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Abstract

We investigate the problem of finding the real-valued vectors h, of size L,
and x, of size P, from M independent measurements ym = 〈am,h〉〈bm,x〉,
where am and bm are known random vectors. Inspired by phase retrieval
solvers, we propose SIGIBE an algorithm that proceeds in two steps: (i)
first a spectral method is used to obtain an initial guess; which is then (ii)
refined using simple and scalable gradient descent iterations to minimize a
natural non-convex formulation of the recovery problem.

Bilinear problems

I Given a collection of M scalar measurements ym ∈ R of the form

ym = 〈am,h〉〈bm,x〉 = aT
mh · bT

mx, m = 1, . . . ,M (1)

⇒ with M ≥ (L + P), a ∈ RL and b ∈ RP known
I Goal: recover the unknown h ∈ RL and x ∈ RP

⇒ Up to an inherent scaling ambiguity

I Challenges: non-convex, multiple solutions, scaling ambiguity

I Assumptions:
⇒ {am}M

m=1 and {bm}M
m=1 are random, zero-mean, identity cov

⇒ Any correlation between am and bm; including am = bm

I Many meaningful applications are inverse bilinear problems
⇒ Blind deconvolution (channel equalization or image deblurring)
⇒ Array self-calibration for direction-of-arrival estimation
⇒ Modeling of network diffusion processes

Related problems

I Phase retrieval
⇒ Measurements of the form ym = |〈am,x〉|2
⇒ Long history in astronomy, optics and microscopy
⇒ Symmetry not present in our setup
⇒ Many approaches: Phaselift, SDP-based, greedy, gradient

I Bilinear deconvolution by lifting
⇒ ym bilinear in x and h, but linear in (rank-one) matrix xhT

⇒ rank minimization⇒ convex relax with performance guarantees
⇒ SDP-based solvers entail higher computational complexity

Contributions

I SIGIBE: two-step gradient-based algorithm
I Arbitrary correlation among measurement vectors
I No lifting⇒ Smaller computational complexity

Problem formulation

I Measurements {ym}M
m=1 given, {am}M

m=1 and {bm}M
m=1 known

⇒ A natural criterion is to minimize the LS cost

Inverse bilinear problem

{x̂, ĥ} = arg min
{x,h}

f (x,h) :=
1

2M

M∑
m=1

(
aT

mh · xT bm − ym

)2
. (2)

I Problem (2) bilinear, hence non-convex optimization.
I Approach:

⇒ Judicious initialization + simple gradient descent iterations
⇒ Similar to recent ideas for phase retrieval

Gradient iterations

I Let i be the iteration index and {x0,h0} the (spectral) initializations

Gradient iterations

xi+1 = xi − µi |x∇xf (xi ,hi) (3)
hi+1 = hi − µi |h∇hf (xi ,hi) (4)

I The gradients of f (x,h) are

∇xf (x,h) =
1
M

M∑
m=1

(
aT

mh · xT bm − ym

)(
aT

mh
)

bm (5)

∇hf (x,h) =
1
M

M∑
m=1

(
aT

mh · xT bm − ym

)(
bT

mx
)

am. (6)

I Stepsizes µi |x and µi |h
⇒ Different alternatives⇒ diff. convergence and recovery
⇒ Simulations will be run with µi |x = µi/µ̄i |x

µi = min
{
µmax,1− e−i/(−ithr ln(1−µmax))

}
and µ̄i |x = ‖x‖2

⇒ ‖x‖2 can be known, estimated, or replaced with ‖xi‖2.

I Computational complexity
⇒ O

(
M(L + P)2

)
operations per iteration

Initialization I: SVD-based for uncorrelated vectors

I Consider the non-symmetric L× P matrix

YNS :=
1
M

M∑
m=1

ymambT
m. (7)

I Suppose that am and bm are uncorrelated for each m = 1, . . . ,M

E[YNS] =
1
M

M∑
m=1

E[amaT
m]hxTE[bmbT

m] = hxT (8)

