SIGIBE: Solving Random Bilinear Equations via Gradient Descent with Spectral Initialization

Antonio G. Marques[†], Gonzalo Mateos[‡], and Yonina C. Eldar E-mail: antonio.garcia.marques@urjc.es

[†]Signal Theory & Comms, King Juan Carlos University † Electrical & Computer Eng., University of Rochester * Electrical Eng., Technion - Israel Institute of Tech.

Abstract

We investigate the problem of finding the real-valued vectors **h**, of size L, and **x**, of size *P*, from *M* independent measurements $y_m = \langle \mathbf{a}_m, \mathbf{h} \rangle \langle \mathbf{b}_m, \mathbf{x} \rangle$, where \mathbf{a}_m and \mathbf{b}_m are known random vectors. Inspired by phase retrieval solvers, we propose SIGIBE an algorithm that proceeds in two steps: (i) first a spectral method is used to obtain an initial guess; which is then (ii) refined using simple and scalable gradient descent iterations to minimize a natural non-convex formulation of the recovery problem.

Bilinear problems

• Given a collection of *M* scalar measurements $y_m \in \mathbb{R}$ of the form

 $\mathbf{y}_m = \langle \mathbf{a}_m, \mathbf{h} \rangle \langle \mathbf{b}_m, \mathbf{x} \rangle = \mathbf{a}_m^T \mathbf{h} \cdot \mathbf{b}_m^T \mathbf{x}, \quad m = 1, \dots, M$ (1) \Rightarrow with $M \ge (L + P)$, $\mathbf{a} \in \mathbb{R}^{L}$ and $\mathbf{b} \in \mathbb{R}^{P}$ known ► Goal: recover the unknown $\mathbf{h} \in \mathbb{R}^L$ and $\mathbf{x} \in \mathbb{R}^P$

- \Rightarrow Up to an inherent scaling ambiguity
- Challenges: non-convex, multiple solutions, scaling ambiguity

Initialization I: SVD-based for uncorrelated vectors

• Consider the *non-symmetric* $L \times P$ matrix

$$\mathbf{Y}_{NS} := \frac{1}{M} \sum_{m=1}^{M} y_m \mathbf{a}_m \mathbf{b}_m^T.$$

(7)

(9)

(11)

(12)

Suppose that \mathbf{a}_m and \mathbf{b}_m are uncorrelated for each $m = 1, \dots, M$

$$\mathbb{E}[\mathbf{Y}_{NS}] = \frac{1}{M} \sum_{m=1}^{M} \mathbb{E}[\mathbf{a}_m \mathbf{a}_m^T] \mathbf{h} \mathbf{x}^T \mathbb{E}[\mathbf{b}_m \mathbf{b}_m^T] = \mathbf{h} \mathbf{x}^T$$
(8)

- \Rightarrow Rank-one matrix
- \Rightarrow Strong Law of Large Numbers (LLN): $\mathbf{Y}_{NS} \rightarrow \mathbb{E}[\mathbf{Y}_{NS}] = \mathbf{h}\mathbf{x}^T$
- \Rightarrow If *M* large, dominant singular vectors align with **h** and **x**
- Simple but instructive initialization based on SVD decomposition

Algorithm 1: Spectral initialization for uncorrelated data

INPUTS: $\{y_m\}_{m=1}^M, \{\mathbf{a}_m\}_{m=1}^M, \{\mathbf{b}_m\}_{m=1}^M, \text{ and } I_{\max}^P$ **OUTPUTS**: initial estimates \mathbf{h}_0 and \mathbf{x}_0

