
STABILIZING THE KUMARASWAMY DISTRIBUTION∗

MAX WASSERMAN† AND GONZALO MATEOS‡

Abstract. Large-scale latent variable models require expressive continuous distributions that
support efficient sampling and low-variance differentiation, achievable through the reparameterization
trick. The Kumaraswamy (KS) distribution is both expressive and supports the reparameterization
trick with a simple closed-form inverse CDF. Yet, its adoption remains limited. We identify and
resolve numerical instabilities in the log-pdf, CDF, and inverse CDF, exposing issues in libraries
like PyTorch and TensorFlow. We then introduce simple and scalable latent variable models to
improve exploration-exploitation trade-offs in contextual multi-armed bandits and enhance uncertainty
quantification for link prediction with graph neural networks. We find these models to be most
performant when paired with the stable KS. Our results support the stabilized KS distribution as a
core component in scalable variational models for bounded latent variables.

Key words. Kumaraswamy Distribution, Catastrophic Cancellation, Latent Variable Models,
Variational Inference, Multi-Armed Bandits

MSC codes. 65G50, 65C20, 62F15, 68T07, 62H12

1. Introduction. Probabilistic models use probability distributions as building
blocks to model complex joint distributions between random variables. Such distri-
butions can model unobserved ‘latent’ variables z, or observed ‘data’ variables x.
Bounded interval-supported latent variables are central to many key applications,
such as unobserved probabilities (e.g., user clicks in recommendation systems or links
between network nodes), missing measurements in control systems (e.g., joint angles
in [0, 2π]), and stochastic policies over bounded actions in reinforcement learning (e.g.,
motor torque in [−10, 10]).

To meet the demands of large-scale latent variable models, distributions supported
on bounded intervals must satisfy the following criteria: (i) support the reparameter-
ization trick through an explicit reparameterization function, such as a closed-form
inverse CDF, enabling low-variance gradient estimation and efficient sampling; (ii)
provide sufficient expressiveness to capture complex latent spaces; and (iii) offer
simple distribution-related functions (log-pdf, explicit reparameterization function,
and gradients) that allow fast and accurate evaluation. In Section 2.1, we argue
that the Kumaraswamy (KS) distribution uniquely meets these criteria, yet remains
surprisingly underused. In Section 3, we demonstrate that the KS distribution-related
functions exhibit numerical instabilities concealed by standard parameterizations and
exacerbated in large-scale latent variable models.

In this paper, we make the following technical contributions:
• We introduce an unconstrained logarithmic parameterization of the KS’s log-pdf,

CDF, inverse CDF, and gradients, which isolate the dominant numerical instabilities,
allowing application of recently developed stabilization techniques (Section 3).

• We propose the Variational Bandit Encoder (VBE), addressing exploration-exploita-
tion trade-offs in contextual Bernoulli multi-armed bandits (Section 4.2).

• We propose the Variational Edge Encoder (VEE) for improved uncertainty quantifi-
cation in link prediction with graph neural networks (Section 4.3).

The VBE and VEE are scalable latent variable models with bounded interval-supported

∗Submitted to the editors December, 16, 2024.
Funding: This work was funded by the NSF under award ECCS-2231036.

†Dept. of CS, University of Rochester, Rochester, NY (mwasser6@ur.rochester.edu).
‡Dept. of ECE, University of Rochester, Rochester, NY (gmateosb@ur.rochester.edu).

1

mailto:mwasser6@ur.rochester.edu
mailto:gmateosb@ur.rochester.edu

2 M. WASSERMAN, G. MATEOS

Fig. 1. Comparison of relevant bounded interval-supported distributions. Left: Time for
sampling and differentiating through samples. The Beta lacks explicit reparameterization, and has
slower sampling and gradients. Right: Expressiveness in terms of attainable prototypical shapes.

latent variables. Unlike traditional methods which tend to model global latent variables
(Section 5.1), such as the parameters of a shared neural network (NN), the VBE and
VEE define local latent variables per bandit arm or network link. This allows the
models to incorporate prior knowledge precisely where domain expertise tends to
reside—at a granular level, such as the expected reward of a specific arm or the
probability of a particular link. Our numerical experiments demonstrate that both
models perform best when paired with the stabilized KS distribution in their variational
posterior, reinforcing its role as a core component in large-scale bounded latent variable
modeling.

2. Background. The KS distribution [12, 16] has pdf f(x) = abxa−1(1−xa)b−1,
CDF F (x) = 1− (1− xa)b, and inverse CDF F−1(u) = (1− ub−1

)a
−1

, all defined for
x, u ∈ (0, 1) and parameterized by a, b > 0. The differential entropy of a KS with
parameters a, b is

H(KS) := −
∫ 1

0

f(x) log f(x)dx

= 1− b+ (1− a)
(
ϕ(0)

(
b−1 + 1

)
+ γ

)
− log a− log b,

where ϕ(0) is the digamma function and γ ≈ 0.577 is the Euler-Mascheroni con-
stant. The digamma function and its gradient, the trigamma function ϕ(1)(x), can
be represented as infinite series which converge rapidly and thus can be used effec-
tively in numerical applications. They are included as standard functions in common
auto-differentiation frameworks.

2.1. Continuous distributions with bounded interval support. Among
distributions with bounded interval support, the KS uniquely satisfies desiderata
(i)–(iii) in Section 1. It supports the reparameterization trick through its closed-form,
differentiable inverse CDF, providing efficient sampling and low-variance gradients.
The KS supports four distinct prototypical shapes — bell, U, increasing, and decreasing
(Figure 1, right) — providing expressivity for diverse modeling tasks. Its log-pdf,
CDF, and inverse CDF, along with their gradients, are composed only of affine
transformations, exponentials, and logarithms, and can be parameterized directly in
terms of unconstrained logarithmic values; see Section 3.3. This enables straightforward
implementation with minimal dependencies and keeps most computation in log-space,

STABILIZING THE KUMARASWAMY DISTRIBUTION 3

Property / Distribs. CB tanhN Beta KS

Expressiveness low high high high
Gradient Reparam. explicit explicit implicit explicit
Contains Uniform ✓ ✗ ✓ ✓
Closed-form CDF ✓ ✗ ✗ ✓
Closed-form inverse CDF ✓ ✗ ✗ ✓
Numerical Issues mild high low low
Complex Functions tanh−1 log(1- tanh2(x)) β, I None
Parameterization R R2 R2

+ R2

Analytical Moments ✓ ✗ ✓ ✓
Closed-form KL Exp. Family tanhN Exp. Family Beta
Entropy H ✓ ✗ ✓ ✓

Table 1
Comparison of bounded interval-supported distribution families.

enhancing stability and accuracy. The unconstrained logarithmic parameterization
makes it well-suited for NNs, eliminating the need for positivity-enforcing link functions.
Additionally, the KS has differentiable, closed-form expressions for moments, median,
differential entropy H(KS), and the Kullback-Leibler (KL) divergence to the Beta
distribution, facilitating efficient incorporation of prior information.