⇒ Rank-one matrix
⇒ Strong Law of Large Numbers (LLN): YNS → E[YNS] = hxT

⇒ If M large, dominant singular vectors align with h and x

I Simple but instructive initialization based on SVD decomposition

Algorithm 1: Spectral initialization for uncorrelated data

INPUTS: {ym}M
m=1,{am}M

m=1, {bm}M
m=1, and IP

max
OUTPUTS: initial estimates h0 and x0
Step 1. Use inputs to find YNS and run the iterations in Step 2 for
(i ≤ IP

max)
Step 2: power method. Generate random v0 with unit-norm and run
ui = YNSvi/‖YNSvi‖ and vi+1 = YNS

T ui/‖YNS
T ui‖

Step 3. Return x0 = σvIP
max

and h0 = σuIP
max

with σ2 =

‖YNSvIP
max
‖‖YT

NSuIP
max
‖

I Low computational complexity
⇒ O

(
MLP

)
to form YNS and O

(
IP
maxLP

)
for power method

⇒ Lower than gradient operations

Initialization II: EIG-based for correlated vectors

I Form augmented vectors γm := [aT
m, bT

m]T ∈ RL+P and symmetric matrix

YS =
1
M

M∑
m=1

ymγmγ
T
m. (9)

⇒ Define A ∈ R(L+P)×(L+P) symmetric and rank-2

A =

[
h
0P

] [
0T

L xT
]

+

[
0L
x

] [
hT 0T

P

]
=

[
0L×L hxT

xhT 0P×P

]
.

⇒ It follows that ym = (1/2)γT
mAγm, taking expectations in (9)

E[YS] =
1
2
E[γ1γ

T
1 Aγ1γ

T
1 ]. (10)

I Measurement vecs: am and bm white, but correlated with C = E[ambT
m]

S =

[
IL C

CT IP

]
. (11)

⇒ Fourth order moment of a Gaussian yields

E[YS] = SAS + (1/2)tr [AS] S (12)

I Left multiply by S−1 to simplify the second term
⇒ Then it follows that the expected value of Ỹ := S−1YS is

E[Ỹ] = AS + (1/2)tr [AS] IL+P =

[
hxT CT hxT

xhT xhT C

]
+ (xT CT h)IL+P. (13)

I Two eigenvectors: v1 =
[
hT/‖h‖, xT/‖x‖

]T , v2 =
[
−hT/‖h‖, xT/‖x‖

]T
I Simple EIG-based initialization (power method)

Algorithm 2: Spectral initialization for correlated data

INPUTS: {ym}M
m=1,{am}M

m=1, {bm}M
m=1, C, and IP

max
OUTPUTS: initial estimates h0 and x0
Step 1: Finding z∗. Use inputs to find Ỹ and get eigenvector z∗ =
zIP

max
using a power method zi = Ỹzi−1/‖Ỹzi−1‖ for i = 1, . . . , IP

max

Step 2: Finding the initializations h̃0 and x̃0 using z∗.
Extract z̄top := [z∗1, ..., z

∗
L]T , z̄bot := [z∗L+1, ..., z

∗
L+P]T from z∗

Normalize z̄h := z̄top/‖z̄top‖, z̄x := z̄bot/‖z̄bot‖
Stack z̄h and z̄x in vA := 1√

2
[z̄T

h , z̄
T
x ]T , vB := 1√

2
[−z̄T

h , z̄
T
x ]T

Compute λA = ‖ỸvA‖, λB = ‖ỸvB‖ and λxh = (λA + λB)/2
Set h̃0 =

√
λxhz̄h and x̃0 =

√
λxhz̄x .

Step 3: Fixing the sign of the initializations.
If sign([Ỹ]1,L+1) = sign([h̃0x̃T

0 ]1,1), return h0 = h̃0 and x0 = x̃0.
If not, return h0 = −h̃0 and x0 = x̃0.

⇒ As M →∞: p1) ‖h0‖ = ‖x0‖ =
√
‖h‖‖x‖ and p2) h0xT

0 = hxT

⇒ S−1 pre-whitening

I Computational complexity higher than that for Algorithm 1
⇒ Larger matrix and Ỹ requires inverting block matrix S
⇒ Cost dominated by Step 1:

a) O
(
Imax(L + P)2

)
for power method, and

b) O
(

(L + P)3
)

for S−1 and O
(
M(L + P)2

)
for Ỹ

⇒ Overall cost still dominated by gradient step O
(
IG
maxM(L + P)2

)

Initialization II: Special cases

Fully uncorrelated: am ⊥ bm for m = 1, . . . ,M
I C = 0L×P and S = IL+P

I Simplified (12): E[YS] = A (notice that tr [A] = 0).
I EIGs E[YS] = A:

1) v1 = 1√
2

[
hT/‖h‖, xT/‖x‖

]T with λ1 = ‖x‖‖h‖; 2) v2 = 1√
2

[
− hT/‖h‖,

xT/‖x‖
]T with λ2 = −‖x‖‖h‖; and 3) λn = 0 for n > 2.

