
Received April 16, 2021, accepted April 23, 2021, date of publication April 27, 2021, date of current version May 4, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3075951

Improving Road Semantic Segmentation Using
Generative Adversarial Network
ABOLFAZL ABDOLLAHI 1, (Graduate Student Member, IEEE),
BISWAJEET PRADHAN 1,2,3, (Senior Member, IEEE), GAURAV SHARMA 4, (Fellow, IEEE),
KHAIRUL NIZAM ABDUL MAULUD 3,5, AND ABDULLAH ALAMRI6
1Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS), Faculty of Engineering and IT, School of Information, Systems and Modelling,
University of Technology Sydney (UTS), Sydney, NSW 2007, Australia
2Department of Energy and Mineral Resources Engineering, Sejong University, Seoul 05006, South Korea
3Earth Observation Centre, Institute of Climate Change, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
4Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY 14627, USA
5Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
6Department of Geology and Geophysics, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

Corresponding author: Biswajeet Pradhan (biswajeet.pradhan@uts.edu.au)

This work was supported in part by the Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS), Faculty of
Engineering and IT, University of Technology Sydney (UTS), in part by the Researchers Supporting Project, King Saud University,
Riyadh, Saudi Arabia, under Project RSP-2020/14, and in part by the Universiti Kebangsan Malaysia, DANA IMPAK PERDANA, under
Grant DIP-2018-030.

ABSTRACT Road network extraction from remotely sensed imagery has become a powerful tool for
updating geospatial databases, owing to the success of convolutional neural network (CNN) based deep
learning semantic segmentation techniques combined with the high-resolution imagery that modern remote
sensing provides. However, most CNN approaches cannot obtain high precision segmentation maps with
rich details when processing high-resolution remote sensing imagery. In this study, we propose a generative
adversarial network (GAN)-based deep learning approach for road segmentation from high-resolution aerial
imagery. In the generative part of the presented GAN approach, we use a modified UNet model (MUNet) to
obtain a high-resolution segmentation map of the road network. In combination with simple pre-processing
comprising edge-preserving filtering, the proposed approach offers a significant improvement in road
network segmentation compared with prior approaches. In experiments conducted on the Massachusetts
road image dataset, the proposed approach achieves 91.54% precision and 92.92% recall, which correspond
to a Mathews correlation coefficient (MCC) of 91.13%, a Mean intersection over union (MIOU) of 87.43%
and a F1-score of 92.20%. Comparisons demonstrate that the proposed GAN framework outperforms prior
CNN-based approaches and is particularly effective in preserving edge information.

INDEX TERMS GAN, road segmentation, remote sensing, deep learning, U-Net.

I. INTRODUCTION
Compared with aerial images that are typically restricted
to three red, green, and blue (RGB) spectral channels and
available for limited geographic areas, satellite imagery com-
monly includes further spectral channels and provides almost
worldwide coverage at high resolution [1]. High-resolution
remote sensing imagery is therefore an attractive option for
extracting road segments to aid the development of maps
for geospatial information systems (GIS) users, transporta-
tion practitioners, geodetic researchers, and urban/municipal
planners and officers [2]–[4]. Although the 0.5–1 meter
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per pixel resolution for high-quality satellite images is
worse than the resolution for aerial images, it is adequate
for extracting road sections. However, shadows, overlap-
ping, interlacing, and shadowing in satellite images [5]
make road segment extraction challenging [6]. The man-
ual segmentation of roads is feasible based on careful
examination of images, but such segmentation is costly,
time-consuming, and prone to errors due to its tedious
nature [7]. Thus, automatic means are necessary for accu-
rately extracting road segments from high-resolution remote
sensing imagery [8]. Machine learning-based approaches
have recently demonstrated significant successes in the fields
of image segmentation [9], [10], object detection [11], [12],
and image classification [13], [14]. For example, in a study
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conducted by [15], a road detection method using maximum
likelihood technique, morphological operators and Random
Sample Consensus (RANSAC) has been proposed to identify
the road network from Quickbird images. Another work [16]
applied a hybrid road detection technique on the basis of
Trainable Weka Segmentation (TWS) and Level Set (LS)
algorithms to extract roads from UAV images. A new method
based on a hierarchical graph with Gabor and morpholog-
ical filtering was proposed in [17] to extract roads from
aerial and Quick-Bird imagery. Da-Ming, et al. [18] applied
a hybrid approach combining of Markov random fields
(MRFs), support vector machine (SVM) and fuzzy c-means
(FCM) to extract the road network from Google Earth
imagery. A new technique for road extraction from IKONOS,
Quick-Bird and GeoEye imagery was also implemented
in [19]. Bakhtiari, et al. [20] implemented a semi-automatic
technique based on edge detection, SVM and morphological
filtering to detect different road types from UltraCam air-
borne, Worldview and Quick-Bird imagery. However, most
of the traditional machine learning approaches cannot handle
multiscale road sections, especially narrow road parts with
high width variation, and failed to obtain high precision in
road network segmentation. Thus, for extracting semantic
information and learning hierarchical features automatically
from raw data, researchers are increasingly resorting to deep
learning methods [21], [22]. A key reason is that deep neural
networks can effectively learn from the large-scale data sets
becoming available in remote sensing, such as light detection
and ranging (LiDAR) point clouds, high-spatial and spectral
resolution images, and multi-spectral imagery [23], [24].