We briefly introduce workhorse bounded-interval supported distribution families,
namely the the Continuous Bernoulli, the Beta, and the tanh-squashed-Gaussian. The
Continuous Bernoulli (CB) [18] arises in deep learning for modeling continuous [0, 1]-
valued pixel intensities in natural images. It provides a normalized probabilistic counter-
part to the commonly used binary cross-entropy loss, with density p(x;λ) = C(λ)λx(1−
λ)1−x, x ∈ [0, 1], λ ∈ (0, 1), where C(λ) = {2 if λ = 1

2 , else 2 tanh−1(1−2λ)
1−2λ } is the

normalizing constant. The Beta distribution is a flexible two-parameter family, widely
used for modeling probabilities and proportions. Its density, parameterized by a, b > 0,
is given by: p(x; a, b) = B(a, b)−1xa−1(1− x)b−1, x ∈ (0, 1), where B(a, b) is the Beta
function. The tanh-squashed-Gaussian (tanhN) maps Gaussian samples through the
tanh function to produce outputs in [−1, 1]: y = tanh(z), z ∼ N (µ, σ2). It is widely
used in reinforcement learning over continuous bounded action spaces [8] due to its
support for the reparameterization trick.

Table 1 compares these bounded-interval supported distribution families across
important properties for latent variable modeling. Expressiveness measures the variety
of prototypical shapes a distribution can represent. All distributions except CB
exhibit four prototypical shapes; CB is limited to two. Contains uniform refers
to the ability to represent the uniform distribution, critical for modeling complete
uncertainty. All distributions except tanhN can express the uniform. Closed-form
CDF indicates whether a closed-form CDF is available. Only CB and KS provide such
expressions. Similarly, closed-form inverse CDF indicates the availability of a closed-
form inverse CDF, with only CB and KS satisfying this criterion. Numerical issues
capture challenges in stable evaluation. For example, CB requires a Taylor expansion to
handle singularities as λ→ 0.5. The tanhN distribution requires log-pdf clipping and
parameter regularization to maintain stability, as appears in various implementations [8].
Complex functions highlight reliance on non-affine, non-logarithmic, or non-exponential
operations. The tanhN involves computing log

(
1− tanh2(x)

)
, which is numerically

4 M. WASSERMAN, G. MATEOS

unstable [2]. The Beta distribution relies on the Beta function and the regularized
incomplete Beta function in its log-pdf and CDF, respectively, both requiring numerical
approximations. In contrast, KS avoids such complexity in our novel parameterization
(Section 3.3), computing a−1 as exp(− log a) to sidestep division. In contrast, our
novel parameterization of the KS distribution avoids complex functions; note a−1 is
computed via exp(− log a), avoiding division. Parameterization examines whether a
distribution can be effectively expressed with unconstrained parameters. Both CB (via
log λ ∈ R) and tanhN (via (µ, log σ) ∈ R2) support unconstrained parameterization.
We introduce the first unconstrained parameterization for KS in Section 3.3, using
(log a, log b) ∈ R2. The Beta distribution, due to its dependence on the Beta function,
resists effective unconstrained parameterization. Closed-form KL functions refer to
analytical KL divergence expressions. The CB and Beta distributions, as members of
the exponential family, admit closed-form KL expressions with other exponential family
members. The KS also has closed-form KL expressions with Beta family members,
while tanhN is restricted to closed-form KL expressions within its own family. Entropy
considers the availability of closed-form expressions for differential entropy. This
property is present for all distributions except tanhN .

2.2. Latent variable modeling with stochastic variational inference (SVI).
The primary method for fitting large-scale latent variable models is SVI [9]. Consider a
model pθ(x) =

∫
pθ(x|z)p(z)dz, where x ∈ RM is the observation, z ∈ RD is a vector-

valued latent variable, pθ(x|z) is the likelihood function with parameters θ, and p(z) is
the prior distribution. Except for a few special cases, maximum likelihood learning in
such models is intractable because of the difficulty of the integrals involved. Variational
inference [10] provides a tractable alternative by introducing a variational posterior
distribution qϕ(z) and maximizing a lower bound on the marginal log-likelihood called
the ELBO:

(2.1) L(x,θ,ϕ) = Eqϕ(z) [log pθ(x|z)]−DKL (qϕ(z) ∥ p(z)) ≤ log pθ(x).

Training models with modern SVI [14, 22] involves gradient-based optimization of this
bound w.r.t. both the model parameters θ and the variational parameters ϕ. The
first term in (2.1) encourages the model to assign high likelihood to the data, but
its exact evaluation and gradients are typically intractable and so the expectation is
often approximated with samples from qϕ(z). The KL divergence term incorporates
prior information by penalizing deviations of the variational posterior from the prior
p(z). Closed-form expressions of DKL (qϕ (z) ∥ p (z)) allow efficient encoding of prior
information; otherwise, sample-based approximations are required. In the common
setting of i.i.d. data with per-datapoint latent variables, amortized inference introduces
a shared NN, parameterized by ‘inference parameters’ ϕ, to map observations to vari-
ational parameters, approximating their individual posteriors as qϕ(z|x). Modifying
the ELBO by scaling the KL term with a parameter βKL > 0 is often necessary to
balance the trade-off between data likelihood and prior regularization [1]. We denote
the sample-based approximation of this modified ELBO as L̂βKL .

2.3. Gradient reparameterization: explicit and implicit. A distribution
qϕ(z) is said to be explicitly reparameterizable, or amenable to the ‘reparameterization
trick’, if it can be expressed as a deterministic, differentiable transformation z = g(ϵ,ϕ)
of a base distribution ϵ ∼ p(ϵ). This base distribution is typically simple, such as
Uniform or standard Normal, enabling fast sample generation by first sampling from
the base and then applying g. This enables the use of backpropagation to estimate

STABILIZING THE KUMARASWAMY DISTRIBUTION 5

gradients of the form [cf. (2.1)]

(2.2) ∇ϕEqϕ(z)[f(z)] = Ep(ϵ)[∇ϕf(g(ϵ,ϕ))] = Ep(ϵ)[∇zf(z)|z=g(ϵ,ϕ)∇ϕg(ϵ,ϕ)],

an expectation with form encompassing the ELBO. Explicit reparameterization is
compatible with distributions in the location-scale family (e.g., Gaussian, Laplace,
Cauchy), distributions with tractable inverse CDFs (e.g., exponential, KS, CB), or
those expressible as deterministic transformations of such distributions (e.g., tanhN).
When explicit reparameterization is not available, implicit reparameterization [6] is
commonly used for distributions with numerically tractable CDFs, such as truncated,
mixture, Gamma, Beta, Dirichlet, or von Mises distributions. This method expresses
the parameter gradient through the sample ∇ϕz as a function only of the CDF gra-
dients, not its inverse. Such CDF gradients are either found analytically (if feasible)
or more commonly using numerical methods, e.g., forward mode auto-differentiation
on CDF estimates, as in the Gamma and Beta distributions. Without explicit repa-
rameterization, sampling and gradient computations tend to be slower and more
complex, and produce higher-variance estimates of (2.2), reducing learning efficiency
and stability [14, 11].

3. Stabilizing the Kumaraswamy. The KS distribution’s utility relies on stable
computation of its log-pdf, CDF, inverse CDF, and their gradients. In the standard
parameterization, these functions contain instabilities from hidden log(1 − exp(x))
terms. We address this by introducing an unconstrained logarithmic parameterization
that isolates these unstable terms, enabling their straightforward replacement with the
stable log1mexp function. Finally, we show why naive stabilization techniques, such
as parameter clipping, fail in high-dimensional applications.

