

Overview of this work

- ► **Goal:** Learning DAG structure from observational data
- Recent approaches employ lasso-type score functions to guide this search
 - \Rightarrow Needs parameter retuning if the *unknown* exogenous noise variances change
 - \Rightarrow Implicitly rely on limiting assumptions of equal noise variances
- **Contribution:** New convex score function for learning of linear DAGs
 - ⇒ Incorporates concomitant estimation of scale parameters
 - \Rightarrow Minimum (or no) recalibration effort across diverse problem instances
 - ⇒ Superior performance in tests with simulated and real-world data

What are DAGs and how to learn their connectivity structure?

- Directed graph G without cycles increasingly prominent in ML applications
 - ⇒ May encode causal relationships within complex systems
 - ⇒ Employ directed edges to link causes and their immediate effects
- Causal structure underlying a group of variables is often unknown \Rightarrow Need to address the task of inferring DAGs from observational data
- A Markovian linear structural equation model (SEM) consists of
 - $\mathbf{x}_i = \mathbf{w}_i^{\top} \mathbf{X} + \mathbf{z}_i$, where $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_d] \in \mathbb{R}^{n \times d}$
 - \Rightarrow DAG adjacency matrix $\mathbf{W} = [\mathbf{w}_1, \dots, \mathbf{w}_d] \in \mathbb{R}^{d \times d}$ collects the edge weights
 - \Rightarrow $z_i \in \mathbb{R}^n$ is a vector of mutually independent, exogenous noises
 - $\Rightarrow \mathsf{Ex}: \mathbf{x}_4 = \mathbf{w}_4^{\mathsf{T}} \mathbf{X} + \mathbf{z}_4 = W_{14} \mathbf{x}_1 + W_{24} \mathbf{x}_2 + W_{34} \mathbf{x}_3 + \mathbf{z}_4$

Problem statement: Given data X adhering to a linear SEM, learn the latent DAG $\mathcal{G} \in \mathbb{D}$, i.e., estimate its adjacency matrix \mathbf{W} by minimizing the score function S, namely $\min_{\mathbf{W}} S(\mathbf{W}) \text{ subject to } \mathcal{G}(\mathbf{W}) \in \mathbb{D}$

- Learning a DAG solely from observational data X is in general NP-hard
 - \Rightarrow Combinatorial acyclicity constraint $\mathcal{G}(\mathbf{W}) \in \mathbb{D}$ is difficult to enforce
 - \Rightarrow Multiple DAGs can generate the same observational distribution

Continuous optimization approach to DAG structure learning

- Acyclicity characterization using nonconvex, smooth $\mathcal{H}(W) : \mathbb{R}^{d \times d} \mapsto \mathbb{R}$ \Rightarrow Relax combinatorial constraint by enforcing $\mathcal{H}(\mathbf{W}) = 0 \iff \mathcal{G}(\mathbf{W}) \in \mathbb{D}$
- Pioneering NOTEARS formulation adopts $\mathcal{H}_{expm}(\mathbf{W}) = Tr(e^{\mathbf{W} \circ \mathbf{W}}) d$ \Rightarrow Diagonal entries of powers of W \circ W encode information about cycles
- Solve the smooth, continuous optimization problem

 $\min_{\mathbf{W}} S(\mathbf{W}) \quad \text{subject to} \quad \mathcal{H}(\mathbf{W}) = 0$

• Q: What is a proper score function to guide the search?

Colide: Concomitant Linear DAG Estimation

Seyed Saman Saboksayr*, Gonzalo Mateos*, and Mariano Tepper*

*Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, USA

[†]Intel Labs, Hillsboro, OR, USA

{ssaboksa, gmateosb}@ur.rochester.edu, and mariano.tepper@intel.com

Score functions and their limitations

Regression-based

- Ordinary LS loss augmented with an ℓ_1 -norm regularizer $S(\mathbf{W}) = \frac{1}{2n} \|\mathbf{X} - \mathbf{W}^{\mathsf{T}} \mathbf{X}\|_{F}^{2} + \lambda \|\mathbf{W}\|_{1}$
 - ⇒ Computational efficiency, robustness, and even consistency
- Similar to multi-task lasso, when the response and design matrices coincide \rightarrow Optimal rates for lasso hinge on selecting $\lambda \simeq \sigma \sqrt{\log d/n}$, but σ^2 is unknown
- Requires retuning λ , implicitly assumes equal noise variances

Likelihood-based

- Desirable statistical properties, amenable to different exogenous noise variances
 - \Rightarrow Requires retuning sparsity parameter, prior knowledge on noise distribution
 - ⇒ Gaussian profile log-likelihood (GOLEM) is not decomposable

Concomitant linear DAG estimation (CoLiDE)

CoLiDE-EV

- ► All exogenous variables $z_1, ..., z_d$ in the linear SEM have equal variance (EV) σ^2
- Inspired by the smoothed concomitant lasso

$$\min_{\mathbf{W},\sigma \ge \sigma_0} \frac{1}{2n\sigma} \|\mathbf{X} - \mathbf{W}^{\top} \mathbf{X} \|_F^2 + \frac{d\sigma}{2} + \lambda \|\mathbf{W}\|_1$$
$$:= S(\mathbf{W},\sigma)$$