Numerical experiments: setup

- Setup: **x** and **h** zero-mean Gaussians with $\sigma_x^2 = 4^2$ and $\sigma_h^2 = 1^2$; $I_{\text{max}}^{G} = 500; \, \mu_{\text{max}} = 0.4, \, \dot{i}_{\text{thr}} = 75, \, \bar{\mu}_{i|x} = \|\mathbf{x}_{i}\|^{2} \text{ and } \bar{\mu}_{i|h} = \|\mathbf{h}_{i}\|^{2}$
- ► Five algorithms (results are averaged across 100 trials): \Rightarrow A1) SIGIBE using Algorithm 1 and A2) using Algorithm 2 for **C** = **0** \Rightarrow A3) Random initializ. with $K_1 = 5$ seeds and A4) $K_2 = 15$ seeds \Rightarrow A5) SDP relaxation based on matrix lifting
- Metric: $\operatorname{err} = \|\mathbf{x}\mathbf{h}^T \hat{\mathbf{x}}\hat{\mathbf{h}}^T\|_F / \|\mathbf{x}\mathbf{h}^T\|_F$

Numerical experiments I: Uncorrelated case

▶ No correlation: C = 0, P = 64, L = 2P = 128

- ► Assumptions:
 - $\Rightarrow {\mathbf{a}_m}_{m=1}^M$ and ${\mathbf{b}_m}_{m=1}^M$ are random, zero-mean, identity cov
 - \Rightarrow Any correlation between \mathbf{a}_m and \mathbf{b}_m ; including $\mathbf{a}_m = \mathbf{b}_m$
- Many meaningful applications are inverse bilinear problems
 - \Rightarrow Blind deconvolution (channel equalization or image deblurring)
 - \Rightarrow Array self-calibration for direction-of-arrival estimation
 - \Rightarrow Modeling of network diffusion processes

- **Step 1.** Use inputs to find Y_{NS} and run the iterations in Step 2 for $(i \leq I_{\max}^P)$ **Step 2**: power method. Generate random \mathbf{v}_0 with unit-norm and run $\mathbf{u}_i = \mathbf{Y}_{NS} \mathbf{v}_i / \|\mathbf{Y}_{NS} \mathbf{v}_i\|$ and $\mathbf{v}_{i+1} = \mathbf{Y}_{NS}^T \mathbf{u}_i / \|\mathbf{Y}_{NS}^T \mathbf{u}_i\|$ **Step 3.** Return $\mathbf{x}_0 = \sigma \mathbf{v}_{l_{max}}$ and $\mathbf{h}_0 = \sigma \mathbf{u}_{l_{max}}$ with $\sigma^2 =$ $\|\mathbf{Y}_{NS}\mathbf{v}_{I_{\max}^{P}}\|\|\mathbf{Y}_{NS}^{T}\mathbf{u}_{I_{\max}^{P}}\|$
- Low computational complexity
 - $\Rightarrow \mathcal{O}(MLP)$ to form \mathbf{Y}_{NS} and $\mathcal{O}(I_{max}^P LP)$ for power method
 - \Rightarrow Lower than gradient operations

Initialization II: EIG-based for correlated vectors

Form augmented vectors $\gamma_m := [\mathbf{a}_m^T, \mathbf{b}_m^T]^T \in \mathbb{R}^{L+P}$ and symmetric matrix

$$=\frac{1}{M}\sum_{m=1}^{M}y_m\gamma_m\gamma_m^T.$$

 \Rightarrow Define $\mathbf{A} \in \mathbb{R}^{(L+P) \times (L+P)}$ symmetric and rank-2

Y_S

$$\mathbf{A} = \begin{bmatrix} \mathbf{h} \\ \mathbf{0}_P \end{bmatrix} \begin{bmatrix} \mathbf{0}_L^T \mathbf{x}^T \end{bmatrix} + \begin{bmatrix} \mathbf{0}_L \\ \mathbf{x} \end{bmatrix} \begin{bmatrix} \mathbf{h}^T \mathbf{0}_P^T \end{bmatrix} = \begin{bmatrix} \mathbf{0}_{L \times L} & \mathbf{h} \mathbf{x}^T \\ \mathbf{x} \mathbf{h}^T & \mathbf{0}_{P \times P} \end{bmatrix}.$$