Fully correlated: am = bm

I C = IP ⇒ S = I2P

I Simplified (12): each of the four blocks in E[YS] are identical
I EIG of block B = [E[YS]]1:P,1:P = hxT + xhT + (xT h)IP :

1) v1 = x/‖x‖+ h/‖h‖ with λ1 = 2xT h + ‖x‖‖h‖; 2) v2 = x/‖x‖ − h/‖h‖
with λ2 = 2xT h− ‖x‖‖h‖; and 3) λn = xT h for n > 2

I Useful to simplify Alg. 2: smaller matrix and no S−1 pre-whitening

Numerical experiments: setup

I Setup: x and h zero-mean Gaussians with σ2
x = 42 and σ2

h = 12;
IG
max = 500; µmax = 0.4, ithr = 75, µ̄i |x = ‖xi‖2 and µ̄i |h = ‖hi‖2

I Five algorithms (results are averaged across 100 trials):
⇒ A1) SIGIBE using Algorithm 1 and A2) using Algorithm 2 for C = 0
⇒ A3) Random initializ. with K1 = 5 seeds and A4) K2 = 15 seeds
⇒ A5) SDP relaxation based on matrix lifting

I Metric: err = ‖xhT − x̂ĥT‖F/‖xhT‖F

Numerical experiments I: Uncorrelated case

I No correlation: C = 0, P = 64, L = 2P = 128

I Observations
⇒ If M ≤ L + S = 1.5L all fail
⇒ If M ≥ 8L all work
⇒ A1 best performance
⇒ Speed: A1, 1.1A1, 5.0A1, 14.9A1, 20.4A1

Numerical experiments II: Correlated case

I Slight correlation: C = 0.25I, P = L = 128

I Strong correlation: C = 0.75I, P = L = 128

I Observations
⇒ The higher the correlation, the more difficult
⇒ For ρ = 0.25, M = 5.5L
⇒ For ρ = 0.75, M = 6.5L
⇒ A1 works well even in the correlated case

Conclusions and future work

I Non-convex algorithm for inverse bilinear problems
⇒ Gradient descent plus spectral initializations
⇒ Different forms of correlation among measurement vectors

I Develop theoretical recovery guarantees
I Extension to the complex case
I Explore the fact that SVD works well for the correlated case

References

I A. Ahmed, B. Recht, and J. Romberg, “Blind deconvolution using convex programming,” IEEE Trans.

Info. Theory, vol. 60, no. 3, pp. 1711–1732, 2014.

I T. Strohmer and S. Ling, “Self-calibration and biconvex compressive sensing,” arXiv preprint

arXiv:1501.06864 [cs.IT], 2015.

I Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev, “Phase retrieval with

application to optical imaging: a contemporary overview,” IEEE Signal Process. Mag., vol. 32, no. 3,

pp. 87–109, 2015.

I E. J. Candes, X. Li, and M. Soltanolkotabi, “Phase retrieval via Wirtinger flow: Theory and algorithms,”

IEEE Trans. Info. Theory, vol. 61, no. 4, pp. 1985–2007, 2015.

I E. J. Candes Y. Chen, “Solving random quadratic systems of equations is nearly as easy as solving

linear systems,” arXiv preprint arXiv:1505.05114 [cs.IT], 2015.

Financial support

I †Spanish MINECO grant TEC2013-41604-R; ‡NSF CCF-1217963; and ∗EU’s Horizon 2020 programme

under grant agreement ERC-BNYQ, ISF under grant no. 335/14, and ICore: the Israeli Excellence

Center “Circle of Light”.

https://www.tsc.urjc.es/˜amarques/ 2016 European Signal Processing Conference (EUSIPCO) August 30, 2016

https://www.tsc.urjc.es/~amarques/

