

Online Topology Inference from Streaming Stationary Graph Signals

Rasoul Shafipour

Dept. of Electrical and Computer Engineering University of Rochester rshafipo@ece.rochester.edu http://www.ece.rochester.edu/~rshafipo/

Co-authors: Abolfazl Hashemi, Gonzalo Mateos, and Haris Vikalo

IEEE Data Science Workshop, June 4, 2019

Network Science analytics

- Network as graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$: encode pairwise relationships
- Desiderata: Process, analyze and learn from network data [Kolaczyk'09]

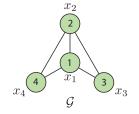
Network Science analytics

- Network as graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$: encode pairwise relationships
- Desiderata: Process, analyze and learn from network data [Kolaczyk'09]
- ► Interest here not in *G* itself, but in data associated with nodes in *V* ⇒ The object of study is a graph signal
- ► Ex: Opinion profile, buffer congestion levels, neural activity, epidemic

Graph signal processing (GSP)

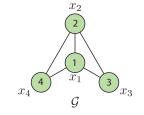
► Undirected *G* with adjacency matrix **A** ⇒ A_{ij} = Proximity between *i* and *j*

▶ Define a signal x on top of the graph ⇒ x_i = Signal value at node i



Graph signal processing (GSP)

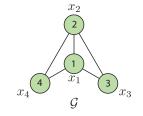
- ► Undirected G with adjacency matrix A ⇒ A_{ij} = Proximity between i and j
- ▶ Define a signal x on top of the graph ⇒ x_i = Signal value at node i



Associated with G is the graph-shift operator (GSO) S = VAV^T ∈ M^N
 ⇒ S_{ij} = 0 for i ≠ j and (i, j) ∉ E (local structure in G)
 ⇒ Ex: A, degree D and Laplacian L = D - A matrices

Graph signal processing (GSP)

- ► Undirected G with adjacency matrix A ⇒ A_{ii} = Proximity between i and j
- Define a signal x on top of the graph ⇒ x_i = Signal value at node i



- ► Associated with G is the graph-shift operator (GSO) $\mathbf{S} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^T \in \mathcal{M}^N$
 - \Rightarrow $S_{ij} = 0$ for $i \neq j$ and $(i, j) \notin \mathcal{E}$ (local structure in G)
 - \Rightarrow Ex: **A**, degree **D** and Laplacian **L** = **D A** matrices
- ▶ Graph Signal Processing → Exploit structure encoded in S to process x
 ⇒ GSP well suited to study (network) diffusion processes
- \blacktriangleright Use GSP to learn the underlying ${\mathcal G}$ or a meaningful network model

Topology inference: Motivation and context

- Network topology inference from nodal observations [Kolaczyk'09]
 - Partial correlations and conditional dependence [Dempster'74]
 - Sparsity [Friedman et al'07] and consistency [Meinshausen-Buhlmann'06]
 - [Banerjee et al'08], [Lake et al'10], [Slawski et al'15], [Karanikolas et al'16]
- ► Can be useful in neuroscience [Sporns'10]
 - \Rightarrow Functional net inferred from activity
- Noteworthy GSP-based approaches
 - Gaussian graphical models [Egilmez et al'16]
 - Smooth signals [Dong et al'15], [Kalofolias'16]
 - Stationary signals [Pasdeloup et al'15], [Segarra et al'16]
 - Non-stationary signals [Shafipour et al'17]
 - Directed graphs [Mei-Moura'15], [Shen et al'16]
 - Low-rank excitation [Wai et al'18]
 - Learning from sequential data [Vlaski et al'18]

▶ Here: online topology inference from streaming stationary graph signals



Signal y is the response of a linear diffusion process to an input x

$$\mathbf{y} = \alpha_0 \prod_{l=1}^{\infty} (\mathbf{I} - \alpha_l \mathbf{S}) \mathbf{x} = \sum_{l=0}^{\infty} \beta_l \mathbf{S}^l \mathbf{x}$$