- Score $S(\mathbf{W}, \sigma)$ is jointly convex, $(d\sigma)/2$ for consistency under Gaussianity $\Rightarrow \lambda$ decouples from σ as minimax optimality now requires $\lambda \asymp \sqrt{\log d/n}$
- Solve a sequence of unconstrained problems where \mathcal{H} is viewed as a regularizer \Rightarrow Acyclicity function $\mathcal{H}_{\text{ldet}}(\mathbf{W}, s) = d \log(s) - \log(\det(s\mathbf{I} - \mathbf{W} \circ \mathbf{W}))$
- **Optimization:** Given a decreasing sequence $\mu_k \rightarrow 0$, at step k we solve

$$\min_{\mathbf{W},\sigma \ge \sigma_0} \mu_k \left[\frac{1}{2n\sigma} \| \mathbf{X} - \mathbf{W}^\top \mathbf{X} \|_F^2 + \frac{d\sigma}{2} + \frac{d\sigma}{2} \right]$$

- \Rightarrow Limit $\mu_k \rightarrow 0$ is guaranteed to yield a DAG
- \Rightarrow Jointly estimates the noise level σ and the adjacency matrix W for each μ_k
- \blacktriangleright Fixing σ to its latest value and minimizing score function inexactly w.r.t. W \Rightarrow One iteration of gradient descent via ADAM optimizer
- Updating σ in closed form given the latest W via

CoLiDE-NV

- ▶ Noise variables $z_1, ..., z_d$ have non-equal variances (NV) $\sigma_1^2, ..., \sigma_d^2$
- Mimicking the previous optimization approach, we propose CoLiDE-NV

$$\min_{\mathbf{V},\Sigma\geq\Sigma_0} \mu_k \left[\frac{1}{2n} \operatorname{Tr} \left((\mathbf{X} - \mathbf{W}^{\top} \mathbf{X})^{\top} \Sigma^{-1} (\mathbf{X} - \mathbf{W}^{\top} \mathbf{X}) \right) + \frac{1}{2} \operatorname{Tr}(\Sigma) + \lambda \|\mathbf{W}\|_1 \right] + \mathcal{H}_{\mathsf{ldet}}(\mathbf{W}, s_k)$$

 $\Rightarrow \Sigma = \text{diag}(\sigma_1, \dots, \sigma_d)$ is a diagonal matrix of noise standard deviations

• Per iteration cost is $\mathcal{O}(d^3)$, on par with state-of-the-art DAG learning methods

subject to
$$\mathcal{H}(\mathbf{W}) = 0$$

 $\lambda \|\mathbf{W}\|_1 + \mathcal{H}_{\text{ldet}}(\mathbf{W}, s_k)$

$$\hat{\boldsymbol{\sigma}} = \max\left(\frac{1}{\sqrt{nd}} \|\mathbf{X} - \mathbf{W}^{\top} \mathbf{X} \|_{F}, \boldsymbol{\sigma}_{0}\right)$$

Results

Equal variance experiments

Noise estimation experiments

Sachs dataset

	GOLEM-EV	GOLEM-NV	DAGMA	SortNRegress	DAGuerreotype	GES	CoLiDE-EV	CoLiDE-NV
SHD	22	15	16	13	14	13	13	12
SID	49	58	52	47	50	56	47	46
SHD-C	19	11	15	13	12	11	13	14
FDR	0.83	0.66	0.5	0.61	0.57	0.5	0.54	0.53
TPR	0.11	0.11	0.05	0.29	0.17	0.23	0.29	0.35

References and GitHub page

Xun Zheng, Bryon Aragam, Pradeep K Ravikumar, and Eric P Xing. DAGs with no tears: Continuous optimization for structure learning. In Proc. Adv. Neural. Inf. Process. Syst., 2018. Kevin Bello, Bryon Aragam, and Pradeep Ravikumar. DAGMA: Learning DAGs via Mmatrices and a log-determinant acyclicity characterization. In Proc. Adv. Neural. Inf. Process. Syst., 2022.

Ignavier Ng, AmirEmad Ghassami, and Kun Zhang. On the role of sparsity and DAG constraints for learning linear DAGs. In Proc. Adv. Neural. Inf. Process. Syst., 2020.

abs

Impact of noise levels varying from 0.5 to 10 on DAG recovery performance ▶ 200-node ER graphs with weighted edges $\mathcal{E} \in [-2, -0.5] \cup [0.5, 2]$ Simulate n = 1000 samples considering diverse noise distributions via linear SEM SHD counts number of edge corrections required to reach true graph

• Methods that do not explicitly estimate the noise, we use $\hat{\sigma}_i^2 = \frac{1}{n} \|x_i - \hat{w}_i^{\top} \mathbf{x}\|_2^2$ 200-node ER; simulate Linear SEM with Gaussian noise; EV (left) and NV (right)

