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Abstract

We investigate the problem of finding the real-valued vectors h, of size L,
and x, of size P, from M independent measurements y,, = (am, h)(bm, X),
where a,, and b, are known random vectors. Inspired by phase retrieval
solvers, we propose SIGIBE an algorithm that proceeds in two steps: (i)
first a spectral method is used to obtain an initial guess; which is then (ii)
refined using simple and scalable gradient descent iterations to minimize a
natural non-convex formulation of the recovery problem.

Bilinear problems

» Given a collection of M scalar measurements y, € R of the form
Ym= (@m,h)(bm,x)=a’h-blx, m=1_...M (1)

= with M > (L + P), a € Rt and b € R” known
» Goal: recover the unknown h € Rt and x € RP
= Up to an inherent scaling ambiguity

» Challenges: non-convex, multiple solutions, scaling ambiguity

» Assumptions:
= {apM_. and {b,}M_. are random, zero-mean, identity cov
=- Any correlation between a,, and b,;; including a,, = by,

» Many meaningful applications are inverse bilinear problems
= Blind deconvolution (channel equalization or image deblurring)
=- Array self-calibration for direction-of-arrival estimation
= Modeling of network diffusion processes
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Related problems

» Phase retrieval
= Measurements of the form y,,, = |(@n, X)|?
= Long history in astronomy, optics and microscopy
= Symmetry not present in our setup
= Many approaches: Phaselift, SDP-based, greedy, gradient

» Bilinear deconvolution by lifting
= ym bilinear in x and h, but linear in (rank-one) matrix xh’™
=- rank minimization = convex relax with performance guarantees
= SDP-based solvers entail higher computational complexity

Contributions

» SIGIBE: two-step gradient-based algorithm
» Arbitrary correlation among measurement vectors
» No lifting = Smaller computational complexity

Problem formulation

» Measurements {y,}M_. given, {ap}¥_. and {b,,}¥_. known
= A natural criterion is to minimize the LS cost

Inverse bilinear problem

( a’h. x7 ym)z. (2)
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» Problem (2) bilinear, hence non-convex optimization.

» Approach:
= Judicious initialization + simple gradient descent iterations
= Similar to recent ideas for phase retrieval

Gradient iterations

» Let / be the iteration index and {Xg, ho} the (spectral) initializations

Gradient iterations

Xit1 = X;i — ijx Vxf(X;, h;) (3)
hi 1 =h;— 1;nVnf(X;, h;) (4)

» The gradients of f(x, h) are

- EM:( nh-XTby — yn) (aph) by (5)
m:1
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> Stepsizes pjx and g
= Different alternatives = diff. convergence and recovery
= Simulations will be run with z, = 11;/J1
i = Min { i, 1 — €1/} and 7, — [|x|?
= ||x||? can be known, estimated, or replaced with ||x;]|2.

» Computational complexity
= O(M(L + P)?) operations per iteration
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Initialization I: SVD-based for uncorrelated vectors

» Consider the non-symmetric L x P matrix

M
’
Yis = > ymamb, (7)
m=1
» Suppose that a,, and b, are uncorrelated foreachm=1,....M
M
’
E[Yns] = 77 Y Elamay]hxEbyb;] = hx’ (8)
o

= Rank-one matrix
= Strong Law of Large Numbers (LLN): Yys — E[Yns] = hx'
= |If M large, dominant singular vectors align with h and x

» Simple but instructive initialization based on SVD decomposition

Algorithm 1: Spectral initialization for uncorrelated data

INPUTS: {ym}m 1={am}m 1> {bm}m 17 and Irﬁax

OUTPUTS: initial estimates hy and Xg

Step 1. Use inputs to find Yys and run the iterations in Step 2 for
™

Step 2: power method. Generate random vg with unit-norm and run

U = YnsV/||[YnsVil| and vies = Yas ui/||Y s Tugl|

Step 3. Return X, = ovpe and hy = oup with ¢ =
IYnsvie, 1Y Gsuze, |

» Low computational complexity
= O(MLP) to form Yys and O(I5,LP) for power method
=- Lower than gradient operations

Initialization ll: EIG-based for correlated vectors

» Form augmented vectors v,, .= [a], b]]" € RHF and symmetric matrix

1
Ys=27D YmYm¥m (9)

m=1

= Define A € R(FP)*(L+P) symmetric and rank-2

A= g | [orxr] | S| nmor] = | Suct o |

= It follows that y,, = (1/2)~/) A~,,, taking expectations in (9)

1
E[Ys] = SElv1v1 Avyvil. (10)
» Measurement vecs: a, and b, white, but correlated with C = E[a,,b]]
I C
S[CT IP]. (41)
= Fourth order moment of a Gaussian yields
E[Ys] = SAS + (1/2)tr[AS]S (12)