 \Rightarrow Common generative model. Heat diffusion if α_k constant

One can state that the graph shift S explains the structure of signal y



Signal y is the response of a linear diffusion process to an input x

$$\mathbf{y} = \alpha_0 \prod_{l=1}^{\infty} (\mathbf{I} - \alpha_l \mathbf{S}) \mathbf{x} = \sum_{l=0}^{\infty} \beta_l \mathbf{S}^l \mathbf{x}$$

 \Rightarrow Common generative model. Heat diffusion if α_k constant

- One can state that the graph shift S explains the structure of signal y
- Cayley-Hamilton asserts that we can write diffusion as

$$\mathbf{y} = \left(\sum_{l=0}^{L-1} h_l \mathbf{S}^l\right) \mathbf{x} := \mathcal{H}(\mathbf{S})\mathbf{x} := \mathbf{H}\mathbf{x}$$

⇒ Degree $L \le N$ depends on the dependency range of the filter ⇒ Shift invariant operator **H** is graph filter [Sandryhaila-Moura'13] Online topology inference: From $\mathcal{Y} = \{\mathbf{y}^{(1)}, \dots, \mathbf{y}^{(P)}, \dots\}$, Find **S** efficiently

Stationary graph signal [Marques et al'16]

Def: A graph signal **y** is stationary with respect to the shift **S** if and only if $\mathbf{y} = \mathbf{H}\mathbf{x}$, where $\mathbf{H} = \sum_{l=0}^{L-1} h_l \mathbf{S}^l$ and **x** is white.

► The covariance matrix of the stationary signal **y** is

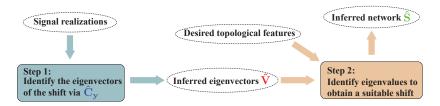
$$\mathbf{C}_{\boldsymbol{y}} = \mathbb{E}\left[\mathbf{H}\mathbf{x}(\mathbf{H}\mathbf{x})^{T}\right] = \mathbf{H}\mathbb{E}\left[\mathbf{x}\mathbf{x}^{T}\right]\mathbf{H}^{T} = \mathbf{H}\mathbf{H}^{T}$$

► Key: Since **H** is diagonalized by **V**, so is the covariance **C**_y

$$\mathbf{C}_{y} = \mathbf{V} \left| \sum_{l=0}^{L-1} h_{l} \mathbf{\Lambda}^{l} \right|^{2} \mathbf{V}^{T} = \mathbf{V} \left(\mathcal{H}(\mathbf{\Lambda}) \right)^{2} \mathbf{V}^{T}$$

 \Rightarrow Estimate V from \mathcal{Y} via Principal Component Analysis

Two-step approach [Segarra et al'17]



Step 2: Obtaining the eigenvalues of S

▶ We can use extra knowledge/assumptions to choose one graph
 ⇒ Of all graphs, select one that is optimal in the number of edges

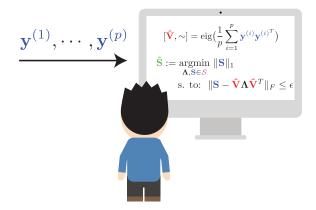
$$\hat{\mathbf{S}} := \underset{\mathbf{S}, \mathbf{A}}{\operatorname{argmin}} \|\mathbf{S}\|_{1} \quad \text{subject to:} \quad \|\mathbf{S} - \hat{\mathbf{V}}\mathbf{A}\hat{\mathbf{V}}^{\mathsf{T}}\|_{\mathsf{F}} \le \epsilon, \ \mathbf{S} \in \mathcal{S}$$

• Set \mathcal{S} contains all admissible scaled adjacency matrices

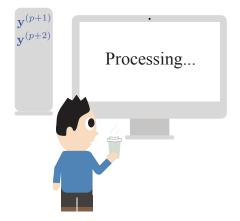
$$S := \{ \mathbf{S} \mid S_{ij} \ge 0, \ \mathbf{S} \in \mathcal{M}^N, \ S_{ii} = 0, \ \sum_j S_{1j} = 1 \}$$