3.1. Identifying the instability: log (1− exp (x)). Naive computation of
log (1− exp (x)) for x < 0 leads to significant numerical errors as x approaches 0
(Figure 2, red). These errors grow so large that they can cause numerical instability,
i.e., an irrecoverable error such as -inf. These errors result from catastrophic can-
cellation, which occurs when subtracting nearly equal numbers — here, 1 − exp(x).
As x→ 0, exp(x) ≈ 1, so 1 - exp(x) results in the cancellation of leading significant
bits, leaving only a few less significant, less accurate bits to represent the result. This
causes large relative errors in 1 - exp(x), which are amplified when input to the
logarithm as its magnitude grows sharply near zero. If the cancellation is complete, 1
- exp(x) underflows to 0 and the logarithm returns -inf, as seen in Figure 2 (red)
when log2 |x| < −24.

3.2. Numerical building blocks for accurate log (1− exp (x)) computation.
When |x| ≪ 1, both log(1 + x) and exp(x)− 1 can suffer from severe cancellation: the
former between 1 and x, the latter between exp(x) and −1. In both cases, a simple
solution for accurate computation is to use a few terms of the Taylor series, as

log1p(x) := log(1 + x) = x− x2

2
+

x3

3
− . . . , for |x| < 1,

expm1(x) := exp(x)− 1 = x+
x2

2!
+

x3

3!
+ . . . , for |x| < 1,

where n! denotes the factorial. These functions form the basis for two common
methods to compute log (1− exp(x)): log(-expm1(x)) and log1p(-exp(x)). [19]
showed neither method provides sufficient accuracy across the domain. However, each

6 M. WASSERMAN, G. MATEOS

Fig. 2. Naive computation of log (1− exp (x)) (red) becomes unstable as x → 0 due to cata-
strophic cancellation, while log1mexp(x) (blue) ensures accurate computation.

approach is accurate in complementary regions, leading to

(3.1) log1mexp(x) :=

{
log(-expm1(x)) − log 2 ≤ x < 0

log1p(-exp(x)) x < − log 2,

which computes log (1− exp (x)) accurately throughout single precision, shown in
Figure 2 (blue).

3.3. A stable Kumaraswamy. The direct implementation of the KS’s log-pdf
and inverse CDF — as found in all core auto-differentiation libraries — produces
numerical instabilities. Here, we introduce a novel parameterization in terms of
unconstrained logarithmic parameter values, which isolates and makes explicit the
unstable terms

wb−1(u) = log(1− ub−1

) = log(1− exp(b−1 log u))

wa(x) = log(1− xa) = log(1− exp(a log x)),

eliminates the need for positivity-enforcing link functions, and whose expressions
involve only affine, exponential, and logarithmic transformations. This allows the
log-pdf and its gradients to be expressed as

log f(x) = log a+ log b+ (a− 1) log x+ (b− 1)wa(x)(3.2)
∇log x log f(x) = (a− 1)− (b− 1) · exp(a log x− wa(x) + log a)(3.3)
∇log a log f(x) = 1 + a log x · {1− (b− 1) · exp(a log x− wa(x))}(3.4)
∇log b log f(x) = 1 + b · wa(x).(3.5)

Likewise for the CDF

F (x) = 1− (1− xa)b = 1− exp(b · wa(x))(3.6)
∇xF (x) = exp(log a+ log b+ (a− 1) · log x+ (b− 1) · wa(x))(3.7)

∇log aF (x) = exp(log a+ log b+ a · log x+ (b− 1) · wa(x)) · log x(3.8)
∇log bF (x) = exp(log b+ b · wa(x)) · (−wa(x)),(3.9)

and the inverse CDF

F−1(u) = (1− ub−1

)a
−1

= exp(a−1wb−1(u))(3.10)

∇log aF
−1(u) = exp(− log a+ a−1wb−1(u)) · (−wb−1(u))(3.11)

∇log bF
−1(u) = exp(− log a− log b+ b−1 log u+ (a−1 − 1)wb−1(u)) · log u.(3.12)

STABILIZING THE KUMARASWAMY DISTRIBUTION 7

Fig. 3. Stabilizing log(1− exp(x)) terms eliminates numerical instabilities in the KS log-pdf
and inverse CDF. We compare the unstable PyTorch KS implementation (top row) and our stable
KS (bottom row) for realistic KS distributions (log2 b = 24, varying a). Catastrophic cancellation
in the log(1− exp(x)) terms in the PyTorch KS causes jagged curves and inverse CDF underflow
beyond u ≈ 1− 39.3, resulting in a point mass of ≈ 39.3 at x = 0 in the sampling distribution. Our
stable KS removes the instability by using log1mexp.

This parameterization’s algebraic form allows direct replacement of the domi-
nant unstable terms, substituting wb−1(u) with log1mexp

(
b−1 log u

)
and wa(x) with

log1mexp(a log x). Access to log a and log b avoids errors from unnecessary transi-
tions in-and-out of log-space. We also avoid the error prone expressions produced in
backpropogation’s direct application of the chain rule, e.g.,

∇log bF
−1 =

1

a
· exp

(
1

a
log

(
1- exp

(
1

b
log u

)))
· -
(
1- exp

(
1

b
log u

))−1

· exp
(
1

b
log u

)
· log u · −1

b2
· b

and (3.12) are equivalent expressions for ∇log bF
−1, but their computed values can

differ greatly for extreme parameter values. Desirable KS distributions can obtain
such problematic extreme parameter values, e.g., the KS distributions in Figure 3 have
b ≈ 106. See Section 3.4 for further discussion on how instability in the unmodified
KS can worsen with increasing evidence.

Figure 3 compares the PDF, inverse CDF, and histograms of reparameterized
samples for KS distributions which are typical to real-world modeling scenarios.
The PyTorch implementation (top row) shows jaggedness in both the PDF and
inverse CDF, caused by catastrophic cancellation in the unstable terms wa(x) and
wb−1(u). Additionally, the PyTorch inverse CDF underflows beyond u ≈ 1 − 39.3:
here, wb−1(u) = −∞, and F−1(u) = exp(a−1 · −∞) = 0. This underflow results in a
point mass at x = 0 (a point outside of the KS support) with probability ≈ 39.3 in
each of the reparameterized sampling distributions, and produces infinite gradients
via ∇log aF

−1 = ∞ [cf. (3.11)]. This infinite gradient triggers a cascade: infinite
parameter values after the optimizer step and NaN activations in the next forward pass,
which is what users ultimately observe when training fails.

8 M. WASSERMAN, G. MATEOS

Fig. 4. Differential entropy and mean of Kumaraswamy distributions across a wide range of
parameter values. Low-entropy distributions are concentrated near the origin, where log a = log b = 1
corresponds to the uniform distribution. Distributions with a log differential entropy of 1 and mean of
0.5 are marked in black. Small changes in parameter magnitudes rapidly yield extremely high-entropy
distributions — essentially delta functions at 0 or 1 — except in the narrow region around the black
curve representing distributions with mean 0.5.

