SIGIBE: Solving Random Bilinear Equations via Gradient Descent with Spectral Initialization

Abstract

We investigate the problem of finding the real-valued vectors h , of size L , and \mathbf{x}, of size P, from M independent measurements $y_{m}=\left\langle\mathbf{a}_{m}, \mathbf{h}\right\rangle\left\langle\mathbf{b}_{m}, \mathbf{x}\right\rangle$ where \mathbf{a}_{m} and \mathbf{b}_{m} are known random vectors. Inspired by phase retrieval solvers, we propose SIGIBE an algorithm that proceeds in two steps: (i) first a spectral method is used to obtain an initial guess; which is then (ii) refined using simple and scalable gradient descent iterations to minimize a natural non-convex formulation of the recovery problem.

Bilinear problems

- Given a collection of M scalar measurements $y_{m} \in \mathbb{R}$ of the form

$$
\begin{equation*}
y_{m}=\left\langle\mathbf{a}_{m}, \mathbf{h}\right\rangle\left\langle\mathbf{b}_{m}, \mathbf{x}\right\rangle=\mathbf{a}_{m}^{\top} \mathbf{h} \cdot \mathbf{b}_{m}^{T} \mathbf{x}, \quad m=1, \ldots, M \tag{1}
\end{equation*}
$$

\Rightarrow with $M \geq(L+P), \mathbf{a} \in \mathbb{R}^{L}$ and $\mathbf{b} \in \mathbb{R}^{P}$ known

- Goal: recover the unknown $\mathbf{h} \in \mathbb{R}^{L}$ and $\mathbf{x} \in \mathbb{R}^{P}$
\Rightarrow Up to an inherent scaling ambiguity
- Challenges: non-convex, multiple solutions, scaling ambiguity
- Assumptions
$\Rightarrow\left\{\mathbf{a}_{m}\right\}_{m=1}^{M}$ and $\left\{\mathbf{b}_{m}\right\}_{m=1}^{M}$ are random, zero-mean, identity cov
\Rightarrow Any correlation between \mathbf{a}_{m} and \mathbf{b}_{m}; including $\mathbf{a}_{m}=\mathbf{b}_{m}$
- Many meaningful applications are inverse bilinear problems
\Rightarrow Blind deconvolution (channel equalization or image deblurring)
\Rightarrow Array self-calibration for direction-of-arrival estimation
\Rightarrow Modeling of network diffusion processes

Related problems

- Phase retrieval
\Rightarrow Measurements of the form $y_{m}=\left|\left\langle\mathbf{a}_{m}, \mathbf{x}\right\rangle\right|^{2}$
\Rightarrow Long history in astronomy, optics and microscopy
\Rightarrow Symmetry not present in our setup
\Rightarrow Many approaches: Phaselift, SDP-based, greedy, gradient
- Bilinear deconvolution by lifting
$\Rightarrow y_{m}$ bilinear in \mathbf{x} and \mathbf{h}, but linear in (rank-one) matrix $\mathbf{x h}^{\top}$
\Rightarrow rank minimization \Rightarrow convex relax with performance guarantees
\Rightarrow SDP-based solvers entail higher computational complexity

Contributions

- SIGIBE: two-step gradient-based algorithm
- Arbitrary correlation among measurement vectors
- No lifting \Rightarrow Smaller computational complexity

Problem formulation

- Measurements $\left\{y_{m}\right\}_{m=1}^{M}$ given, $\left\{\mathbf{a}_{m}\right\}_{m=1}^{M}$ and $\left\{\mathbf{b}_{m}\right\}_{m=1}^{M}$ known A natural criterion is to minimize the LS cost

Inverse bilinear problem

$$
\{\hat{\mathbf{x}}, \hat{\mathbf{h}}\}=\arg \min _{\{\mathbf{x}, \mathbf{h}\}} f(\mathbf{x}, \mathbf{h}):=\frac{1}{2 M} \sum_{m=1}^{M}\left(\mathbf{a}_{m}^{\top} \mathbf{h} \cdot \mathbf{x}^{\top} \mathbf{b}_{m}-y_{m}\right)^{2}
$$

- Problem (2) bilinear, hence non-convex optimization.
- Approach:
\Rightarrow Judicious initialization + simple gradient descent iterations
\Rightarrow Similar to recent ideas for phase retrieval