 \Rightarrow It follows that $y_m = (1/2)\gamma_m^T \mathbf{A}\gamma_m$, taking expectations in (9)

$$\mathbb{E}[\mathbf{Y}_{\mathcal{S}}] = \frac{1}{2} \mathbb{E}[\gamma_1 \gamma_1^T \mathbf{A} \gamma_1 \gamma_1^T].$$
(10)

▶ Measurement vecs: \mathbf{a}_m and \mathbf{b}_m white, but correlated with $\mathbf{C} = \mathbb{E}[\mathbf{a}_m \mathbf{b}_m^T]$

S =

$$\begin{bmatrix} \mathbf{C} \\ \mathbf{T} \end{bmatrix}.$$

 \Rightarrow Fourth order moment of a Gaussian yields

$$\mathbb{E}[\mathbf{Y}_{S}] = \mathbf{SAS} + (1/2) \mathrm{tr} [\mathbf{AS}] \mathbf{S}$$

- Observations
 - \Rightarrow If M < L + S = 1.5L all fail
 - \Rightarrow If $M \ge 8L$ all work
 - \Rightarrow A1 best performance
 - ⇒ Speed: A1, 1.1A1, 5.0A1, 14.9A1, 20.4A1

Numerical experiments II: Correlated case

Slight correlation: C = 0.25I, P = L = 128

Strong correlation: $\mathbf{C} = 0.75\mathbf{I}, P = L = 128$

Related problems

Phase retrieval

 \Rightarrow Measurements of the form $y_m = |\langle \mathbf{a}_m, \mathbf{x} \rangle|^2$

- \Rightarrow Long history in astronomy, optics and microscopy
- \Rightarrow Symmetry not present in our setup
- \Rightarrow Many approaches: Phaselift, SDP-based, greedy, gradient
- Bilinear deconvolution by lifting
 - $\Rightarrow y_m$ bilinear in **x** and **h**, but linear in (rank-one) matrix **xh**^T
 - \Rightarrow rank minimization \Rightarrow convex relax with performance guarantees
 - \Rightarrow SDP-based solvers entail higher computational complexity

Contributions

- SIGIBE: two-step gradient-based algorithm
- Arbitrary correlation among measurement vectors
- \blacktriangleright No lifting \Rightarrow Smaller computational complexity

Problem formulation

• Measurements $\{y_m\}_{m=1}^M$ given, $\{\mathbf{a}_m\}_{m=1}^M$ and $\{\mathbf{b}_m\}_{m=1}^M$ known \Rightarrow A natural criterion is to minimize the LS cost

Inverse bilinear problem

$$\{\hat{\mathbf{x}}, \hat{\mathbf{h}}\} = \arg\min_{\{\mathbf{x}, \mathbf{h}\}} f(\mathbf{x}, \mathbf{h}) := \frac{1}{2M} \sum_{m=1}^{M} \left(\mathbf{a}_{m}^{T} \mathbf{h} \cdot \mathbf{x}^{T} \mathbf{b}_{m} - y_{m} \right)^{2}.$$
(2)

Problem (2) bilinear, hence non-convex optimization.

► Approach:

- \Rightarrow Judicious initialization + simple gradient descent iterations
- \Rightarrow Similar to recent ideas for phase retrieval

Gradient iterations

 \blacktriangleright Let *i* be the iteration index and $\{\mathbf{x}_0, \mathbf{h}_0\}$ the (spectral) initializations