3.4. Counter intuitive stability properties of the unstable Kumaraswamy.
When using the unstable KS to model latent variables with SVI, the instability of the
KS distribution can paradoxically worsen as evidence increases. Here, evidence refers
to observed data that sharpens the posterior distribution and reduces uncertainty.
Representing sharper, high-entropy bell-shaped KS distributions — indicative of
reduced posterior uncertainty — requires extremely large b values. Figure 4 illustrates
this: a bell-shaped KS distribution with mean 0.5 and differential entropy H ≈ exp(2)
necessitates log b = 24, and thus b = exp(24) in the unstable KS implementation
which lacks logarithmic parameterization; see Figure 3 for examples of such moderate
entropy distributions with log b = 24. SVI will leverage the inverse CDF and its
gradient expressions (3.10)–(3.12), which critically depend on b through the term
wb−1(u) = log(1 − exp(b−1 log u)). Large b values will act to worsen instability by
driving exp(b−1 log u) closer to 1, increasing the risk of catastrophic cancellation. We
believe this counter-intuitive behavior likely frustrated modelers, but is no longer an
issue in the stabilized KS.

As an illustrative example, consider modeling the latent probability of heads
in a Bernoulli coin-flipping experiment using a KS distribution as the variational
posterior, where the true probability of heads is 0.5. With a uniform prior and a
small number of observed flips, the posterior is well-approximated by a mild-entropy,
bell-shaped KS distribution, characterized by low-magnitude parameters a, b > 1. In
this regime, b−1 remains sufficiently far from zero, minimizing the risk of catastrophic
cancellation in the term 1− exp(b−1 log u), as exp(b−1 log u) stays safely away from 1.
However, as the number of observed flips increases, the posterior sharpens to reflect
reduced uncertainty, demanding larger values of b to represent the corresponding
higher entropy KS distribution. This drives exp(b−1 log u) closer to 1, increasing the
risk of catastrophic cancellation and numerical instability.

3.5. The inadequacy of parameter clipping in large-scale settings. Nu-
merical instability in the KS is inherently stochastic, and in high-dimensional settings,
the compounded probability of failure across multiple variables makes program failure

STABILIZING THE KUMARASWAMY DISTRIBUTION 9

almost certain. As the program goes unstable if any single KS goes unstable, the
overall instability probability can be modeled as the probability of at least one failure
in D independent Bernoulli trials: 1− p(KS stable)D, for D KS latent variables. In
practical large-scale settings, e.g., recommendation systems with 107 users and D = 107

recommendation items, the probability of instability approaches 1 across all reasonable
parameter clipping values, rendering clipping an ineffective stabilization strategy.

Quantitative illustration. Consider the stochastic instability arising from the term
log(1 − exp(b−1 log u)), where catastrophic cancellation occurs if 1 − exp(b−1 log u)
becomes too small. To avoid logarithmic domain errors in single precision, we enforce
−b−1 log u > 2−24 (Figure 2). We aim to select a bmax to satisfy this constraint: a
larger bmax expands the variational family allowing improved posterior approximation,
but worsens stability. Consider the moderate entropy KS distributions in Figure 3
which use b = 224. Using bmax = 224, only u < 0.6321 satisfies the stability condition,
i.e., p(KS stable) ≈ 0.6321 per sample. With D = 107, the overall probability of
instability becomes 1− 0.632110

7 ≈ 1. Now consider aggressively restricting bmax = 24,
as done in [20]. Now u < 0.9999 satisfies the stability condition. Even then, introducing
D = 107 variables, we still have the overall probability of instability is 1−0.9999107 ≈ 1.
Thus, even extreme clipping fails to stabilize KS distributions at scale. Further, this
analysis considers only a single posterior sample. In practice, training with SVI requires
T ∼ 103 optimization steps, each requiring posterior samples for gradient estimation.
This compounds the instability probability to 1− p(KS stable)TD, making clipping
ineffective in realistic large-scale scenarios.

4. Experiments and New Variational Architectures. Using the well es-
tablished Variational Auto-Encoder (VAE) framework on MNIST and CIFAR-10
datasets, we show that the stabilized KS enables reliable training as both a varia-
tional posterior [Eqns. (3.10)–(3.12)] and likelihood function [Eqns. (3.2)–(3.5)]. We
then introduce two new deep variational architectures that leverage bounded interval-
supported latent variables: the Variational Bandit Encoder (VBE) for improving
exploration-exploitation trade-offs in contextual multi-armed bandits (Section 4.2),
and the Variational Edge Encoder (VEE) for enhancing uncertainty quantification in
link-prediction with graph neural networks (Section 4.3). These novel architectures
tend to be most performant when using the KS as their variational posterior. Across
the experimental domains, our stable KS tends to be more performant and easier to use
than alternative variational distributions supported on bounded intervals. For instance,
tanhN models require log-pdf clipping for stability, while Beta models show significant
performance variability based on the chosen positivity-enforcing link function and
often fail to converge, e.g., on CIFAR-10 in Section 4.1. Finally, our new variational
models are fast: the VBEs in Section 4.2 are 8− 22× faster than the state-of-the-art
baseline.

Remark 4.1. Across all three experimental settings, models using the
unstable KS produce NaN errors in training and are therefore excluded. Prior
work using the KS in low-dimensional latent variable models [20, 21, 24] similarly find
NaN errors, and rely on parameter clipping to avoid instability. See Section 3.5 for
why this is approach does not work in large-scale settings. Our stabilization approach
directly resolves these numerical issues, enabling stable training at scale.

4.1. Image variational auto-encoders. The VAE [14] is a generative latent
variable model trained using amortized variational inference. Both the variational
posterior qϕ(z|x) and the conditional likelihood pθ(z|x) are parameterized using NNs,

10 M. WASSERMAN, G. MATEOS

Fig. 5. MNIST test digit VAE reconstructions.

known as the encoder eϕ(x) : RM 7→ RD and decoder dθ(z) : RD 7→ RM , respectively.
VAEs typically use the standard Normal distribution as the prior and a factorized
Normal as the variational posterior. The use of alternative variational distributions
allows incorporating different prior assumptions about the latent factors of the data,
such as bounded support or periodicity [6].

Experimental setup and metrics. Inspired by [18], we train VAEs with fully
factorized priors and variational posteriors on MNIST and CIFAR-10 without pixel
binarization, using an unmodified ELBO (βKL = 1). We adopt the most effective
likelihoods from their work (Beta and CB), identical latent dimension D (MNIST:
D = 20, CIFAR-10: D = 50), and the same standard NN architectures, which are
detailed in Appendix A, along with the training hyperparameters. For each variational
posterior factor, we choose the canonical prior: N(0,1) for N , and U(0,1) for KS and
Beta. We evaluate the models using a single sample approximation of the test ELBO.
To assess usefulness of the learned latent representations, we encode test data xn,
compute the mean E[qϕ(zn|xn)], and classify the test labels using a 15-nearest neighbor
classifier; the classifier accuracy (%) is denoted K(ϕ). For subjective evaluation, we
display the mean decoded likelihood of a single sample from the encoded posterior of
random test digits in Figure 5.

Discussion of results. The sole purpose of this experiment is to provide evidence
toward the stabilization of the KS. Notably, stable KS VAEs maintain numerical
stability while all VAEs with the unstable KS produce unstable training. VAEs with
Beta-distributed variational posteriors often do not converge; indeed, [6] reported
strong performance on binarized MNIST using a softplus link function, but did not
present results on CIFAR-10, nor could we find other works that did. We suspect this is
due to similar instability issues, with the higher gradient variance of the Beta’s implicit

STABILIZING THE KUMARASWAMY DISTRIBUTION 11

Table 2
VAE on MNIST and CIFAR-10.

