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Motivation

• Cascading processes such as web events, infectious diseases, product adoption propagate over im-
plicit networks [Easley10].
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Figure 1: Cascades over a social network

•Although node “infection times” by cascades are observable, network topologies are unknown,
time-varying, and exhibit edge sparsity.

•Goal: Track the time-varying network topology using node infection times.

•Benefits: Network topology is vital for meaningful web advertising, healthcare policy formulation,
product promotions etc.

Contributions and Related Work

•Node infection times depend on:

1. Causal interactions among nodes (topological influences)

2. Susceptibility to cascades (external influences)

• Structural equation models (SEM) provide a general statistical framework for capturing causal
interactions in psychometrics, social sciences, and gene regulation [Goldberger72][Cai13]

Contributions:

1. Dynamic SEM for tracking time-varying networks

2. Accounting for external (non-topological) influences in cascades

Related work:

1. Maximum likelihood estimation (MLE) for static network inference [Rodriguez11]

2. MLE-based stochastic gradient descent for dynamic network inference [Rodriguez13]

3. Time-invariant SEM for gene network inference [Cai13]

Model and Problem Statement

Consider a dynamic network of N nodes, over which C cascades propagate during T time intervals.
The postulated dynamic SEM for infection time of node i by cascade c during time interval t is

ytic =
∑

j 6=i

atijy
t
jc + btiixic + etic.

Let Yt :=
[

ytic
]

, X := [xic], E
t :=

[

etic
]

, and Bt := diag(b11, . . . , bNN ), collecting observations for

N nodes and C contagions yields the dynamic matrix SEM

Yt = AtYt +BtX +Et t = 1, . . . , T. (1)

The model captures both topological (At) and external influences (X).

Problem Statement:

Given {Yt}Tt=1 and X adhering to (1), track the underlying network topology {At}Tt=1
and the effect of external influences {Bt}Tt=1.

Sparse exponentially-weighted Least squares estimator

Assuming the network topology changes slowly and has sparse edge connectivity, the estimator

{Ât, B̂t} = arg min
A,B

1

2

t
∑

τ=1

βt−τ‖Yτ −AYτ −BX‖2F + λt‖A‖1

s. to aii = 0, bij = 0, ∀i 6= j (2)

tracks At and Bt where β ∈ (0, 1], λt ≥ 0, and ‖A‖1 :=
∑

i,j |aij|.

Merits of the estimator:

1. Edge sparsity is encouraged via the penalty term ‖A‖1

2. Tracking time-varying topologies is possible if β < 1

Leveraging proximal gradient (PG) iterations [Parikh13] and ignoring equality constraints, solve

V[k] := argmin
V

{

Lf

2
‖V − (V[k − 1]− (1/Lf )∇f (V[k − 1]))‖2F + λt‖A‖1

}

(3)

per iteration k, whereV := [AB], f (V) := 1
2

∑t
τ=1 β

t−τ‖Yτ−AYτ−BX‖2F , and Lf is a Lipshitz
constant.

Proximal Gradient Algorithm

PG iterations with equality constraints yield the (pseudo) real-time tracking algorithm:

Require:
{

Yt
}T
t=1, X, β.

1: Initialize Â0 = 0N×N , B̂0 = Σ0 = IN , Ȳ0 = 0N×C , λ0.
2: for t = 1, . . . , T do
3: Σt = βΣt−1 +Yt(Yt)⊤

4: Ȳt = βȲt−1 +Yt

5: Initialize A[0] = Ât−1, B[0] = B̂t−1, and set k = 0.
6: while not converged do
7: for i = 1 . . . N (in parallel) do
8: a−i[k + 1] = Sλt/Lf

(

a−i[k]− (1/Lf )∇a−if [k]
)

9: bii[k + 1] = bii[k]− (1/Lf )∇biif [k]

10: a⊤i [k + 1] = [a−i,1[k + 1] . . . a−i,i−1[k + 1] 0 a−i,i[k + 1] . . . a−i,N [k + 1]]
11: end for
12: k = k + 1.
13: end while
14: return Ât = A[k], B̂t = B[k].
15: end for

Attractive features of the algorithm:

1. Provably guaranteed convergence

2. Parallelizable iterations

3. Recursive updates ensure minimal past data storage

Numerical Results

Synthetic dataset:
Cascade data generated from Yt = (IN − At)−1(BtX + Et) where xij ∼ unif(0, 3), {etij, b

t
ii} ∼

N (0, 1), N = 100, C = 150, t = 1, . . . , 1000. Edge weights were varied as i) atij ∼ Bernoulli(0.5)

ii) atij ∼ unif{0.5+0.5sin(0.1t), 0.5+0.5cos(0.1t), e−0.01t}, and iii) Non-smooth variations (Fig. 2).
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Figure 2: (Left) Non-smooth edge variations. (Center) MSE performance. (Right) Varying λ.

Real datasets:
Popular “memes” on the web were tracked between March 2011 and February 2012 [Rodriguez13].
Two datasets pertaining to the following phrases were used:
1. “Kim Jong-un” (N = 360 websites, C = 466 cascades, T = 45 weeks)
2. “Reid Hoffman” (N = 125 websites, C = 85 cascades, T = 41 weeks)

Figure 3: Inferred network for “Kim Jong-un” at (left) t = 10, and (right) t = 40 weeks.

Figure 4: Inferred network for “Reid Hoffman” at (left) t = 10, and (right) t = 40 weeks.
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Figure 5: Evolution of total number of inferred edges among websites propagating cascades
pertaining to i) (left) “Kim Jong-un”, and ii) (right) “Reid Hoffman”.
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