Gradient iterations

Let i be the iteration index and $\left\{\mathbf{x}_{0}, \mathbf{h}_{0}\right\}$ the (spectral) initializations Gra
$\mathbf{x}_{i+1}=\mathbf{x}_{i}-\mu_{i \mid x} \nabla_{\mathbf{x}} f\left(\mathbf{x}_{i}, \mathbf{h}_{i}\right)$
$\mathbf{h}_{i+1}=\mathbf{h}_{i}-\mu_{i \mid h} \nabla_{\mathbf{h}} f\left(\mathbf{x}_{i}, \mathbf{h}_{i}\right)$

- The gradients of $f(\mathbf{x}, \mathbf{h})$ are

$$
\begin{align*}
& \nabla_{\mathbf{x}} f(\mathbf{x}, \mathbf{h})=\frac{1}{M} \sum_{m=1}^{M}\left(\mathbf{a}_{m}^{T} \mathbf{h} \cdot \mathbf{x}^{\top} \mathbf{b}_{m}-y_{m}\right)\left(\mathbf{a}_{m}^{T} \mathbf{h}\right) \mathbf{b}_{m} \tag{5}\\
& \nabla_{\mathbf{h}} f(\mathbf{x}, \mathbf{h})=\frac{1}{M} \sum_{m=1}^{M}\left(\mathbf{a}_{m}^{\top} \mathbf{h} \cdot \mathbf{x}^{\top} \mathbf{b}_{m}-y_{m}\right)\left(\mathbf{b}_{m}^{\top} \mathbf{x}\right) \mathbf{a}_{m} .
\end{align*}
$$

\Rightarrow Different alternatives \Rightarrow diff. convergence and recovery
\Rightarrow Simulations will be run with $\mu_{i \mid x}=\mu_{i} / \bar{\mu}_{\text {ix }}$
$\mu_{i}=\min \left\{\mu_{\text {max }}, 1-e^{-i /\left(-i_{\text {itr }} \ln \left(1-\mu_{\text {max }}\right)\right)}\right\}$ and $\bar{\mu}_{i \mid x}=\|\mathbf{x}\|^{2}$
$\Rightarrow\|\mathbf{x}\|^{2}$ can be known, estimated, or replaced with $\left\|\mathbf{x}_{i}\right\|^{2}$.

- Computational complexity
$\Rightarrow \mathcal{O}\left(M(L+P)^{2}\right)$ operations per iteration

Initialization I: SVD-based for uncorrelated vectors

- Consider the non-symmetric $L \times P$ matrix

$$
\begin{equation*}
\mathbf{Y}_{N S}:=\frac{1}{M} \sum_{m=1}^{M} y_{m} \mathbf{a}_{m} \mathbf{b}_{m}^{T} . \tag{7}
\end{equation*}
$$

- Suppose that \mathbf{a}_{m} and \mathbf{b}_{m} are uncorrelated for each $m=1, \ldots, M$

$$
\begin{equation*}
\mathbb{E}\left[\mathbf{Y}_{N S}\right]=\frac{1}{M} \sum_{m=1}^{M} \mathbb{E}\left[\mathbf{a}_{m} \mathbf{a}_{m}^{T}\right] \mathbf{h} \mathbf{x}^{T} \mathbb{E}\left[\mathbf{b}_{m} \mathbf{b}_{m}^{T}\right]=\mathbf{h} \mathbf{x}^{T} \tag{8}
\end{equation*}
$$

\Rightarrow Rank-one matrix
\Rightarrow Strong Law of Large Numbers (LLN): $\mathbf{Y}_{N S} \rightarrow \mathbb{E}\left[\mathbf{Y}_{N S}\right]=\mathbf{h x}{ }^{\top}$
\Rightarrow If M large, dominant singular vectors align with \mathbf{h} and \mathbf{x}