- Consider streaming stationary signals $\mathcal{Y} := \{ \mathbf{y}^{(1)}, \cdots, \mathbf{y}^{(p)}, \mathbf{y}^{(p+1)}, \cdots \}$
- Assume that time differences of the signals arrival is relatively low

- ► Consider streaming stationary signals $\mathcal{Y} := \{\mathbf{y}^{(1)}, \cdots, \mathbf{y}^{(p)}, \mathbf{y}^{(p+1)}, \cdots\}$
- Assume that time differences of the signals arrival is relatively low



- ► Consider streaming stationary signals $\mathcal{Y}:=\{\mathbf{y}^{(1)}, \cdots, \mathbf{y}^{(p)}, \mathbf{y}^{(p+1)}, \cdots\}$
- Assume that time differences of the signals arrival is relatively low



- ► Consider streaming stationary signals $\mathcal{Y}:=\{\mathbf{y}^{(1)}, \cdots, \mathbf{y}^{(p)}, \mathbf{y}^{(p+1)}, \cdots\}$
- Assume that time differences of the signals arrival is relatively low

- Consider streaming stationary signals $\mathcal{Y} := \{ \mathbf{y}^{(1)}, \cdots, \mathbf{y}^{(p)}, \mathbf{y}^{(p+1)}, \cdots \}$
- Assume that time differences of the signals arrival is relatively low

- Consider streaming stationary signals $\mathcal{Y}:=\{\mathbf{y}^{(1)}, \cdots, \mathbf{y}^{(p)}, \mathbf{y}^{(p+1)}, \cdots\}$
- Assume that time differences of the signals arrival is relatively low

- Develop an iterative algorithm for the topology inference
- Upon sensing new diffused output signals
 - \Rightarrow Update $\hat{\mathbf{V}}$ efficiently
 - Take one or a few steps of the iterative algorithm

► To apply ADMM, rewrite the problem as

$$\min_{\mathbf{S},\mathbf{\Lambda},\mathbf{D}} \quad \lambda \|\mathbf{S}\|_1 + \|\mathbf{S} - \hat{\mathbf{V}}\mathbf{\Lambda}\hat{\mathbf{V}}^{\top}\|_F^2$$

s.to: $\mathbf{S} - \mathbf{D} = \mathbf{0}, \quad \mathbf{D} \in \mathcal{S} = \{\mathbf{S} \mid S_{ij} \ge 0, \ \mathbf{S} \in \mathcal{M}^N, \ S_{ii} = 0, \ \sum_j S_{1j} = 1\}$

- \Rightarrow Convex, thus ADMM would converge to a global minimizer
- Form the augmented Lagrangian

$$\mathcal{L}_{\rho_1}(\mathbf{S}, \mathbf{D}, \mathbf{\Lambda}, \mathbf{U}_1) = \lambda \|\mathbf{S}\|_1 + \|\mathbf{S} - \hat{\mathbf{V}}\mathbf{\Lambda}\hat{\mathbf{V}}^\top\|_F^2 + \frac{\rho_1}{2}\|\mathbf{S} - \mathbf{D} + \mathbf{U}_1\|_F^2$$

► At k^{th} iteration, let $\mathbf{B}^{(k)} = \hat{\mathbf{V}} \mathbf{\Lambda}^{(k)} \hat{\mathbf{V}}^{\top} \Rightarrow \text{ADMM}$ consists of 4 iterative steps