Gradient iterations

 \blacktriangleright Left multiply by S^{-1} to simplify the second term \Rightarrow Then it follows that the expected value of $\tilde{\mathbf{Y}} := \mathbf{S}^{-1}\mathbf{Y}_{S}$ is $\begin{bmatrix} \mathbf{I} & \mathbf{I} & \mathbf{I} \end{bmatrix} = \begin{bmatrix} \mathbf{I} & \mathbf{I} & \mathbf{I} \end{bmatrix} = \begin{bmatrix} \mathbf{I} & \mathbf{I} & \mathbf{I} \end{bmatrix}$

$$\mathbb{E}[\tilde{\mathbf{Y}}] = \mathbf{AS} + (1/2) \operatorname{tr}[\mathbf{AS}] \mathbf{I}_{L+P} = \begin{bmatrix} \mathbf{hx}^{T} \mathbf{C}^{T} & \mathbf{hx}^{T} \\ \mathbf{xh}^{T} & \mathbf{xh}^{T} \mathbf{C} \end{bmatrix} + (\mathbf{x}^{T} \mathbf{C}^{T} \mathbf{h}) \mathbf{I}_{L+P}. \quad (13)$$

- ► Two eigenvectors: $\mathbf{v}_1 = [\mathbf{h}^T / \|\mathbf{h}\|, \mathbf{x}^T / \|\mathbf{x}\|]^T$, $\mathbf{v}_2 = [-\mathbf{h}^T / \|\mathbf{h}\|, \mathbf{x}^T / \|\mathbf{x}\|]^T$
- Simple EIG-based initialization (power method)

Algorithm 2: Spectral initialization for correlated data

INPUTS: $\{y_m\}_{m=1}^M, \{a_m\}_{m=1}^M, \{b_m\}_{m=1}^M, C, and I_{max}^P$ **OUTPUTS**: initial estimates \mathbf{h}_0 and \mathbf{x}_0 **Step 1:** Finding z^* . Use inputs to find \tilde{Y} and get eigenvector $z^* = 0$ $\mathbf{z}_{I_{\max}^{P}}$ using a power method $\mathbf{z}_{i} = \tilde{\mathbf{Y}}\mathbf{z}_{i-1}/\|\tilde{\mathbf{Y}}\mathbf{z}_{i-1}\|$ for $i = 1, \ldots, I_{\max}^{P}$ **Step 2:** Finding the initializations $\tilde{\mathbf{h}}_0$ and $\tilde{\mathbf{x}}_0$ using \mathbf{z}^* . Extract $\bar{\mathbf{z}}^{top} := [z_1^*, ..., z_L^*]^T$, $\bar{\mathbf{z}}^{bot} := [z_{L+1}^*, ..., z_{L+P}^*]^T$ from \mathbf{z}^* Normalize $\bar{\mathbf{z}}_h := \bar{\mathbf{z}}^{top} / \|\bar{\mathbf{z}}^{top}\|, \bar{\mathbf{z}}_x := \bar{\mathbf{z}}^{bot} / \|\bar{\mathbf{z}}^{bot}\|$ Stack $\bar{\mathbf{z}}_h$ and $\bar{\mathbf{z}}_x$ in $\mathbf{v}_A := \frac{1}{\sqrt{2}} [\bar{\mathbf{z}}_h^T, \bar{\mathbf{z}}_x^T]^T$, $\mathbf{v}_B := \frac{1}{\sqrt{2}} [-\bar{\mathbf{z}}_h^T, \bar{\mathbf{z}}_x^T]^T$ Compute $\lambda_A = \|\tilde{\mathbf{Y}}\mathbf{v}_A\|$, $\lambda_B = \|\tilde{\mathbf{Y}}\mathbf{v}_B\|$ and $\lambda_{xh} = (\lambda_A + \lambda_B)/2$ Set $\tilde{\mathbf{h}}_0 = \sqrt{\lambda_{xh}} \bar{\mathbf{z}}_h$ and $\tilde{\mathbf{x}}_0 = \sqrt{\lambda_{xh}} \bar{\mathbf{z}}_x$. **Step 3:** Fixing the sign of the initializations. If sign($[\tilde{\mathbf{Y}}]_{1,L+1}$) = sign($[\tilde{\mathbf{h}}_0 \tilde{\mathbf{x}}_0^T]_{1,1}$), return $\mathbf{h}_0 = \tilde{\mathbf{h}}_0$ and $\mathbf{x}_0 = \tilde{\mathbf{x}}_0$. If not, return $\mathbf{h}_0 = -\mathbf{h}_0$ and $\mathbf{x}_0 = \mathbf{\tilde{x}}_0$.