- Simple but instructive initialization based on SVD decomposition

Algorithm 1: Spectral initialization for uncorrelated data
INPUTS: $\left\{y_{m}\right\}_{m=1}^{M},\left\{\mathbf{a}_{m}\right\}_{m=1}^{M},\left\{\mathbf{b}_{m}\right\}_{m=1}^{M}$, and $I_{\text {max }}^{P}$
OUTPUTS: initial estimates \mathbf{h}_{0} and \mathbf{x}_{0}
Step 1. Use inputs to find $\mathbf{Y}_{N S}$ and run the iterations in Step 2 for $\left(i \leq I_{\max }^{P}\right)$
$\left(i \leq r_{\max }\right)$
Step 2: power method. Generate random \mathbf{v}_{0} with unit-norm and run
Step 2: power method. Generate random \mathbf{v}_{0} with
$\mathbf{u}_{i}=\mathbf{Y}_{N S} \mathbf{v}_{i} /\left\|\mathbf{Y}_{N S} \mathbf{v}_{i}\right\|$ and $\mathbf{v}_{i+1}=\mathbf{Y}_{N S}{ }^{\top} \mathbf{u}_{i} /\left\|\mathbf{Y}_{N S}{ }^{T} \mathbf{u}_{i}\right\|$
$\mathbf{u}_{i}=\mathbf{Y}_{N S} \mathbf{v}_{i} /\left\|\mathbf{Y}_{N S} \mathbf{v}_{i}\right\|$ and $\mathbf{v}_{i+1}=\mathbf{Y}_{N S}{ }^{\top} \mathbf{u}_{i} /\left\|\mathbf{Y}_{N S}{ }^{\top} \mathbf{u}_{i}\right\|$
Step 3. Return $\mathbf{x}_{0}=\sigma \mathbf{v}_{i_{\text {max }}}$ and $\mathbf{h}_{0}=\sigma \mathbf{u}_{l_{\text {max }}}$ with $\sigma^{2}=$

- Low computational complexity
$\Rightarrow \mathcal{O}(M L P)$ to form $\mathbf{Y}_{N S}$ and $\mathcal{O}\left(l_{\max }^{P} L P\right)$ for power method
\Rightarrow Lower than gradient operations

Initialization II: EIG-based for correlated vectors

- Form augmented vectors $\gamma_{m}:=\left[\mathbf{a}_{m}^{T}, \mathbf{b}_{m}^{T}\right]^{T} \in \mathbb{R}^{L+P}$ and symmetric matrix

$$
\begin{equation*}
\mathbf{Y}_{S}=\frac{1}{M} \sum_{m=1}^{M} y_{m} \gamma_{m} \gamma_{m}^{T} . \tag{9}
\end{equation*}
$$

\Rightarrow Define $\mathbf{A} \in \mathbb{R}^{(L+P) \times(L+P)}$ symmetric and rank-2

$$
\mathbf{A}=\left[\begin{array}{c}
\mathbf{h} \\
\mathbf{0}_{P}
\end{array}\right]\left[\mathbf{0}_{L}^{T} \mathbf{x}^{T}\right]+\left[\begin{array}{c}
\mathbf{0}_{L} \\
\mathbf{x}
\end{array}\right]\left[\mathbf{h}^{T} \mathbf{0}_{P}^{T}\right]=\left[\begin{array}{ll}
\mathbf{0}_{L \times L} & \mathbf{h} \mathbf{x}^{T} \\
\mathbf{x h}^{T} & \mathbf{0}_{P \times P}
\end{array}\right]
$$

\Rightarrow It follows that $y_{m}=(1 / 2) \boldsymbol{\gamma}_{m}^{\top} \mathbf{A} \boldsymbol{\gamma}_{m}$, taking expectations in (9)

$$
\begin{equation*}
\mathbb{E}\left[\boldsymbol{Y}_{S}\right]=\frac{1}{2} \mathbb{E}\left[\gamma_{1} \gamma_{1}^{T} \mathbf{A} \gamma_{1} \gamma_{1}^{T}\right] \tag{10}
\end{equation*}
$$

- Measurement vecs: \mathbf{a}_{m} and \mathbf{b}_{m} white, but correlated with $\mathbf{C}=\mathbb{E}\left[\mathbf{a}_{m} \mathbf{b}_{m}^{T}\right]$ $\mathbf{S}=\left[\begin{array}{cc}\mathbf{I}_{L} & \mathbf{C} \\ \mathbf{C}^{T} & \mathbf{I}_{P}\end{array}\right]$
\Rightarrow Fourth order moment of a Gaussian yields

$$
\begin{equation*}
\mathbb{E}\left[\mathbf{Y}_{S}\right]=\mathbf{S A S}+(1 / 2) \operatorname{tr}[\mathbf{A S}] \mathbf{S} \tag{12}
\end{equation*}
$$

