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Overview of this work

▶ Goal: Learning DAG structure from observational data

▶ Recent approaches employ lasso-type score functions to guide this search

⇒ Needs parameter retuning if the unknown exogenous noise variances change

⇒ Implicitly rely on limiting assumptions of equal noise variances

▶ Contribution: New convex score function for learning of linear DAGs

⇒ Incorporates concomitant estimation of scale parameters

⇒Minimum (or no) recalibration effort across diverse problem instances

⇒ Superior performance in tests with simulated and real-world data

What are DAGs and how to learn their connectivity structure?

▶ Directed graph  without cycles increasingly prominent in ML applications

⇒May encode causal relationships within complex systems

⇒ Employ directed edges to link causes and their immediate effects

▶ Causal structure underlying a group of variables is often unknown

⇒ Need to address the task of inferring DAGs from observational data

▶ A Markovian linear structural equation model (SEM) consists of

𝐱𝑖 = 𝐰𝑖

⊤
𝐗 + 𝐳𝑖, where 𝐗 = [𝐱1, … , 𝐱

𝑑
] ∈ ℝ

𝑛×𝑑

⇒ DAG adjacency matrix 𝐖 = [𝐰1, … ,𝐰
𝑑
] ∈ ℝ

𝑑×𝑑 collects the edge weights

⇒ 𝐳𝑖 ∈ ℝ
𝑛 is a vector of mutually independent, exogenous noises

⇒ Ex: 𝐱4 = 𝐰4

⊤
𝐗 + 𝐳4 = 𝑊14𝐱1 + 𝑊24𝐱2 + 𝑊34𝐱3 + 𝐳4

Problem statement: Given data 𝐗 adhering to a linear
SEM, learn the latent DAG  ∈ 𝔻, i.e., estimate its adjacency
matrix𝐖 by minimizing the score function  , namely
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▶ Learning a DAG solely from observational data 𝐗 is in general NP-hard

⇒ Combinatorial acyclicity constraint (𝐖) ∈ 𝔻 is difficult to enforce

⇒Multiple DAGs can generate the same observational distribution

Continuous optimization approach to DAG structure learning

▶ Acyclicity characterization using nonconvex, smooth (𝐖) ∶ ℝ
𝑑×𝑑

↦ ℝ

⇒ Relax combinatorial constraint by enforcing (𝐖) = 0 ⟺ (𝐖) ∈ 𝔻

▶ Pioneering NOTEARS formulation adopts expm(𝐖) = Tr(𝑒
𝐖◦𝐖

) − 𝑑

⇒ Diagonal entries of powers of𝐖 ◦𝐖 encode information about cycles

▶ Solve the smooth, continuous optimization problem

min

𝐖

(𝐖) subject to (𝐖) = 0

▶ Q: What is a proper score function to guide the search?

Score functions and their limitations

Regression-based
▶ Ordinary LS loss augmented with an 𝓁1-norm regularizer

(𝐖) =
1

2𝑛
‖𝐗 −𝐖

⊤
𝐗‖

2

𝐹
+ 𝜆‖𝐖‖1

⇒ Computational efficiency, robustness, and even consistency

▶ Similar to multi-task lasso, when the response and design matrices coincide

⇒ Optimal rates for lasso hinge on selecting 𝜆 ≍ 𝜎

√

log 𝑑/𝑛, but 𝜎2 is unknown

▶ Requires retuning 𝜆, implicitly assumes equal noise variances

Likelihood-based
▶ Desirable statistical properties, amenable to different exogenous noise variances

⇒ Requires retuning sparsity parameter, prior knowledge on noise distribution

⇒ Gaussian profile log-likelihood (GOLEM) is not decomposable

Concomitant linear DAG estimation (CoLiDE)

CoLiDE-EV
▶ All exogenous variables 𝐳1, … , 𝐳

𝑑
in the linear SEM have equal variance (EV) 𝜎2

▶ Inspired by the smoothed concomitant lasso

min
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∶=(𝐖,𝜎)

subject to (𝐖) = 0

▶ Score (𝐖, 𝜎) is jointly convex, (𝑑𝜎)/2 for consistency under Gaussianity

⇒ 𝜆 decouples from 𝜎 as minimax optimality now requires 𝜆 ≍

√

log 𝑑/𝑛

▶ Solve a sequence of unconstrained problems where  is viewed as a regularizer

⇒ Acyclicity function ldet(𝐖, 𝑠) = 𝑑 log(𝑠) − log(det(𝑠𝐈 −𝐖 ◦𝐖))

▶ Optimization: Given a decreasing sequence 𝜇
𝑘
→ 0, at step 𝑘 we solve

min

𝐖,𝜎≥𝜎0

𝜇
𝑘
[
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]
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𝑘
)

⇒ Limit 𝜇
𝑘
→ 0 is guaranteed to yield a DAG

⇒ Jointly estimates the noise level 𝜎 and the adjacency matrix𝐖 for each 𝜇
𝑘

▶ Fixing 𝜎 to its latest value and minimizing score function inexactly w.r.t. 𝐖

⇒ One iteration of gradient descent via ADAM optimizer

▶ Updating 𝜎 in closed form given the latest𝐖 via 𝜎̂ = max
(

1
√

𝑛𝑑
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)

CoLiDE-NV
▶ Noise variables 𝐳1, … , 𝐳

𝑑
have non-equal variances (NV) 𝜎2

1
, … , 𝜎

2

𝑑

▶ Mimicking the previous optimization approach, we propose CoLiDE-NV

min
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⇒ 𝚺 = diag(𝜎1, … , 𝜎
𝑑
) is a diagonal matrix of noise standard deviations

▶ Per iteration cost is (𝑑3), on par with state-of-the-art DAG learning methods

Results

Equal variance experiments
▶ Impact of noise levels varying from 0.5 to 10 on DAG recovery performance

▶ 200-node ER graphs with weighted edges  ∈ [−2, −0.5] ∪ [0.5, 2]

▶ Simulate 𝑛 = 1000 samples considering diverse noise distributions via linear SEM

▶ SHD counts number of edge corrections required to reach true graph
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Non-equal variance experiments
▶ Noise variance of each node is uniformly drawn from [0.5, 10]

▶ SF graphs with weighted edges  ∈ [−1, −0.25] ∪ [0.25, 1]
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Noise estimation experiments
▶ Methods that do not explicitly estimate the noise, we use 𝜎̂𝑖2 = 1

𝑛
‖𝑥𝑖 − 𝐰̂𝑖

⊤
𝐱‖

2

2

▶ 200-node ER; simulate Linear SEM with Gaussian noise; EV (left) and NV (right)
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Sachs dataset
GOLEM-EV GOLEM-NV DAGMA SortNRegress DAGuerreotype GES CoLiDE-EV CoLiDE-NV

SHD 22 15 16 13 14 13 13 12
SID 49 58 52 47 50 56 47 46
SHD-C 19 11 15 13 12 11 13 14
FDR 0.83 0.66 0.5 0.61 0.57 0.5 0.54 0.53
TPR 0.11 0.11 0.05 0.29 0.17 0.23 0.29 0.35
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