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Overview of this work

▶ Goal: Learning DAG structure from observational data

▶ Recently proposed Concomitant Linear DAG Estimation (CoLiDE) framework

⇒ Jointly estimate DAG structure along with exogenous noise levels

⇒ No parameter retuning needed and amenable to non-equal noise variances cases

▶ Contribution: Deriving efficient optimization algorithm, closed-form updates

⇒ Leverages block successive convex approximation (BSCA) algorithm

⇒ Providing a provably convergent sequence→ Superior performance

What are DAGs and how to learn their connectivity structure?

▶ Directed graph  without cycles increasingly prominent in ML applications

⇒May encode causal relationships within complex systems

⇒ Employ directed edges to link causes and their immediate effects

▶ Causal structure underlying a group of variables is often unknown

⇒ Need to address the task of inferring DAGs from observational data

▶ Markovian linear structural equation model (SEM)

𝐱𝑖 = 𝐰𝑖

⊤
𝐗 + 𝐳𝑖, where 𝐗 = [𝐱1, … , 𝐱

𝑑
] ∈ ℝ

𝑛×𝑑

⇒ DAG adjacency matrix𝐖 = [𝐰1, … ,𝐰
𝑑
] ∈ ℝ

𝑑×𝑑 collects the edge weights

⇒ 𝐳𝑖 ∈ ℝ
𝑛 is a vector of mutually independent, exogenous noises

⇒ Ex: 𝐱4 = 𝐰4

⊤
𝐗 + 𝐳4 = 𝑊14𝐱1 +𝑊24𝐱2 +𝑊34𝐱3 + 𝐳4

Problem statement: Given data 𝐗 adhering to a linear SEM,
learn the latent DAG  ∈ 𝔻, i.e., estimate its adjacency matrix𝐖
by minimizing the score function  , namely
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▶ Learning a DAG solely from observational data 𝐗 is in general NP-hard

⇒ Combinatorial acyclicity constraint (𝐖) ∈ 𝔻 is difficult to enforce

⇒Multiple DAGs can generate the same observational distribution

Concomitant linear DAG estimation (CoLiDE)

▶ Acyclicity characterization using nonconvex, smooth (𝐖) ∶ ℝ
𝑑×𝑑

↦ ℝ

⇒ Relax combinatorial constraint by enforcing (𝐖) = 0 ⟺ (𝐖) ∈ 𝔻

⇒ Ex: DAGMA formulation adopts ldet(𝐖, 𝑠) = 𝑑 log(𝑠) − log(det(𝑠𝐈 −𝐖 ◦𝐖))

▶ Solve smooth, continuous optimization problem→ min𝐖 (𝐖) subject to (𝐖) = 0

CoLiDE-EV
▶ All exogenous variables 𝐳1, … , 𝐳

𝑑
in the linear SEM have equal variance (EV) 𝜎2

▶ Inspired by the smoothed concomitant lasso

min

𝐖,𝜎≥𝜎0
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⊤
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∶=(𝐖,𝜎)

subject to (𝐖) = 0

▶ Score (𝐖, 𝜎) is jointly convex, (𝑑𝜎)/2 for consistency under Gaussianity

⇒ 𝜆 decouples from 𝜎 as minimax optimality now requires 𝜆 ≍

√

log 𝑑/𝑛

▶ Solve a sequence of unconstrained problems where  is viewed as a regularizer

▶ Optimization: Given a decreasing sequence 𝜇
𝑘
→ 0, at step 𝑘 we solve

min

𝐖,𝜎≥𝜎0

𝜇
𝑘
[

1
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‖𝐗 −𝐖
⊤
𝐗‖

2

𝐹
+
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2

+ 𝜆‖𝐖‖1
]
+ldet(𝐖, 𝑠

𝑘
)

⇒ Limit 𝜇
𝑘
→ 0 is guaranteed to yield a DAG

⇒ Jointly estimates the noise level 𝜎 and the adjacency matrix𝐖 for each 𝜇
𝑘

▶ Fixing 𝜎 to its latest value and minimizing score function inexactly w.r.t. 𝐖

⇒ One iteration of gradient descent via the ADAM optimizer

▶ Updating 𝜎 in closed form given the latest𝐖 via 𝜎̂ = max
(

1
√

𝑛𝑑

‖𝐗 −𝐖
⊤
𝐗‖𝐹 , 𝜎0

)