- Left multiply by \mathbf{S}^{-1} to simplify the second term \Rightarrow Then it follows that the expected value of $\tilde{Y}:=\mathbf{S}^{-1} \mathbf{Y}_{S}$ is $\mathbb{E}[\tilde{\mathbf{Y}}]=\mathbf{A S}+(1 / 2) \operatorname{tr}[\mathbf{A S}] \mathbf{I}_{L+P}=\left[\begin{array}{cc}\mathbf{h} \mathbf{x}^{\top} \mathbf{C}^{\top} & \mathbf{h} \mathbf{x}^{\top} \\ \mathbf{x h}^{T} & \mathbf{x h}^{T} \mathbf{C}\end{array}\right]+\left(\mathbf{x}^{\top} \mathbf{C}^{T} \mathbf{h}\right) \mathbf{I}_{L+P}$ (13)
- Two eigenvectors: $\mathbf{v}_{1}=\left[\mathbf{h}^{T} /\|\mathbf{h}\|, \mathbf{x}^{T} /\|\mathbf{x}\|\right]^{T}, \mathbf{v}_{2}=\left[-\mathbf{h}^{T} /\|\mathbf{h}\|, \mathbf{x}^{T} /\|\mathbf{x}\|\right]^{T}$
- Simple EIG-based initialization (power method)

Algorithm 2: Spectral initialization for correlated data
INPUTS: $\left\{y_{m}\right\}_{m=1}^{M},\left\{\mathbf{a}_{m}\right\}_{m=1}^{M},\left\{\mathbf{b}_{m}\right\}_{m=1}^{M}, \mathbf{C}$, and $I_{\text {max }}^{P}$
OUTPUTS: initial estimates \mathbf{h}_{0} and \mathbf{x}_{0}
Step 1: Finding \mathbf{z}^{*}. Use inputs to find $\tilde{\mathbf{Y}}$ and get eigenvector \mathbf{z}^{*}
$\mathbf{z}_{\text {Imax }^{P}}$ using a power method $\mathbf{z}_{i}=\tilde{\mathbf{Y}} \mathbf{z}_{i-1} /\left\|\tilde{\mathbf{Y}} \mathbf{z}_{i-1}\right\|$ for $i=1, \ldots, I_{\text {max }}^{P}$ Step 2: Finding the initializations $\tilde{\mathbf{h}}_{0}$ and $\tilde{\mathbf{x}}_{0}$ using \mathbf{z}^{*} Extract $\overline{\mathbf{z}}^{\text {top }}:=\left[z_{1}^{*}, \ldots, z_{L}^{*}\right]^{T}, \overline{\mathbf{z}}^{\text {bot }}:=\left[z_{L+1}^{*}, \ldots, z_{L+\rho}^{*}\right]^{T}$ from \mathbf{z}^{*} Normalize $\overline{\mathbf{z}}_{h}:=\overline{\mathbf{z}}^{\text {too }} /\left\|\overline{\mathbf{z}}^{\text {top }}\right\|, \overline{\mathbf{z}}_{x}:=\overline{\mathbf{z}}^{\text {bot }} /\left\|\overline{\mathbf{z}}^{\text {bot }}\right\|$ Stack $\overline{\mathbf{z}}_{h}$ and $\overline{\mathbf{z}}_{x}$ in $\mathbf{v}_{A}:=\frac{1}{\sqrt{2}}\left[\overline{\mathbf{z}}_{h}^{T}, \overline{\mathbf{z}}_{x}^{T}\right]^{T}, \mathbf{v}_{B}:=\frac{1}{\sqrt{2}}\left[-\overline{\mathbf{z}}_{h}^{T}, \overline{\mathbf{z}}_{x}^{T}\right]^{T}$
Compute $\lambda_{\boldsymbol{A}}=\left\|\tilde{\mathbf{Y}} \mathbf{v}_{A}\right\|, \lambda_{\boldsymbol{B}}=\left\|\tilde{\mathbf{Y}} \mathbf{v}_{\boldsymbol{B}}\right\|$ and $\lambda_{x h}=\left(\lambda_{\boldsymbol{A}}+\lambda_{\boldsymbol{B}}\right) / 2$ Set $\tilde{\mathbf{h}}_{0}=\sqrt{\lambda_{x h}} \overline{\mathbf{z}}_{h}$ and $\tilde{\mathbf{x}}_{0}=\sqrt{\lambda_{x h}} \overline{\mathbf{z}}_{x}$.
Step 3: Fixing the sign of the initializations
If $\operatorname{sign}\left([\tilde{\mathbf{Y}}]_{1, L+1}\right)=\operatorname{sign}\left(\left[\tilde{\mathbf{h}}_{0} \tilde{\mathbf{x}}_{0}^{T}\right]_{1,1}\right)$, return $\mathbf{h}_{0}=\tilde{\mathbf{h}}_{0}$ and $\mathbf{x}_{0}=\tilde{\mathbf{x}}_{0}$.
If $\left.\operatorname{sign}\left(\tilde{\mathbf{Y}}_{1, L+1}\right)=\operatorname{sign}\left(\tilde{h}_{0} \tilde{\mathbf{x}}_{0}\right]_{1,1}\right)$, ret
If not, return $\mathbf{h}_{0}=-\tilde{\mathbf{h}}_{0}$ and $\mathbf{x}_{0}=\tilde{\mathbf{x}}_{0}$.