- \Rightarrow As $M \rightarrow \infty$: p1) $\|\mathbf{h}_0\| = \|\mathbf{x}_0\| = \sqrt{\|\mathbf{h}\|\|\mathbf{x}\|}$ and p2) $\mathbf{h}_0 \mathbf{x}_0^T = \mathbf{h} \mathbf{x}^T$ \Rightarrow **S**⁻¹ pre-whitening
- Computational complexity higher than that for Algorithm 1
 - \Rightarrow Larger matrix and $\tilde{\mathbf{Y}}$ requires inverting block matrix \mathbf{S}
 - \Rightarrow Cost dominated by Step 1: a) $O(I_{max}(L+P)^2)$ for power method, and

b) $\mathcal{O}((L+P)^3)$ for \mathbf{S}^{-1} and $\mathcal{O}(M(L+P)^2)$ for $\tilde{\mathbf{Y}}$

Observations

- \Rightarrow The higher the correlation, the more difficult
- \Rightarrow For $\rho = 0.25$, M = 5.5L
- \Rightarrow For $\rho = 0.75$, M = 6.5L
- \Rightarrow A1 works well even in the correlated case

Conclusions and future work

- Non-convex algorithm for inverse bilinear problems
 - \Rightarrow Gradient descent plus spectral initializations
 - \Rightarrow Different forms of correlation among measurement vectors
- Develop theoretical recovery guarantees
- Extension to the complex case
- Explore the fact that SVD works well for the correlated case

References

$\mathbf{x}_{i+1} = \mathbf{x}_i - \mu_{i \mathbf{x}} abla_{\mathbf{x}} f(\mathbf{x}_i, \mathbf{h}_i)$	
$\mathbf{h}_{i+1} = \mathbf{h}_i - \mu_{i h} abla_{\mathbf{h}} f(\mathbf{x}_i, \mathbf{h}_i)$	

(3)

(4)

 \blacktriangleright The gradients of $f(\mathbf{x}, \mathbf{h})$ are

$$\nabla_{\mathbf{x}} f(\mathbf{x}, \mathbf{h}) = \frac{1}{M} \sum_{m=1}^{M} \left(\mathbf{a}_{m}^{T} \mathbf{h} \cdot \mathbf{x}^{T} \mathbf{b}_{m} - y_{m} \right) \left(\mathbf{a}_{m}^{T} \mathbf{h} \right) \mathbf{b}_{m}$$
(5)
$$\nabla_{\mathbf{h}} f(\mathbf{x}, \mathbf{h}) = \frac{1}{M} \sum_{m=1}^{M} \left(\mathbf{a}_{m}^{T} \mathbf{h} \cdot \mathbf{x}^{T} \mathbf{b}_{m} - y_{m} \right) \left(\mathbf{b}_{m}^{T} \mathbf{x} \right) \mathbf{a}_{m}.$$
(6)

\blacktriangleright Stepsizes $\mu_{i|x}$ and $\mu_{i|h}$

 \Rightarrow Different alternatives \Rightarrow diff. convergence and recovery

 \Rightarrow Simulations will be run with $\mu_{i|x} = \mu_i / \bar{\mu}_{i|x}$ $\mu_i = \min \{\mu_{\max}, 1 - e^{-i/(-i_{\text{thr}} \ln(1-\mu_{\max}))}\}$ and $\bar{\mu}_{i|x} = \|\mathbf{x}\|^2$

 $\Rightarrow \|\mathbf{x}\|^2$ can be known, estimated, or replaced with $\|\mathbf{x}_i\|^2$.