To apply ADMM, rewrite the problem as

$$\min_{\mathbf{S},\mathbf{\Lambda},\mathbf{D}} \quad \lambda \|\mathbf{S}\|_1 + \|\mathbf{S} - \hat{\mathbf{V}}\mathbf{\Lambda}\hat{\mathbf{V}}^{\top}\|_F^2$$

s.to: $\mathbf{S} - \mathbf{D} = \mathbf{0}, \quad \mathbf{D} \in \mathcal{S} = \{\mathbf{S} \mid S_{ij} \ge 0, \ \mathbf{S} \in \mathcal{M}^N, \ S_{ii} = 0, \ \sum_j S_{1j} = 1\}$

- \Rightarrow Convex, thus ADMM would converge to a global minimizer
- Form the augmented Lagrangian

$$\mathcal{L}_{\rho_1}(\mathbf{S}, \mathbf{D}, \mathbf{\Lambda}, \mathbf{U}_1) = \lambda \|\mathbf{S}\|_1 + \|\mathbf{S} - \hat{\mathbf{V}}\mathbf{\Lambda}\hat{\mathbf{V}}^\top\|_F^2 + \frac{\rho_1}{2}\|\mathbf{S} - \mathbf{D} + \mathbf{U}_1\|_F^2$$

- ► At k^{th} iteration, let $\mathbf{B}^{(k)} = \hat{\mathbf{V}} \mathbf{\Lambda}^{(k)} \hat{\mathbf{V}}^{\top} \Rightarrow \text{ADMM}$ consists of 4 iterative steps
- ► Step 1. $\mathbf{S}^{(k+1)} = \underset{\mathbf{S}}{\operatorname{argmin}} \mathcal{L}_{\rho_1}(\mathbf{S}, \mathbf{D}^{(k)}, \mathbf{\Lambda}^{(k)}, \mathbf{U}_1^{(k)}) = \mathcal{T}_{\frac{\lambda}{2+\rho_1}}(\frac{\mathbf{B}^{(k)} + \frac{\rho_1}{2}(\mathbf{D}^{(k)} \mathbf{U}_1^{(k)})}{1 + \frac{\rho_1}{2}}),$ where $\mathcal{T}_{\eta}(x) = (|x| - \eta)_+ \operatorname{sign}(x)$ is the element-wise soft-thresholding operator

To apply ADMM, rewrite the problem as

$$\min_{\mathbf{S},\mathbf{\Lambda},\mathbf{D}} \quad \lambda \|\mathbf{S}\|_1 + \|\mathbf{S} - \hat{\mathbf{V}}\mathbf{\Lambda}\hat{\mathbf{V}}^{\top}\|_F^2$$

s.to: $\mathbf{S} - \mathbf{D} = \mathbf{0}, \quad \mathbf{D} \in \mathcal{S} = \{\mathbf{S} \mid S_{ij} \ge 0, \ \mathbf{S} \in \mathcal{M}^N, \ S_{ii} = 0, \ \sum_j S_{1j} = 1\}$

 \Rightarrow Convex, thus ADMM would converge to a global minimizer

Form the augmented Lagrangian

$$\mathcal{L}_{\rho_1}(\mathbf{S}, \mathbf{D}, \mathbf{\Lambda}, \mathbf{U}_1) = \lambda \|\mathbf{S}\|_1 + \|\mathbf{S} - \hat{\mathbf{V}}\mathbf{\Lambda}\hat{\mathbf{V}}^\top\|_F^2 + \frac{\rho_1}{2}\|\mathbf{S} - \mathbf{D} + \mathbf{U}_1\|_F^2$$

► At k^{th} iteration, let $\mathbf{B}^{(k)} = \hat{\mathbf{V}} \mathbf{\Lambda}^{(k)} \hat{\mathbf{V}}^{\top} \Rightarrow \text{ADMM}$ consists of 4 iterative steps

► Step 2. $D^{(k+1)} = \underset{D \in S}{\operatorname{argmin}} \quad \mathcal{L}_{\rho_1}(\mathbf{S}^{(k+1)}, \mathbf{D}, \mathbf{\Lambda}^{(k)}, \mathbf{U}_1^{(k)}) = \mathcal{P}_{S}(\mathbf{S}^{(k+1)} + \mathbf{U}_1^{(k)}),$ where $\mathcal{P}_{S}(.)$ is the projection operator onto S