\Rightarrow As $M \rightarrow \infty$: p1) $\left\|\mathbf{h}_{0}\right\|=\left\|\mathbf{x}_{0}\right\|=\sqrt{\|\mathbf{h}\|\|\mathbf{x}\|}$ and p2) $\mathbf{h}_{0} \mathbf{x}_{0}^{T}=\mathbf{h} \mathbf{x}^{T}$

 $\Rightarrow \mathbf{S}^{-1}$ pre-whitening- Computational complexity higher than that for Algorithm 1 \Rightarrow Larger matrix and $\tilde{\mathbf{Y}}$ requires inverting block matrix \mathbf{S}
\Rightarrow Cost dominated by Step 1
a) $\mathcal{O}\left(I_{\max }(L+P)^{2}\right)$ for power method, and
b) $\mathcal{O}\left((L+P)^{3}\right)$ for \mathbf{S}^{-1} and $\mathcal{O}\left(M(L+P)^{2}\right)$ for $\hat{\boldsymbol{Y}}$
\Rightarrow Overall cost still dominated by gradient step $\mathcal{O}\left(I_{\max }^{G} M(L+P)^{2}\right)$

Initialization II: Special cases

Fully uncorrelated: $\mathbf{a}_{m} \perp \mathbf{b}_{m}$ for $m=1, \ldots, M$

- $\mathbf{C}=\mathbf{0}_{L \times P}$ and $\mathbf{S}=\mathbf{I}_{L+P}$
- Simplified (12): $\mathbb{E}\left[\mathbf{Y}_{S}\right]=\mathbf{A}$ (notice that $\operatorname{tr}[\mathbf{A}]=0$).
- EIGs $\mathbb{E}\left[\mathbf{Y}_{S}\right]=\mathbf{A}$

1) $\mathbf{v}_{1}=\frac{1}{\sqrt{2}}\left[\mathbf{h}^{T} /\|\mathbf{h}\|, \mathbf{x}^{T} /\|\mathbf{x}\|\right]^{T}$ with $\lambda_{1}=\|\mathbf{x}\|\|\mathbf{h}\|$; 2) $\mathbf{v}_{2}=\frac{1}{\sqrt{2}}\left[-\mathbf{h}^{T} /\|\mathbf{h}\|\right.$, $\left.\mathbf{x}^{\top} /\|\mathbf{x}\|\right]^{\top}$ with $\lambda_{2}=-\|\mathbf{x}\|\|\mathbf{h}\|$; and 3$) \lambda_{n}=0$ for $n>2$.
Fully correlated: $\mathbf{a}_{m}=\mathbf{b}_{m}$

- $\mathbf{C}=\mathbf{I}_{P} \Rightarrow \mathbf{S}=\mathbf{I}_{2 P}$
- Simplified (12): each of the four blocks in $\mathbb{E}\left[\mathbf{Y}_{S}\right]$ are identical
- EIG of block $\mathbf{B}=\left[\mathbb{E}\left[\mathbf{Y}_{S}\right]\right]_{1: P, 1: P}=\mathbf{h} \mathbf{x}^{T}+\mathbf{x h}^{T}+\left(\mathbf{x}^{T} \mathbf{h}\right) \mathbf{I}_{P}$ 1) $\mathbf{v}_{1}=\mathbf{x} /\|\mathbf{x}\|+\mathbf{h} /\|\mathbf{h}\|$ with $\left.\lambda_{1}=2 \mathbf{x}^{\top} \mathbf{h}+\|\mathbf{x}\|\|\mathbf{h}\| ; 2\right) \mathbf{v}_{2}=\mathbf{x} /\|\mathbf{x}\|-\mathbf{h} /\|\mathbf{h}\|$ with $\lambda_{2}=2 \mathbf{x}^{T} \mathbf{h}-\|\mathbf{x}\|\|\mathbf{h}\|$; and 3) $\lambda_{n}=\mathbf{x}^{T} \mathbf{h}$ for $n>2$
- Useful to simplify Alg. 2: smaller matrix and no \mathbf{S}^{-1} pre-whitening

