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Overview of this work

» Goal: Learning DAG structure from observational data

» Recent approaches employ lasso-type score functions to guide this search
= Needs parameter retuning if the unknown exogenous noise variances change

= Implicitly rely on limiting assumptions of equal noise variances

» Contribution: New convex score function for learning of linear DAGs
= Incorporates concomitant estimation of scale parameters

= Minimum (or no) recalibration effort across diverse problem instances

= Superior performance in tests with simulated and real-world data

What are DAGs and how to learn their connectivity structure?

» Directed graph G without cycles increasingly prominent in ML applications
= May encode relationships within complex systems

= Employ directed edges to link causes and their immediate effects

» Causal structure underlying a group of variables is often

= Need to address the task of inferring DAGs from observational data

» A Markovian linear structural equation model (SEM) consists of
x;=w; X +1z, where X=][xi,...,x,]€R?

— DAG adjacency matrix W = [wry, ..., wy] € R®? collects the edge weights

= z; € R" is a vector of , EX0Zenous noises

= Ex: x4 = W4TX + Z4 = W14X1 + WouXxo + Wayx3 + 24

Problem statement: Given data X adhering to a
, learn the latent DAG G € D, i.e., estimate its adjacency
matrix W by minimizing the score function S, namely

n%‘i[n S(W) subjectto G(W) e D

» Learning a DAG from observational data X is in general NP-hard
= Combinatorial acyclicity constraint G(W) € D is difficult to enforce

= Multiple DAGs can generate the same observational distribution

Continuous optimization approach to DAG structure learning

H(W) : R¥™4 R
= Relax combinatorial constraint by enforcing H(W) =0 < G(W) €D

» Acyclicity characterization using :

» Pioneering formulation adopts Heyp,m(W) = Tr(eW*W) —d

= Diagonal entries of powers of W o« W encode information about

» Solve the , continuous optimization problem

n‘l}\ifn S(W) subjectto H(W) =0

» Q: What is a proper score function to guide the search?
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Score functions and their limitations

Regression-based

> loss augmented with an regularizer

S(W) = X — WTX|z + A|W|;

= Computational efficiency, robustness, and even consistency

» Similar to lasso, when the response and design matrices coincide

= rates for lasso hinge on selecting A = U\/log d/n, but ¢% is unknown

» Requires retuning A, implicitly assumes noise variances

Likelihood-based
» Desirable statistical properties, amenable to different exogenous noise variances
= Requires retuning sparsity parameter, prior knowledge on noise distribution

= Gaussian profile log-likelihood (GOLEM) is not decomposable

Concomitant linear DAG estimation (CoLiDE)

CoLiDE-EV
» All exogenous variables zy, ..., zg in the linear SEM have equal variance (EV) ¢*

» Inspired by the smoothed concomitant lasso

| d
min  —|X - WIX|% + — + A|[W|; subjectto H(W)=0
W,0>009 2no 2

\, 7

: :S(YW,O')

» Score S(W, o) is jointly convex, (do)/2 for consistency under Gaussianity

= A decouples from o as minimax optimality now requires A < \/log d/n

» Solve a sequence of unconstrained problems where H is viewed as a regularizer

= Acyclicity function H,y.+(W, s) = dlog(s) — log(det(sI — W - W))
» Optimization: Given a decreasing sequence u — 0, at step k we solve

. 1 do
min  fi %HX — WTX|5 + -t AMW1| + Higet(W, sg)

W,o0>0
= U — 0 is to yield a DAG
= estimates the noise level o and the adjacency matrix W for each py

» Fixing o to its latest value and minimizing score function inexactly w.r.t. W

= One iteration of gradient descent via ADAM optimizer

» Updating o in given the latest W via ¢ = max (\/%HX — W 'X|, 00)

CoLiDE-NV

» Noise variables z1, ..., z; have non-equal variances (NV) O'%, e (7621

» Mimicking the previous optimization approach, we propose

1 1
min gy |—Tr (X - W'X)'Z7/(X - W'X)) + Tr(Z)+ AW |1 | + Higet (W, )

W,2>>) 2n

= Y. = diag(oy,...,0y4) is a diagonal matrix of noise standard deviations

» Per iteration cost is O(d”), on par with state-of-the-art DAG learning methods
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Equal variance experiments
» Impact of noise levels varying from 0.5 to 10 on DAG recovery performance

» 200-node ER graphs with weighted edges £ € [—2,—0.5] U [0.5, 2]
» Simulate n = 1000 samples considering diverse noise distributions via linear SEM

» SHD counts number of edge corrections required to reach true graph
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Non-equal variance experiments

» Noise variance of each node is uniformly drawn from [0.5, 10]

» SF graphs with weighted edges £ € [—1,—0.25| U [0.25, 1]
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Noise estimation experiments
. . . ° A 2 A
» Methods that do not explicitly estimate the noise, we use 6;“ = %Hxi — WiTX”%

» 200-node ER; simulate Linear SEM with Gaussian noise; EV (left) and NV (right)
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Sachs dataset
GOLEM-EV GOLEM-NV DAGMA SortNRegress DAGuerreotype GES ColLiDE-EV CoLiDE-NV

SHD 22 15 16 13 14 13 13 12
SID 49 58 52 47 50 56 47 46
SHD-C 19 11 15 13 12 11 13 14
FDR 0.83 0.66 0.5 0.61 0.57 0.5 0.54 0.53
TPR 0.11 0.11 0.05 0.29 0.17 0.23 0.29 0.35
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