CoLiDE-NV
▶ Noise variables 𝐳1, … , 𝐳

𝑑
have non-equal variances (NV) 𝜎2

1
, … , 𝜎

2

𝑑

▶ Mimicking the previous optimization approach, we propose CoLiDE-NV

min

𝐖,𝚺≥𝚺0

𝜇
𝑘
[

1

2𝑛

Tr ((𝐗 −𝐖
⊤
𝐗)

⊤
𝚺
−1
(𝐗 −𝐖

⊤
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1

2

Tr(𝚺) + 𝜆‖𝐖‖1
]
+ldet(𝐖, 𝑠

𝑘
)

⇒ 𝚺 = diag(𝜎1, … , 𝜎
𝑑
) is a diagonal matrix of noise standard deviations

▶ Per iteration cost is (𝑑3), on par with state-of-the-art DAG learning methods

Optimization revisited: Block Successive Convex Approximation (BSCA)

CoLiDE-EV

▶ Fixing 𝜎 to its most up-to-date value 𝜎𝑡 the resulting composite subproblem is

min
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∶=𝑔(𝐖)

]

⇒ 𝑔(𝐖) is convex but not smooth, while 𝑓 (𝐖) is smooth but non-convex

▶ Quadratic approximation of 𝑓 (𝐖) around the previous iterate𝐖𝑡−1

̃
𝑓 (𝐖,𝐖𝑡−1) ∶= ⟨𝐖 −𝐖𝑡−1, ∇𝑓 (𝐖𝑡−1)⟩ +

𝐿

2

‖𝐖 −𝐖𝑡−1‖
2

𝐹

⇒ Strictly convex for any positive scalar 𝐿

▶ Instead of solving the original𝐖 subproblem, we can minimize the approximation

𝐖̄𝑡 = argmin

𝐖

[
̃
𝑓 (𝐖,𝐖𝑡−1) + 𝜆𝜇

𝑘
‖𝐖‖1]

▶ Given the proximal operator of 𝑔(𝐖), closed-form update of 𝐖̄𝑡 is

𝐖̄𝑡 = 
𝜇
𝑘
𝜆
(
𝐖𝑡−1 +

𝜇
𝑘

𝜎𝑡𝑛

𝐗
⊤
𝐗(𝐈 −𝐖𝑡−1) − 2(𝑠

𝑘
𝐈 −𝐖𝑡−1 ◦ 𝐖𝑡−1)

−⊤
◦ 𝐖𝑡−1

)

⇒ Soft-thresholding operator 𝛼(𝑥) = max(|𝑥| − 𝛼, 0) sign(𝑥)

▶ Challenge: ∇ ̃
𝑓 (𝐖,𝐖𝑡−1) is not Lipschitz continuous

⇒
̃
𝑓 (𝐖,𝐖𝑡−1) is not guaranteed to be a global upper bound of 𝑓 (𝐖)

▶ We update the DAG adjacency matrix as

𝐖𝑡 = 𝐖𝑡−1 + 𝛾𝑡(𝐖̄𝑡 −𝐖𝑡−1)

⇒ Select 𝛾𝑡 ∈ (0, 1] via the low-complexity Armijo rule

CoLiDE-NV

▶ Similar successive approximation methodology employed for the CoLiDE-NV cost

𝑓 (𝐖) ∶=

𝜇
𝑘

2𝑛

Tr ((𝐗 −𝐖
⊤
𝐗)

⊤
𝚺
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𝑡
(𝐗 −𝐖

⊤
𝐗)) +ldet(𝐖, 𝑠

𝑘
)

▶ Again, the so-termed proximal linear approximation yields

𝐖̄𝑡 = 
𝜇
𝑘
𝜆(𝐖𝑡−1 +

𝜇
𝑘

𝑛

𝐗
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𝑡
− 2(𝑠

𝑘
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−⊤
◦ 𝐖𝑡−1)

Convergence and complexity

▶ Every limit point of the BSCA sequence is a stationary point of original problem

▶ This comes with no order-wise penalty in computational complexity

Experimental evaluation

Equal variance experiments
▶ We consider a single step of the sequence where 𝜇

𝑘
= 1 and 𝑠

𝑘
= 1

▶ 50-node ER graph with 50 weighted edges  ∈ [−2, −0.5] ∪ [0.5, 2]

▶ Simulate 𝑛 = 1000 samples considering Gaussian noise (𝜎2
= 1) via linear SEM

▶ Optimal solution 𝐖
∗ is obtained by running the inexact BCD algorithm for 105 iterations
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Non-equal variance experiments
▶ Noise variance of each node is uniformly drawn from [0.5, 10]

▶ 50-node ER graph with 50 weighted edges  ∈ [−1, −0.25] ∪ [0.25, 1]
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