Numerical experiments: setup

Setup: \mathbf{x} and \mathbf{h} zero-mean Gaussians with $\sigma_{x}^{2}=4^{2}$ and $\sigma_{h}^{2}=1^{2}$; $I_{\text {max }}^{G}=500 ; \mu_{\text {max }}=0.4, i_{\text {thr }}=75, \bar{\mu}_{i \mid x}=\left\|\mathbf{x}_{i}\right\|^{2}$ and $\bar{\mu}_{i \mid h}=\left\|\mathbf{h}_{i}\right\|^{2}$

- Five algorithms (results are averaged across 100 trials): \Rightarrow A1) SIGIBE using Algorithm 1 and A2) using Algorithm 2 for $\mathbf{C}=\mathbf{0}$
\Rightarrow A3) Random initializ. with $K_{1}=5$ seeds and A4) $K_{2}=15$ seeds
$\Rightarrow A 5)$ SDP relaxation based on matrix lifting
- Metric: err $=\left\|\mathbf{x h}^{T}-\hat{\mathbf{x}} \hat{\mathbf{h}}^{T}\right\|_{F} /\left\|\mathbf{x h}^{T}\right\|_{F}$

Numerical experiments I: Uncorrelated case

- No correlation: $\mathbf{C}=\mathbf{0}, P=64, L=2 P=128$

- Observations
\Rightarrow If $M \leq L+S=1.5 L$ all fail
\Rightarrow If $M \geq 8 L$ all work
$\Rightarrow A 1$ best performance
\Rightarrow Speed: A1, 1.1A1, 5.0A1, 14.9A1, 20.4A1

Numerical experiments II: Correlated case

- Slight correlation: C=0.25I, $P=L=128$

- Strong correlation: $\mathbf{C}=0.75 \mathrm{I}, P=L=128$

Observations
\Rightarrow The higher the correlation, the more difficult
\Rightarrow For $\rho=0.25, M=5.5 \mathrm{~L}$
\Rightarrow For $\rho=0.75, M=6.5 L$
$\Rightarrow \mathrm{A} 1$ works well even in the correlated case

Conclusions and future work

- Non-convex algorithm for inverse bilinear problems
\Rightarrow Gradient descent plus spectral initializations
\Rightarrow Different forms of correlation among measurement vectors
- Develop theoretical recovery guarantees
- Extension to the complex case
- Explore the fact that SVD works well for the correlated case

References

- A. Ahmed, B. Recht, and J. Romberg, "Blind deconvolution using convex programming," IEEE Trans. Info. Theory, vol. 60, no. 3, pp. 1711-1732, 2014.
T. Strohmer and S. Ling, "Self-calibration and biconvex compressive sensing," arXiv preprint arXiv:1501.06864 [cs.IT], 2015.
- Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev, "Phase retrieval with application to optical imaging: a contemporary overview," IEEE Signal Process. Mag., vol. 32, no. 3, pp. 87-109, 2015.
E. J. Candes, X. Li, and M. Soltanolkotabi, "Phase retrieval via Wirtinger flow: Theory and algorithms," IEEE Trans. Info. Theory, vol. 61, no. 4, pp. 1985-2007, 2015.
E. J. Candes Y. Chen, "Solving random quadratic systems of e
linear systems," arXiv preprint arXiv: 1505.05114 [cs.IT]. 2015.

Financial support

- Spanish MINECO grant TEC2013-41604-R; ${ }^{\text {² }}$ NSF CCF-1217963; and *EU's Horizon 2020 programme under grant agreement ERC-BNYQ, ISF under grant no. 335/14, and ICore: the Israeli Excellence Center "Circle of Light".