► To apply ADMM, rewrite the problem as

$$\min_{\mathbf{S},\mathbf{\Lambda},\mathbf{D}} \quad \lambda \|\mathbf{S}\|_1 + \|\mathbf{S} - \hat{\mathbf{V}}\mathbf{\Lambda}\hat{\mathbf{V}}^{\top}\|_F^2$$

s.to: $\mathbf{S} - \mathbf{D} = \mathbf{0}, \quad \mathbf{D} \in \mathcal{S} = \{\mathbf{S} \mid S_{ij} \ge 0, \ \mathbf{S} \in \mathcal{M}^N, \ S_{ii} = 0, \ \sum_j S_{1j} = 1\}$

- \Rightarrow Convex, thus ADMM would converge to a global minimizer
- Form the augmented Lagrangian

$$\mathcal{L}_{\rho_1}(\mathbf{S}, \mathbf{D}, \mathbf{\Lambda}, \mathbf{U}_1) = \lambda \|\mathbf{S}\|_1 + \|\mathbf{S} - \hat{\mathbf{V}} \mathbf{\Lambda} \hat{\mathbf{V}}^\top\|_F^2 + \frac{\rho_1}{2} \|\mathbf{S} - \mathbf{D} + \mathbf{U}_1\|_F^2$$

► At k^{th} iteration, let $\mathbf{B}^{(k)} = \hat{\mathbf{V}} \mathbf{\Lambda}^{(k)} \hat{\mathbf{V}}^{\top} \Rightarrow \text{ADMM}$ consists of 4 iterative steps

► Step 3.
$$\Lambda^{(k+1)} = \underset{\Lambda}{\operatorname{argmin}} \quad \mathcal{L}_{\rho_1}(\mathsf{S}^{(k+1)}, \mathsf{D}^{(k+1)}, \Lambda, \mathsf{U}_1^{(k)})$$

► To apply ADMM, rewrite the problem as

$$\min_{\mathbf{S},\mathbf{\Lambda},\mathbf{D}} \quad \lambda \|\mathbf{S}\|_1 + \|\mathbf{S} - \hat{\mathbf{V}}\mathbf{\Lambda}\hat{\mathbf{V}}^{\top}\|_F^2$$

s.to: $\mathbf{S} - \mathbf{D} = \mathbf{0}, \quad \mathbf{D} \in \mathcal{S} = \{\mathbf{S} \mid S_{ij} \ge 0, \ \mathbf{S} \in \mathcal{M}^N, \ S_{ii} = 0, \ \sum_j S_{1j} = 1\}$

- \Rightarrow Convex, thus ADMM would converge to a global minimizer
- Form the augmented Lagrangian

$$\mathcal{L}_{\rho_1}(\mathbf{S}, \mathbf{D}, \mathbf{\Lambda}, \mathbf{U}_1) = \lambda \|\mathbf{S}\|_1 + \|\mathbf{S} - \hat{\mathbf{V}}\mathbf{\Lambda}\hat{\mathbf{V}}^\top\|_F^2 + \frac{\rho_1}{2}\|\mathbf{S} - \mathbf{D} + \mathbf{U}_1\|_F^2$$

► At k^{th} iteration, let $\mathbf{B}^{(k)} = \hat{\mathbf{V}} \mathbf{\Lambda}^{(k)} \hat{\mathbf{V}}^{\top} \Rightarrow \text{ADMM}$ consists of 4 iterative steps

► Step 3.
$$\Lambda^{(k+1)} = \underset{\Lambda}{\operatorname{argmin}} \quad \|\Lambda - \hat{\mathbf{V}}^{\top} \mathbf{S}^{(k+1)} \hat{\mathbf{V}}\|_{F}^{2} = \operatorname{Diag}(\hat{\mathbf{V}}^{\top} \mathbf{S}^{(k+1)} \hat{\mathbf{V}})$$