Prior qϕ(z|x) pθ(x|z) MNIST CIFAR-10

ELBO K(ϕ) ELBO K(ϕ)

N(0,1) N CB 1825± 98 97.3 1167± 901 37.9
U(0,1) KS CB 1818± 104 97.4 1172± 908 41.5
U(0,1) Beta CB 1821± 98 97.5 1167± 907 40.3

N(0,1) N Beta 4073± 5701 92.1 3566± 1203 48.5
U(0,1) KS Beta 4061± 1932 91.3 3483± 1133 50.1
U(0,1) Beta Beta 4082± 1522 90.1 N/A N/A

N(0,1) N KS 3328± 989 96.4 1720± 884 47.1
U(0,1) KS KS 3355± 512 96.8 1738± 877 48.8
U(0,1) Beta KS 3348± 515 97.1 N/A N/A

reparameterization a likely explanation. In an attempt to overcome this instability in
Beta VAEs we report the best metrics across softplus or exp link functions in Table 2.
When neither converges, we report N/A. The results in Table 2 show that across
datasets, VAEs with KS-distributed variational posteriors consistently produce useful
latent spaces, evidenced by strong K(ϕ), and yield reconstructions with high ELBOs
and visual quality.

When paired with any variational posterior, a KS likelihood yields stronger MNIST
reconstructions than Beta likelihoods: compare rows ∗-Beta to ∗-KS in Table 5. As
in [18], we find CB likelihoods produce the most subjectively performant VAEs on
MNIST, unsurprising as CB was introduced specifically for the approximately binary
MNIST pixel data.

4.2. Contextual Bernoulli multi-armed bandits. The contextual Bernoulli
multi-armed bandit (MAB) problem involves a decision maker who, at each time
step t = 1, . . . , T , selects one arm from a finite set of K options. Each arm has an
associated context xk ∈ Rd, and pulling an arm yields a binary reward rk ∼ Ber(vk),
where vk ∈ [0, 1] is the unknown mean reward. MABs originate by analogy to casino
slot machines, where each machine (arm) has a different payout rate, and the challenge
lies in deciding which arms to pull in order to maximize total winnings while learning
about their payout rates, a situation called the exploration-exploitation dilemma.
MABs have found applications in modern recommendation systems [17], clinical trials
design [28], and mobile health [25]. Thompson Sampling (TS) is a simple, empirically
effective [3], and scalable [13] arm selection heuristic. It selects the arm corresponding
to the highest value drawn from the posterior distributions over the latent zk’s. This
approach naturally balances exploration and exploitation: the uncertainty in the
posteriors promote exploration, while concentration of probability mass on large mean
rewards drive exploitation.

Variational Bandit Encoder (VBE): VAE ∩ TS. Our novel VBE posits a fully
factorized KS variational posterior

∏
k qϕ(zk|xk), prior p(z) = UK

(0,1), and a Bernoulli
reward likelihood p(r|vk) for each arm. Similar to VAEs, we employ amortized inference
using a shared NN encoder eϕ(xk), which defines a reparameterizable variational
distribution qϕ(zk|xk). However, unlike VAEs, VBEs omit the decoder; samples z̃k ∼
qϕ(zk|xk) directly parameterize the reward likelihood. The arm selection at step t
follows TS: a = argmaxk{z̃k}. We then draw reward r ∼ Ber(va) and record it in

12 M. WASSERMAN, G. MATEOS

Algorithm 4.1 Variational Bandit Encoder (VBE)
Require: {xk}Kk=1, {vk}Kk=1, η, βKL
1: Variational posterior q ← KS
2: Replay buffer D ← ∅
3: for t = 1 . . . T do
4: Encode: (ak, bk) = eϕ(xk)
5: Sample: z̃k ∼ q(zk; ak, bk)
6: TS: a = argmaxk{z̃k}
7: Reward: r ∼ Ber(va)
8: D ← D ∪ {(xa, a, r)}
9: Construct L̂βKL,t as in (4.1)

10: ϕ← ϕ+ η∇ϕL̂βKL,t

11: end for

the replay buffer D ← D ∪ {(xa, a, r)}. We construct a sample approximation of the
modified ELBO over the subset of arms Kt ⊂ {1, . . . ,K} that have been pulled by
time t as

L̂βKL,t(D,ϕ) =
∑

(xa,a,r)∈D

log p(r|z̃a) + βKL
∑
k∈Kt

H[qϕ(zk|xk)].(4.1)

The second term promotes exploration by penalizing overconfidence with the explo-
ration effect proportional to βKL. We maximize (4.1) w.r.t. ϕ via gradient ascent,
enabled by the reparameterizable KS. VBE execution is summarized in Algorithm 4.1.

VBE Modified ELBO Derivation. Let X = [x1, . . . ,xK] be a matrix where
the k-th column corresponds to the context feature xk. Assuming independence
between arms and within-arm rewards, the data likelihood can be factorized as
p(D|z) =

∏
(xa,a,r)∈D p(r|za). We adopt a fully factorized variational posterior of the

form qϕ(z|X) =
∏K

k=1 qϕ(zk|xk). Recall that Kt ⊂ {1, . . . ,K} represents the subset
of arms that have been pulled, and thus for which we have reward data. The modified
ELBO is derived as follows:

LβKL,t(D,ϕ) = Eqϕ(z|X)[log p(D|z)]− βKLKL (qϕ(z|X) ∥ p(z))
= Eqϕ(z|X)[log p(D|z)] + βKLH [qϕ(z|X)] , p(z) = UK

(0,1)

= Eqϕ(z|X)[log p(D|z)] + βKL
∑
k∈Kt

H [qϕ(za|xa)]

= Eqϕ(z|X)

 ∑
(xa,a,r)∈D

log p(r|za)

+ βKL
∑
k∈Kt

H [qϕ(za|xa)]

≈
∑

(xa,a,r)∈D

log p(r|z̃a) + βKL
∑
k∈Kt

H [qϕ(za|xa)] , z̃a ∼ qϕ(za|xa)

where in the final step, we use a single sample approximation of the expectation.
VBE advantages. VBEs provide four primary advantages over alternative

TS-based Bernoulli MAB approaches, discussed in Section 5.1
• Scalability and Compatibility. VBE training consists of a forward pass through a

NN, sampling an explicitly reparameterized distribution, and a backward pass for
gradient-based updates. This process is scalable and fully compatible with existing
gradient-based infrastructure.

STABILIZING THE KUMARASWAMY DISTRIBUTION 13

Fig. 6. High arm reward probabilities are reduced via a power 5 exponentiation, challenging
agents to explore.

• Prior Knowledge Incorporation. When prior knowledge exists on an arm k it
can be efficiently encoded as p(zk) = Beta(ak, bk), replacing H[qϕ(zk|xk)] with
−DKL (qϕ(zk|xk) ∥ p(zk)).

• Interpretability and Independence. Encoding xk produces KS distribution parameters,
fully encapsulating the model’s beliefs about vk. This is independent of other arms
and past data.

• Simplicity. VBEs lack numerous hyperparameters and complex architectural com-
ponents.