Computational complexity $\Rightarrow \mathcal{O}(M(L+P)^2)$ operations per iteration \Rightarrow Overall cost still dominated by gradient step $\mathcal{O}(I_{\max}^G M(L+P)^2)$

Initialization II: Special cases

Fully uncorrelated: $a_m \perp b_m$ for $m = 1, \ldots, M$

- \blacktriangleright **C** = **0**_{*I* × *P*} and **S** = **I**_{*I*+*P*}
- Simplified (12): $\mathbb{E}[\mathbf{Y}_S] = \mathbf{A}$ (notice that tr $[\mathbf{A}] = 0$).
- ► EIGs $\mathbb{E}[\mathbf{Y}_S] = \mathbf{A}$: 1) $\mathbf{v}_1 = \frac{1}{\sqrt{2}} \left[\mathbf{h}^T / \|\mathbf{h}\|, \, \mathbf{x}^T / \|\mathbf{x}\| \right]'$ with $\lambda_1 = \|\mathbf{x}\| \|\mathbf{h}\|$; 2) $\mathbf{v}_2 = \frac{1}{\sqrt{2}} \left[-\mathbf{h}^T / \|\mathbf{h}\|, \right]$ $\mathbf{x}^{T}/\|\mathbf{x}\|^{T}$ with $\lambda_{2} = -\|\mathbf{x}\|\|\mathbf{h}\|$; and 3) $\lambda_{n} = 0$ for n > 2.

Fully correlated: $a_m = b_m$

- $\blacktriangleright \mathbf{C} = \mathbf{I}_P \Rightarrow \mathbf{S} = \mathbf{I}_{2P}$
- Simplified (12): each of the four blocks in $\mathbb{E}[\mathbf{Y}_S]$ are identical
- ► EIG of block $\mathbf{B} = [\mathbb{E}[\mathbf{Y}_S]]_{1:P,1:P} = \mathbf{h}\mathbf{x}^T + \mathbf{x}\mathbf{h}^T + (\mathbf{x}^T\mathbf{h})\mathbf{I}_P$: 1) $\mathbf{v}_1 = \mathbf{x}/\|\mathbf{x}\| + \mathbf{h}/\|\mathbf{h}\|$ with $\lambda_1 = 2\mathbf{x}^T\mathbf{h} + \|\mathbf{x}\|\|\mathbf{h}\|$; 2) $\mathbf{v}_2 = \mathbf{x}/\|\mathbf{x}\| - \mathbf{h}/\|\mathbf{h}\|$ with $\lambda_2 = 2\mathbf{x}^T \mathbf{h} - \|\mathbf{x}\| \|\mathbf{h}\|$; and 3) $\lambda_n = \mathbf{x}^T \mathbf{h}$ for n > 2
- \blacktriangleright Useful to simplify Alg. 2: smaller matrix and no S^{-1} pre-whitening

- A. Ahmed, B. Recht, and J. Romberg, "Blind deconvolution using convex programming," IEEE Trans. Info. Theory, vol. 60, no. 3, pp. 1711-1732, 2014.
- T. Strohmer and S. Ling, "Self-calibration and biconvex compressive sensing," arXiv preprint arXiv:1501.06864 [cs.IT], 2015.
- Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev, "Phase retrieval with application to optical imaging: a contemporary overview," IEEE Signal Process. Mag., vol. 32, no. 3, pp. 87–109, 2015.
- E. J. Candes, X. Li, and M. Soltanolkotabi, "Phase retrieval via Wirtinger flow: Theory and algorithms," IEEE Trans. Info. Theory, vol. 61, no. 4, pp. 1985–2007, 2015.
- E. J. Candes Y. Chen, "Solving random quadratic systems of equations is nearly as easy as solving linear systems," arXiv preprint arXiv:1505.05114 [cs.IT], 2015.

Financial support

▶ [†]Spanish MINECO grant TEC2013-41604-R; [‡]NSF CCF-1217963; and ^{*}EU's Horizon 2020 programme under grant agreement ERC-BNYQ, ISF under grant no. 335/14, and ICore: the Israeli Excellence Center "Circle of Light".

https://www.tsc.urjc.es/~amarques/

2016 European Signal Processing Conference (EUSIPCO)