To apply ADMM, rewrite the problem as

$$\min_{\mathbf{S}, \mathbf{\Lambda}, \mathbf{D}} \quad \lambda \|\mathbf{S}\|_1 + \|\mathbf{S} - \hat{\mathbf{V}} \mathbf{\Lambda} \hat{\mathbf{V}}^\top\|_F^2$$
s.to: $\mathbf{S} - \mathbf{D} = \mathbf{0}, \quad \mathbf{D} \in \mathcal{S} = \{\mathbf{S} \mid S_{ij} \ge 0, \ \mathbf{S} \in \mathcal{M}^N, \ S_{ii} = 0, \ \sum_j S_{1j} = 1\}$

- \Rightarrow Convex, thus ADMM would converge to a global minimizer
- Form the augmented Lagrangian

$$\mathcal{L}_{\rho_1}(\mathbf{S}, \mathbf{D}, \mathbf{\Lambda}, \mathbf{U}_1) = \lambda \|\mathbf{S}\|_1 + \|\mathbf{S} - \hat{\mathbf{V}} \mathbf{\Lambda} \hat{\mathbf{V}}^\top\|_F^2 + \frac{\rho_1}{2} \|\mathbf{S} - \mathbf{D} + \mathbf{U}_1\|_F^2$$

- ► At k^{th} iteration, let $\mathbf{B}^{(k)} = \hat{\mathbf{V}} \mathbf{\Lambda}^{(k)} \hat{\mathbf{V}}^{\top} \Rightarrow \text{ADMM}$ consists of 4 iterative steps
- ▶ Step 4. Dual gradient ascent update $U_1^{(k+1)} = U_1^{(k)} + S^{(k+1)} D^{(k+1)}$

Topology inference algorithm

- 1: **Input:** estimated covariance eigenvectors $\hat{\mathbf{V}}$, penalty parameter ρ_1 , regularization parameter λ , number of iterations T_1
- 2: Initialize: $\Lambda^{(0)} = \text{diag}(\mathbf{1}_N), \ \mathbf{D}^{(0)} = \mathbf{0}, \ \mathbf{U}_1^{(0)} = \mathbf{0}.$
- 3: for $k = 0, ..., T_1 1$ do
- 4: $\mathbf{B}^{(k)} = \hat{\mathbf{V}} \mathbf{\Lambda}^{(k)} \hat{\mathbf{V}}^{\top}$
- 5: $\mathbf{S}^{(k+1)} = \mathcal{T}_{\frac{\lambda}{2+\rho_1}}(\frac{\mathbf{B}^{(k)} + \frac{\rho_1}{2}(\mathbf{D}^{(k)} \mathbf{U}_1^{(k)})}{1 + \frac{\rho_1}{2}})$

6:
$$\mathbf{D}^{(k+1)} = \mathcal{P}_{\mathcal{S}}(\mathbf{S}^{(k+1)} + \mathbf{U}_{1}^{(k)})$$

- 7: $\Lambda^{(k+1)} = \text{Diag}(\hat{\mathbf{V}}^{\top} \mathbf{S}^{(k+1)} \hat{\mathbf{V}})$
- 8: $U_1^{(k+1)} = U_1^{(k)} + S^{(k+1)} D^{(k+1)}$
- 9: end for
- 10: return $S^{(T_1)}$ and $\Lambda^{(T_1)}$

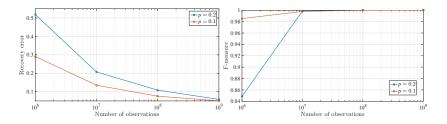
- Develop an iterative algorithm for the topology inference