Alternative methods lack some or all of these properties because they do not directly
model the mean rewards nor differentiate through mean reward samples; instead, they
model the parameters ϕ.

Experimental setup. We construct synthetic data with K = 104 arms by first
sampling a weight vector w and features {xk}Kk=1 from N (0, I5). We then compute
{w⊤xk}Kk=1 and apply min-max normalization to produce probabilities (referred to
as “Original probabilities" in Figure 6). To introduce non-linearity, we raise these
probabilities to the power 5 (shown as “Power (5) transformed probabilities" in Figure 6).
Exponentiating the probabilities not only makes the mapping from features to mean
rewards more challenging to learn, but it also significantly reduces the number of arms
with high probabilities, forcing the agent to explore more. For instance, when raising
the probabilities to the power of 5, the number of arms with large probabilities drops
from 167 to just 7. We consider T = 2 · 103 steps.

We evaluate VBEs with either a KS (VBE-KS), Beta (VBE-Beta), or tanhN
(VBE-tanhN) all using βKL = |Kt|−1, which makes the second term in (4.1) a mean.
VBE-tanhN ’s performance is sensitive to the number of samples used in its entropy
estimate: we found degraded performance beyond 10 samples. The learning rate is set
to η = 10−2. As a baseline, we use LMC-TS, which employs Langevin Monte Carlo
(LMC) to sample posterior parameters of a NN, known for state-of-the-art performance
across various tasks [31]. All models use an MLP with 3 hidden layers of width 32.
LMC-TS hyperparameters (inverse temperature, LMC steps, weight decay) are set or

14 M. WASSERMAN, G. MATEOS

Fig. 7. Synthetic bandit performance over 5 runs. VBE-KS best handles exploration-exploitation
trade-offs while being ∼ 10× faster than state-of-the-art Langevin sampling based LMC-TS.

tuned based on the authors’ code. We repeat experiments 5 times on an Apple M2
CPU and report the mean and standard deviation across these runs in Figure 7.

Metrics and evaluation. The optimal policy always selects the arm with
the highest mean reward r∗. Our objective is to minimize regret, defined as the
cumulative difference between the expected reward of the chosen action and the optimal
action (accessible in the synthetic setting), i.e.,

∑T
t=1(r

∗ − rat
). VBE-KS achieves

lower regret and higher cumulative reward than all baselines. VBE-Beta performs
significantly worse than VBE-KS and VBE-tanhN , highlighting the importance of
explicit reparameterization. LMC-TS is performant — worse than VBE-KS and better
than VBE-tanhN — but is 8–22× slower than VBEs: VBEs avoid the computational
overhead of LMC.

4.3. Variational link prediction with Graph Neural Networks. Graph Neu-
ral Networks (GNNs) have become a powerful tool for learning from graph-structured
data, with applications in critical areas like drug discovery [32] and finance [29]. A
key task is link prediction, where the goal is to infer unobserved edges between nodes.
However, real-world deployment of graph learning models is often hindered by a lack of
reliable uncertainty estimates and limited capacity to incorporate prior knowledge [30].
To address these challenges, we propose a variational approach where the GNN encodes
a KS to model the unobserved probabilities of each network link’s existence, enabling
uncertainty quantification and prior knowledge integration with minimal computational
overhead.

In a typical link prediction setup, the GNN has access to the features X ∈
RN×d of all N nodes, but only a subset of positive edges in the training Dtr and
validation Dval sets. Edges are labeled as 1 (present) or 0 (absent). The GNN
generates edge embeddings through message passing and neighborhood aggregation,
outputting probabilities zu,v ∈ (0, 1) that parameterize a Bernoulli likelihood. The
seminal work of [15] proposed Variational Graph Auto-encoders (VGAEs), which
posits a Gaussian variational posterior over the final node embeddings. When used
for link prediction it samples final node embeddings from the variational posterior
and decodes them to produce edge probabilities. In contrast, our approach directly

STABILIZING THE KUMARASWAMY DISTRIBUTION 15

models the probability of an edge using the KS. An advantage of directly modeling
edge probabilities is interpretability; deep nodal embeddings are often difficult to
interpret, and priors are typically selected for computational tractability rather than
their ability to incorporate meaningful prior information. However, the probability
of an edge (u, v) existing between two nodes is an interpretable quantity that can
often be informed by domain expertise. For example, in gene regulatory networks,
epidemiological networks, and social networks experts often have prior knowledge
about the likelihood of specific interactions, transmissions, or friendships, respectively,
which can be directly incorporated into edge prior p(z(u,v)). We believe the limited
exploration of variational modeling for edge probabilities is due to the previous lack of
an expressive, stable, explicitly reparameterizable bounded-interval distributions.

Variational Edge Encoder (VEE). We propose a fully factorized KS variational
posterior

∏
(u,v)∈Dtr

qϕ(zu,v|X,Dtr) with a uniform prior p(z) = U
|Dtr|
(0,1) . The GNN

encoder eϕ parameterizes a KS distribution for each possible edge (u, v). The remaining
structure is highly similar to VBEs: a single sample z̃u,v ∼ qϕ(zu,v|X,Dtr) directly
parameterizes the Bernoulli likelihood, and we maximize a sample approximation of
the modified ELBO

L̂βKL((X,Dtr),ϕ) =
∑

(u,v)∈Dtr

log p(z(u,v)|X,Dtr) + βKL
∑

(u,v)∈Dtr

H[qϕ(z(u,v)|X,Dtr)].(4.2)

From their similarity with VBEs, VEEs inherit the same advantages outlined in
Section 4.2.

Models, metrics, and datasets. All models use a 2-layer GNN with Graph
Convolutional Network (GCN) layers and a hidden/output nodal dimension of 32. In
Base-GNN, an MLP decodes the final nodal embeddings into link probabilities. In VEE-
KS/Beta/tanhN an MLP parameterizes the KS/Beta/tanhN variational distributions;
all take βKL = .05|Dtr|−1. We use 10 samples in tanhN ’s entropy estimate; more
did not produce significant performance differences. We train for 300 epochs, with a
learning rate of .01, averaging results over 5 runs with different seeds. The posterior
predictive distribution over binary links p(A|X, Dtr) =

∫
p(A|Z)qϕ(Z|X, Dtr)dZ is

estimated by using a single sample from each KS/Beta distribution, parameterizing
each edge Bernoulli distribution with such samples, followed by sampling binary edges.
For Base-GNN we directly sample binary edges from the likelihood. Using 30 posterior
predictive samples, we compute the edge-wise posterior predictive mean (pred. mean)
and standard deviation (pred. stdv.). We report the Pearson correlation ρ between
predictive uncertainty (pred. stdv.) and error (ℓ1 difference between pred. mean and
the true label), as a measure of uncertainty calibration: useful uncertainty estimates
should show strong associations between uncertainty and error. Additionally, we
compute area under the ROC curve (AUC) using pred. mean as a predictor. Figure 8
shows performance across 3 standard citation networks: Cora, Citeseer, and Pubmed.

