j2πftdf =

∫ ∞
−∞

α|V (f )|2
SN(f )

e j2πf (t−t0)df

I Last two equations imply that v0(t) = (1/α)RN0(t − t0)

⇒ Matched filter signal output ∝ shifted autocorrelation
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Linear estimation

Unobserved 
process 

h(t)

V (t)

V̂ (t)
U(t)

Observed 
process 

I Estimate unobserved process V (t) from correlated process U(t)

⇒ Zero mean U(t) and V (t)

⇒ Known (cross-) PSDs SU(f ) and SVU(f )

Ex: Say U(t) = V (t) + W (t), with W (t) a white noise process

I Restrict attention to linear estimators

V̂ (t) =

∫ ∞
−∞

h(s)U(t − s)ds
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Filter design criterion

h(t)
V̂ (t)U(t)

I Criterion is mean-square error (MSE) minimization, i.e, find

min
h

E
[
|V (t)− V̂ (t)|2

]
, s. to V̂ (t) =

∫ ∞
−∞

h(s)U(t − s)ds

I Suppose h̃(t) is any other impulse response such that

Ṽ (t) =

∫ ∞
−∞

h̃(s)U(t − s)ds

⇒ MSE-sense optimality of filter h(t) means

E
[
|V (t)− V̂ (t)|2

]
≤ E

[
|V (t)− Ṽ (t)|2

]
Introduction to Random Processes Stationary Processes 64



Orthogonality principle

Theorem
If for every linear filter h̃(t) it holds

E
[

(V (t)− V̂ (t))

∫ ∞
−∞

h̃(s)U(t − s)ds

]
= 0

then h(t) is the MSE-sense optimal filter.

I Orthogonality principle implicitly characterizes the optimal filter h(t)

I Condition must hold for all h̃, in particular for h − h̃ implying

E
[
(V (t)− V̂ (t))(V̂ (t)− Ṽ (t))

]
= 0

⇒ Recall this identity, we will use it next
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Orthogonality principle (proof)

Proof.

I The MSE for an arbitrary filter h̃(t) can be written as

E
[
|V (t)− Ṽ (t)|2

]
= E

[
|(V (t)−V̂ (t)) + (V̂ (t)− Ṽ (t))|2

]
I Expand the squares, use linearity of expectation

E
[
|V (t)− Ṽ (t)|2

]
= E

[
|V (t)− V̂ (t)|2

]
+ E

[
|V̂ (t)− Ṽ (t)|2

]
+ 2E

[
(V (t)− V̂ (t))(V̂ (t)− Ṽ (t))

]
I But E

[
(V (t)− V̂ (t))(V̂ (t)− Ṽ (t))

]
= 0 by assumption, hence

E
[
|V (t)− Ṽ (t)|2

]
= E

[
|V (t)− V̂ (t)|2

]
+ E

[
|V̂ (t)− Ṽ (t)|2

]
≥ E

[
|V (t)− V̂ (t)|2

]
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Leveraging the orthogonality principle

I If h(t) is optimum, for any h̃(t) orthogonality principle implies

0 = E
[

(V (t)− V̂ (t))

∫ ∞
−∞

h̃(s)U(t − s)ds

]
= E

[∫ ∞
−∞

h̃(s)(V (t)− V̂ (t))U(t − s)ds

]
I Interchange order of expectation and integration, h̃(t) deterministic∫ ∞

−∞
h̃(s)E

[
(V (t)− V̂ (t))U(t − s)

]
ds = 0

I Recall definitions of cross-correlation functions RVU(s) and RV̂U(s)∫ ∞
−∞

h̃(s)(RVU(s)− RV̂U(s))ds = 0
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Matching cross-correlations condition

I For arbitrary h̃(t), orthogonality principle requires∫ ∞
−∞

h̃(s)(RVU(s)− RV̂U(s))ds = 0

I In particular, select h̃(t) = RVU(t)− RV̂U(t) to get∫ ∞
−∞

(RVU(s)− RV̂U(s))2ds = 0

⇒ Above integral vanishes if and only if RVU(s) = RV̂U(s)

I At the optimum, cross-correlations RVU(s) and RV̂U(s) coincide

⇒ Reasonable, since MSE is a second-order cost function
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The Wiener filter

I Best filter yields estimates V̂ (t) for which RVU(s) = RV̂U(s)

I Since V̂ (t) is the output of the LTI system h(t), with input U(t)

RV̂U(s) =

∫ ∞
−∞

h(t)RU(s − t)dt = h(s) ∗ RU(s)

I Taking Fourier transforms

SV̂U(f ) = H(f )SU(f )= SVU(f )

⇒ The optimal Wiener filter has frequency response

H(f ) =
SVU(f )

SU(f )
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Glossary

I Strict stationarity

I Shift invariance

I Power of a process

I Limit distribution

I Mean function

I Autocorrelation function

I Wide-sense stationarity

I Fourier transform

I Frequency components

I Linear time-invariant system

I Impulse response

I Convolution

I Frequency response

I Power spectral density

I Joint wide-sense stationarity

I Cross-correlation function

I System identification

I Signal-to-noise ratio

I Cauchy-Schwarz inequality

I Matched filter

I Linear estimation

I Mean-square error

I Orthogonality principle

I Wiener filter
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