- Upon sensing new diffused output signals

- Take one or a few steps of the iterative algorithm

Inferring a large scale graph

- ► Consider an Erdős-Rényi graph with N=1000 in an offline fashion
 - Edges are formed independently with probabilities p=0.1 & 0.2
 - Signals diffused by $\mathbf{H} = \sum_{l=0}^{2} h_l \mathbf{A}^l$, $h_l \sim \mathcal{U}[0,1]$, $\mathbf{S} = \mathbf{A}$
 - Adopt sample covariance estimator for the Gaussian signals
 - Assess the recovery error $\xi_F := \|\hat{\mathbf{S}} \mathbf{S}\|_F / \|\mathbf{S}\|_F$ and F-measure



► Increase in number of observations leads to a better performance ⇒ Performance enhances for sparser graphs (i.e., smaller p)

Online topology inference

- Q: How can we efficiently update the sample covariance eigenvectors $\hat{\mathbf{V}}$?
- ► Let Ĉ_y^(P) be sample covariance after receiving P streaming observations ⇒ Updated sample covariance after receiving y^(P+1) takes the form

$$\hat{\mathsf{C}}_{\mathsf{y}}^{(P+1)} = \frac{1}{P+1} (P \hat{\mathsf{C}}_{\mathsf{y}}^{(P)} + \mathsf{y}^{(P+1)} \mathsf{y}^{(P+1)})$$

► Let $\mathbf{z} = \hat{\mathbf{V}}^{\top} \mathbf{y}^{(p+1)}$ and $\{d_j\}_{j=1}^N$ denote the eigenvalues of $\hat{\mathbf{C}}_{\mathbf{y}}^{(P)}$

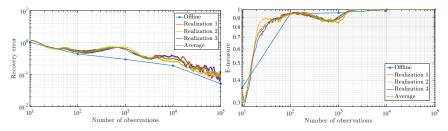
 $\Rightarrow \text{ Eigenvalues of rank-one modification of } \hat{\mathbf{C}}_{\mathbf{y}}^{(P)} \text{ are the roots } (\gamma) \text{ of } \\ 1 + \sum_{j=1}^{N} \frac{z_j^2}{Pd_j - \gamma} = 0 \quad [\text{Bunch et al'78}] \end{cases}$

⇒ Can be solved using the Newton method with $\mathcal{O}(N^2)$ complexity ► For the updated eigenvalue γ_j , the corresponding eigenvector \mathbf{v}_j is given by $\mathbf{v}_j = \alpha_j \mathbf{y}^{(p+1)} \circ \mathbf{q}_j$,

where $\mathbf{q}_j = [1/(Pd_1 - \gamma_j), \cdots, 1/(Pd_N - \gamma_j)]$ and α_j is a normalizing factor

Online inference of a brain network

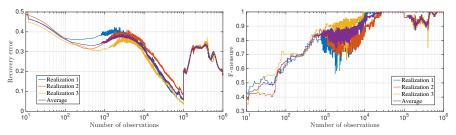
- Consider a structural brain graph with N = 66 neural regions
 - Edge weights: Density of anatomical connections [Hagmann et al'08]
 - Signals diffused by $\mathbf{H} = \sum_{l=0}^{2} h_l \mathbf{A}^l$, $h_l \sim \mathcal{U}[0, 1]$, $\mathbf{S} = \mathbf{A}$
 - Generate streaming signals $\{\mathbf{y}^{(1)}, \cdots, \mathbf{y}^{(p)}, \mathbf{y}^{(p+1)}, \cdots\}$ via $\mathbf{y}^{(i)} = \mathbf{H}\mathbf{x}^{(i)}$
 - Upon sensing an observation y^(p)
 - \Rightarrow Update $\hat{\mathbf{V}}$ efficiently and run the algorithm for $T_1 = 1$
 - Assess the recovery error $\xi_F := \|\hat{\mathbf{S}} \mathbf{S}\|_F / \|\mathbf{S}\|_F$ and F-measure



The online scheme can track the performance of the batch inference
 The fluctuations are due to ADMM and online scheme