Discussion of results. On all datasets and all metrics, VEE-KS outperforms or
matches the most performant baselines, providing higher predictive accuracy (AUC)
and better uncertainty calibration (higher ρ). Similar to Section 4.2, we find Beta
distributed variational posteriors perform significantly worse than those using KS or
tanhN , further underlining the importance of explicit reparameterization. Moreover,
models using explicitly reparameterizable latents are faster: on the largest dataset
(Pubmed), the average time (ms) per epoch for VEE-KS, VEE-tanhN , and VEE-Beta
was 381± 61, 301± 26, and 447± 86 respectively, on an Apple M2 CPU.

16 M. WASSERMAN, G. MATEOS

Fig. 8. VEE-KS produces informative and calibrated edge posterior predictives across graph
datasets.

5. Related Work. This section reviews prior work on TS-based approaches
for Bernoulli MABs and the use of the KS distribution as a surrogate for the Beta
distribution in latent variable models, highlighting their limitations and connections
to our contributions.

5.1. VBEs in context: TS-based Bernoulli MAB approaches. Existing
TS-based approaches for Bernoulli MABs assume a prior over model parameters p(ϕ),
which map contexts to rewards through eϕ. At each round, parameters are sampled
from the posterior, ϕ̃t ∼ p(ϕ|D), and used to compute mean reward posterior samples
{eϕ̃t

(xk)}Kk=1. However, the Bernoulli likelihood often leads to intractable posteriors,
making parameter sampling difficult. Common methods use either variational approxi-
mations [3, 26, 4], primarily Laplace, or MCMC approaches like Gibbs sampling [5]
or LMC [31]. These approaches face several limitations. First, incorporating prior
knowledge is challenging since the relationship between a parameter’s value and its
effect on rewards is often unclear, except in the simplest models. Second, scalability is
a concern: Laplace approximations become inefficient with large context dimensions
or model sizes, while MCMC-based methods are compute and memory intensive,
requiring long burn-in periods (typically 102 iterations) and large machine memory
to store the buffer D. Third, interpreting model beliefs over mean rewards requires
drawing numerous posterior samples, adding further computational cost. Finally, these
methods often introduce significant complexity through intricate algorithms, architec-
tures, optimization steps, and hyperparameters, particularly MCMC parameters (e.g.,
burn-in iterations, chain length, LMC inverse temperature/weight decay and their
respective schedules). By directly modeling mean rewards with a KS, instead of the
parameters ϕ, VBEs offer a simple, scalable, and interpretable approach to Bernoulli
MABs.

5.2. Kumaraswamy as a Beta surrogate. A simple approach to overcome
the Beta distribution’s lack of explicit reparameterization is to use the KS as a sur-
rogate. This surrogate approach is feasible due to their significant similarities when
defined by the same two parameters and the availability of a high-fidelity closed-form
approximation of the KL divergence between Beta and KS distributions. [20, 21] use
KSs as surrogates for Betas in the Dirichlet Process stick-breaking construction to
allow for stochastic latent dimensionality in a VAE. However, both require parameter
clipping for numerical stability. In their published code [20] constrains KS parameters
log a, log b ∈ [−2.3, 2.9], significantly limiting the expressiveness of latent KS distri-

STABILIZING THE KUMARASWAMY DISTRIBUTION 17

butions. Also, [21] comments under a Computational Issues section that ‘If NaNs
are encountered...clipping the parameters of the variational Kumaraswamys usually
solve the problem.’ [24] improved upon [20] by resolving the order-dependence issue in
approximating a Beta with a KS. Similarly, [23] followed a comparable process using
an Indian Buffet Process. Both works maintained numerical stability by restricting
the uniform base distribution’s support from the unit interval to a narrower interval,
before passing the samples through the inverse CDF producing a distortion of the
reparameterized sampling distribution. This work eliminates the need for such distor-
tions, enabling more accurate Beta approximations and simplifying the use of the KS
distribution by ensuring numerical stability without additional interventions.

6. Conclusion, Limitations, and Future Work. We identified and resolved
key numerical instabilities in the KS distribution, a uniquely attractive option in
variational models for bounded latent variables. Our work demonstrates that the
stabilized KS can tackle a wide range of large-scale machine learning challenges
by powering simple deep variational models. We introduce the Variational Bandit
Encoder, which enhances exploration-exploitation trade-offs in contextual Bernoulli
MABs, and the Variational Edge Encoder, which improves uncertainty quantification
in link prediction using GNNs. Our empirical results show these models are both
performant and fast, achieving their best performance with the KS while avoiding the
instability and complexity seen in alternatives like the Beta or tanhN distributions.
These models open avenues for addressing other large-scale challenges, including in
recommendation systems, reinforcement learning with continuous bounded action
spaces, network analysis, and uncertainty quantification in deep learning, such as
modeling per-parameter dropout probabilities using a Concrete distribution [7].

KS generalizations [27] inherit log(1− exp(x)) instabilities, which future work can
resolve by building on our stabilization technique. A limitation of the current models
is their inability to capture multimodal posteriors. Future work could explore KS
mixtures or hierarchical latent spaces to bridge this gap. Further, optimizing the βKL
parameter with techniques like warm-up schedules could yield further performance
gains [1]. Applications of our stable KS distribution to non-parametric models like
the Dirichlet Processes follows directly from prior work [21, 24]. Lastly, a theoretical
analysis of the VBE, particularly in proving regret bounds and asymptotic results, could
extend its applicability to critical areas like clinical trials, where robust decision-making
under uncertainty is essential.

Reproducibility Statement. We have made our code publicly available as
supplementary material accompanying this submission. Algorithmic details including
hyperparameter selections are given in the body, and included in configuration files in
the code.

Appendix A. VAE architectural and training choices. The following is
almost identical to that used in [18], but provided here for completeness. For both
experiments (MNIST and CIFAR-10) we use a learning rate of 0.001, batch size of
500, and optimize with Adam for 200 epochs.
Enforcing positive variational parameters.
• Gaussian. When the variational posterior is Normal, the output layer of the encoder

uses a softplus nonlinearity for the positive standard deviation.
• KS. As we parameterize the KS by unconstrained log values, any required expo-

nentiation occurs internally, so we require no nonlinearity on the output of the
encoder.

18 M. WASSERMAN, G. MATEOS

• Beta. The core software libraries do not implement the Beta distribution’s reparame-
terized sampling with unconstrained log parameter values, so we use an exponential
nonlinearity on the output of the encoder to enforce positivity. A softplus nonlinear-
ity was attempted which was found to be less stable likely due to the model seeing
very large latent parameter values, which is more stably accessible via an exp.

Enforcing positive likelihood parameters.
• CB. When the likelihood is a CB, the output of the decoder has a sigmoid non-

linearity to enforce its parameter λ ∈ (0, 1).
• KS. As we parameterize the KS by unconstrained log values, any required exponen-

tiation occurs internally, so we require no further transformation on the output of
the decoder.

• Beta. The core software libraries do not implement the Beta distribution’s log-
pdf with unconstrained log parameter values, so we use a softplus nonlinearity on
the output of the decoder to enforce positivity. An exponential nonlinearity was
attempted which was found to be less stable.

Data augmentation for (0, 1) likelihood functions. The CB has support [0, 1] and
handles data on the support boundaries without issue. When the likelihood function is
a Beta or KS, which have support (0, 1), we clamp pixel intensities to [1

2×255 , 1−
1

2×255]
to prevent non-finite gradient values.