» Left multiply by S~ to simplify the second term
= Then it follows that the expected value of Y := S~ 'Y is

- hx’C7 hx’
E[Y] = AS + (1 /2)tr[AS]IL+p=[ );hT xthC] +(x"CTh)lp. (13)

» Two eigenvectors: vi=[hT/|/h|, XT/HXH]T, vo=[-h"/|h|, XT/HXH]T

» Simple EIG-based initialization (power method)

Algorithm 2: Spectral initialization for correlated data

INPUTS: {Ym}m 1={am}m 1> {bm}m 13 C= and Ir/r::ax
OUTPUTS: initial estimates hg and Xxg
Step 1: Finding z*. Use inputs to find Y and get elgenvector z*

z/» using a power method z; = Yz;_1/||Yz;_4| for i =1, lr’;ax

Step 2: Finding the initializations hy and X, using z*.

Extract 2P := [z, ..., z]]", 2% .= [z} ,,, ..., z} . p|" from Z*

Normalize Zj, := 2P /||2!P||, Z, := Z°°!/||Z5°||

Stack z;, and z, i[l Vg = %2[2,{, 21", vg = %2[—2;,2;]7

Compute A\g = ||[YVall, Ag = [|[YVg|| and Ay = (Aa + AB)/2

Set ho — \/ Axhih and io — \/Axhix.

Step 3: Fixing the sign of the initializations.

If sign([Y]1,L+1) — Sig~n([ho)~((§-]1,1), return ho = ho and Xo = )N(o.
If not, return hg = —hg and Xp = Xo.

— As M — oc: p1) |||l = [[Xol| = v/ITRTX]| and p2) hox] — hx"
= S~ pre-whitening

» Computational complexity higher than that for Algorithm 1
— Larger matrix and Y requires inverting block matrix S

= Cost dominated by Step 1:
a) O(Inax(L + P)?) for power method, and

b) O((L+ P)3) for S~' and O(M(L + P)?) for Y
= Overall cost still dominated by gradient step O (IS, M(L + P)?)

Initialization Il: Special cases

Fully uncorrelated: a,, L b,form=1,... M
» C = 0,.pand S = |L+P
» Simplified (12): E[Ys] = A (notice that tr [A] = 0).
> EIGs E[Yg] =
1) vi = 5 [h7/|h]|, x7/|x]|] " with A = |x]|[|h]}; 2) v2 = 5[~ h7/||h],
x7/|1x|[]" with 2 = —[|x|/||h[}; and 3) A, = 0 for n > 2.

Fully correlated: a,, = b,
» C=Ilp=S=10p
» Simplified (12): each of the four blocks in E[Yg] are identical
» EIG of block B = [E[Ys]]1:p71:p = hx" +xh’ + (XTh)lp ;
1) vy = x/|[x|| + h/|[h| with Ay = 2x"h + |[x]|[|h[}; 2) v2 = x/||x]| — h/|/h]|
with Ao = 2x"h — ||x||/||h]|; and 3) A\, = x"h for n > 2
» Useful to simplify Alg. 2: smaller matrix and no S~ pre-whitening
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Numerical experiments: setup
» Setup: x and h zero-mean Gaussians with 02 = 42 and o2 = 1%;
In?ax = 500 Hmax = O 4 Ithr = 75 ,u,|x HX/H and ,u,|h Hh/H2

» Five algorithms (results are averaged across 100 trials):
= A1) SIGIBE using Algorithm 1 and A2) using Algorithm 2 for C =0
= A3) Random initializ. with K1 = 5 seeds and A4) K> = 15 seeds
= A5) SDP relaxation based on matrix lifting

> Metric: err = | xhT — %h7||£/||xh7 ||
Numerical experiments |: Uncorrelated case

» No correlation: C=0,P=64, L =2P =128
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» Observations
= IfM < L+ S =1.5Lall fail
= If M > 8L all work
= A1 best performance
= Speed: A1, 1.1A1, 5.0A1, 14.9A1, 20.4A1

Numerical experiments Il: Correlated case

» Slight correlation: C=0.251, P=L =128
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» Strong correlation: C=0.751, P=L =128
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» Observations
=- The higher the correlation, the more difficult
= For p =025, M =5.5L
= For p=0.75, M =6.5L
= A1 works well even in the correlated case

Conclusions and future work

» Non-convex algorithm for inverse bilinear problems
= @Gradient descent plus spectral initializations
= Different forms of correlation among measurement vectors

» Develop theoretical recovery guarantees
» Extension to the complex case
» Explore the fact that SVD works well for the correlated case
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