Online inference: Synthetic perturbation

- Consider an Erdős-Rényi graph with N = 20 and p = 0.2
 - Signals diffused by $\mathbf{H} = \sum_{l=0}^{2} h_l \mathbf{A}^l$, $h_l \sim \mathcal{U}[0, 1]$, $\mathbf{S} = \mathbf{A}$
 - Generate streaming signals $\{\mathbf{y}^{(1)}, \cdots, \mathbf{y}^{(p)}, \mathbf{y}^{(p+1)}, \cdots\}$ via $\mathbf{y}^{(i)} = \mathbf{H}\mathbf{x}^{(i)}$
 - Upon sensing an observation y^(p)
 - \Rightarrow Update $\hat{\mathbf{V}}$ efficiently and run the algorithm for $\mathcal{T}_1 = 1$
 - After 10⁵ realizations
 - \Rightarrow Remove 10% of edges and add the same number of edges elsewhere
 - Assess the recovery error $\xi_F := \|\hat{\mathbf{S}} \mathbf{S}\|_F / \|\mathbf{S}\|_F$ and F-measure



The online algorithm can adapt and learn the new topology

- Online topology inference from streaming stationary graph signals
 - Graph shift **S** and covariance **C**_y are simultaneously diagonalizable
 - ▶ Promote desirable properties via convex losses on **S** ⇒ Here: Sparsity

- Developed an iterative algorithm for the topology inference
- Upon sensing new diffused output signals
 - \Rightarrow Updated $\hat{\mathbf{V}}$ efficiently
 - Took one or a few steps of the iterative algorithm

Back to the **D**-update

- ► Recall Step 2. $D^{(k+1)} = \underset{D \in S}{\operatorname{argmin}} \|D (S + U_1)\|_F^2$
- ► Define $C_1 = \{ \mathbf{M} | \mathbf{M} = \mathbf{M}^\top, \text{diag}(\mathbf{M}) = \mathbf{0} \}$ and $C_2 = \{ \mathbf{M} | \mathbf{M} \ge \mathbf{0}, \sum_{i=1}^N M_{1i} = 1 \}$ $\Rightarrow S = C_1 \cap C_2$
 - \Rightarrow Establish an inner ADMM for the D-update [Boyd et al'11]

$$\min_{\mathbf{E}, \mathbf{Z}} \|\mathbf{E} - (\mathbf{S}^{(k+1)} + \mathbf{U}_1^{(k)})\|_F^2 + g_1(\mathbf{E}) + g_2(\mathbf{Z})$$

s.to: $\mathbf{E} - \mathbf{Z} = \mathbf{0},$

1: **Input:** penalty parameter ρ_2 , number of iterations T_2 .

- 2: Initialize: $\mathbf{E}^{(0)} = \mathbf{Z}^{(0)} = \mathbf{U}_{2}^{(0)} = \mathbf{0}$. 3: for $i = 0, ..., T_{2} - 1$ do 4: $\mathbf{E}^{(i+1)} = \mathcal{P}_{1}(\frac{\mathbf{S}^{(k+1)} + \mathbf{U}_{1}^{(k)} + \frac{\rho_{2}}{2}(\mathbf{Z}^{(i)} - \mathbf{U}_{2}^{(i)})}{1 + \frac{\rho_{2}}{2}}) \Rightarrow \mathcal{P}_{1}(\mathbf{M}) = \frac{\mathbf{M} + \mathbf{M}^{\top}}{2} - \text{Diag}(\mathbf{M})$ 5: $\mathbf{Z}^{(i+1)} = \mathcal{P}_{2}(\mathbf{E}^{(i+1)} + \mathbf{U}_{2}^{(i)}) \Rightarrow \text{Projection onto a simplex [Chen et al'11]}$ 6: $\mathbf{U}_{2}^{(i+1)} = \mathbf{U}_{2}^{(i)} + \mathbf{E}^{(i+1)} - \mathbf{Z}^{(i+1)}$
- 7: end for
- 8: return $D^{(k+1)} := E^{(T_2)}$