For all our MNIST experiments we use a latent dimension of D = 20, an encoder
with two hidden layers with 500 units each, with leaky-ReLU non-linearities, followed
by a dropout layer (with parameter 0.9). The decoder also has two hidden layers with
500 units, leaky-ReLU non-linearities and dropout. For all our CIFAR-10 experiments
we use a latent dimension of D = 40, an encoder with four convolutional layers,
followed by two fully connected ones. The convolutions have respectively, 3, 32, 32 and
32 features, kernel size 2, 2, 3 and 3, strides 1, 2, 1, 1 and are followed by leaky-ReLU
non-linearities. The fully connected hidden layer has 128 units and a leaky-ReLU non
linearity. The decoder has an analogous “reversed” architecture.

Appendix B. Kumaraswamy-Beta KL Divergence. The KL divergence
between the Kumaraswamy distribution q(v) with parameters a, b and the Beta
distribution p(v) with parameters α, β is given by

Eq

[
log

q(v)

p(v)

]
=
a− α

a

(
−γ −Ψ(b)− 1

b

)
+ log ab+ logB(α, β)− b− 1

b

+ (β − 1)b

∞∑
m=1

1

m+ ab
B
(m
a
, b
)

where γ is Euler’s constant, Ψ(·) is the Digamma function, and B(·) is the Beta
function. The infinite sum in the KL divergence arises from the Taylor expansion
required to represent Eq[log(1− vk)]; it is generally well approximated by the first few
terms.

REFERENCES

[1] A. Alemi, B. Poole, I. Fischer, J. Dillon, R. A. Saurous, and K. Murphy, Fixing a
broken ELBO, in ICML, 2018.

[2] J. Björck, X. Chen, C. De Sa, C. P. Gomes, and K. Weinberger, Low-precision
reinforcement learning: running soft actor-critic in half precision, in ICML, 2021.

[3] O. Chapelle and L. Li, An empirical evaluation of Thompson sampling, in NeurIPS, 2011.
[4] P. Clavier, T. Huix, and A. Durmus, VITS: Variational inference Thomson sampling for

contextual bandits, in ICML, 2024.

STABILIZING THE KUMARASWAMY DISTRIBUTION 19

[5] B. Dumitrascu, K. Feng, and B. Engelhardt, PG-TS: Improved Thompson sampling for
logistic contextual bandits, in NeurIPS, 2018.

[6] M. Figurnov, S. Mohamed, and A. Mnih, Implicit reparameterization gradients, NeurIPS,
(2018).

[7] Y. Gal, J. Hron, and A. Kendall, Concrete dropout, NeurIPS, (2017).
[8] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, Soft actor-critic: Off-policy maximum

entropy deep reinforcement learning with a stochastic actor, in ICML, 2018.
[9] M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley, Stochastic variational inference, J.

Mach. Learn. Res., (2013).
[10] T. S. Jaakkola and M. I. Jordan, Bayesian parameter estimation via variational methods,

Stat. Comput., (2000).
[11] E. Jang, S. Gu, and B. Poole, Categorical reparametrization with Gumble-Softmax, in ICLR,

2017.
[12] M. Jones, Kumaraswamy’s distribution: A beta-type distribution with some tractability advan-

tages, Stat. Methodol., (2009).
[13] K.-S. Jun, A. Bhargava, R. Nowak, and R. Willett, Scalable generalized linear bandits:

Online computation and hashing, in NeurIPS, 2017.
[14] D. P. Kingma and M. Welling, Auto-encoding variational Bayes, in ICLR, 2014.
[15] T. N. Kipf and M. Welling, Variational graph auto-encoders, in NeurIPS Worksh. on Bayes.

Deep Learn., 2016.
[16] P. Kumaraswamy, A generalized probability density function for double-bounded random

processes, J. Hydrol., (1980).
[17] L. Li, W. Chu, J. Langford, and R. E. Schapire, A contextual-bandit approach to

personalized news article recommendation, in WWW, 2010.
[18] G. Loaiza-Ganem and J. P. Cunningham, The continuous Bernoulli: Fixing a pervasive

error in variational autoencoders, in NeurIPS, 2019.
[19] M. Mächler, Accurately computing log(1− exp(−|a|)) assessed by the Rmpfr package, CRAN,

(2012).
[20] E. Nalisnick, L. Hertel, and P. Smyth, Approximate inference for deep latent Gaussian

mixtures, in NeurIPS Worksh. on Bayes. Deep Learn., 2016.
[21] E. Nalisnick and P. Smyth, Stick-breaking variational autoencoders, in ICLR, 2017.
[22] D. J. Rezende, S. Mohamed, and D. Wierstra, Stochastic backpropagation and approximate

inference in deep generative models, in ICML, 2014.
[23] R. Singh, J. Ling, and F. Doshi-Velez, Structured variational autoencoders for the Beta-

Bernoulli process, in NeurIPS Workshop Adv. Approx. Bayes. Infer., 2017.
[24] A. Stirn, T. Jebara, and D. Knowles, A new distribution on the simplex with auto-encoding

applications, in NeurIPS, 2019.
[25] A. Tewari and S. A. Murphy, From ads to interventions: Contextual bandits in mobile

health, Mob. Health: Sens. Analyt. Methods Appl., (2017).
[26] I. Urteaga and C. Wiggins, Variational inference for the multi-armed contextual bandit, in

AISTATS, 2018.
[27] R. M. Usman and M. A. ul Haq, The marshall-olkin extended inverted kumaraswamy

distribution: Theory and applications, J. King Saud Univ. - Sci., (2020).
[28] S. S. Villar, J. Bowden, and J. Wason, Multi-armed bandit models for the optimal design

of clinical trials: benefits and challenges, Stat. Sci., (2015).
[29] J. Wang, S. Zhang, Y. Xiao, and R. Song, A review on graph neural network methods in

financial applications, J. Data Sci., (2022).
[30] M. Wasserman and G. Mateos, Graph structure learning with interpretable Bayesian neural

networks, Trans. Mach. Learn. Res., (2024).
[31] P. Xu, H. Zheng, E. V. Mazumdar, K. Azizzadenesheli, and A. Anandkumar, Langevin

Monte Carlo for contextual bandits, in ICML, 2022.
[32] Z. Zhang, L. Chen, F. Zhong, D. Wang, J. Jiang, S. Zhang, H. Jiang, M. Zheng, and

X. Li, Graph neural network approaches for drug-target interactions, Curr. Opin. Struct.
Biol., (2022).

	Introduction
	Background
	Continuous distributions with bounded interval support
	Latent variable modeling with stochastic variational inference (SVI)
	Gradient reparameterization: explicit and implicit

	Stabilizing the Kumaraswamy
	Identifying the instability: log(1-exp(x))
	Numerical building blocks for accurate log(1-exp(x)) computation
	A stable Kumaraswamy
	Counter intuitive stability properties of the unstable Kumaraswamy
	The inadequacy of parameter clipping in large-scale settings

	Experiments and New Variational Architectures
	Image variational auto-encoders
	Contextual Bernoulli multi-armed bandits
	Variational link prediction with Graph Neural Networks

	Related Work
	VBEs in context: TS-based Bernoulli MAB approaches
	Kumaraswamy as a Beta surrogate

	Conclusion, Limitations, and Future Work
	Appendix A. VAE architectural and training choices
	Appendix B. Kumaraswamy-Beta KL Divergence
	References