Several prior works attempted to extract road parts from
high-resolution remotely sensed images, including tradi-
tional and modern deep learning approaches [17]. To pro-
vide context for our presentation, we summarize previous
works using deep learning approaches for road extraction
in remote sensing images Wang, et al. [25] described a
semi-automatic approach based on a deep convolutional neu-
ral network (DNN) and finite state machine (FSM) consisting
of two principal stages, namely, training and tracking for road
extraction from high-resolution remote sensing images. In the
training stage, the network was trained for identifying input
image patterns associatedwith the FSMusing high-resolution
images and associated vector road maps. In the tracking
stage, the FSM uses the recognized patterns to update the
state and track the road segments. Although the approach
is more accurate than some traditional methods, it cannot
efficiently extract road parts from complex scenes where road
sections are covered by obstacles. Li, et al. [26] implemented
a CNN-based method for detecting roads from GeoEye and
Pleiades-1A satellites with a spatial resolution of 0.5 meters.
A CNN was first used to assign labels to every pixel and
to predict the likelihood of each pixel being associated with
a road segment. A line-integral convolutional-based tech-
nique was then used to retain edge information, connect
small gaps, and obtain a smooth map. Road centerlines were
finally obtained via image processing. Results showed that

the technique provides high specificity while achieving low
sensitivity. Zhong, et al. [23] proposed a CNN-based method
to exploit road and building features from the Massachusetts
dataset that combines high-level semantic meaning and
low-level fine-grained features. Additional hyper-parameters,
such as training epoch, learning rate, and input image size,
were also investigated to characterize the performance of the
approach in the context of high-resolution remote sensing
images. By combining a novel four-stride pooling layer out-
put and the last score layer from a pre-trained fully connected
network (FCN), the model accuracy remarkably improved to
78%. Panboonyuen, et al. [27] used a technique based on
a deep encoder-decoder neural network (DCED) to detect
road parts in the Massachusetts road dataset. They improved
their proposed approach by using an exponential linear unit
activation function, instead of the traditional rectified linear
unit (ReLU), by incrementally rotating images in eight steps
to augment training data, and by adopting a landscape metrics
approach to reduce false road pixels and increase the over-
all efficiency. The resulting technique outperformed prior
state-of-the-art approaches for road extraction from remote
sensing images. In another work, [28] performed nonlocal
LinkNet with nonlocal blocks (NLBs) to capture relations
between global features and extract road from DeepGlobe
road dataset efficiently. Cheng, et al. [29] suggested a novel
deep learning approach named cascaded end-to-end (CasNet)
CNN to identify road pixels and extract road centerlines
from high-resolution remotely sensed imagery. Data aug-
mentation and regularization techniques were implemented
to decrease over-fitting. While useful for road recognition,
the approach fails in regions where roads are surrounded by
trees which cause occlusion. A novel deep learning-based
approach named densely connected convolutional networks
(DenseNet) was designed by [30] along with introducing
global and local attention units to effectively detect road
fromGoogle Earth imagery. The results demonstrated that the
proposed framework is successful and feasible in enhancing
the efficiency of road semantic segmentation.

Further high-level semantic information is needed to
improve the performance of road detection and to better han-
dle occlusions. Therefore, we adopt a generative adversarial
network (GAN) framework [16] to address road segmentation
from remote sensing imagery. In the context of our problem
setting, a GAN combines a generative network that extracts a
putative road network from an input remote sensing image
with a discriminator network that attempts to distinguish
between road networks produced by the generator and those
from ground truth labels. The generator and discriminator
networks are co-optimized in a max-min setting where gen-
erator produces the best possible road map that is maximally
confusing for the discriminator that is attempting to minimize
its error. Only a fewworks on semantic segmentation exist for
road part semantic segmentation based on the GAN model.
In a recent work, Luc, et al. [31] applied a GAN for segmen-
tation and found that by enforcing the long-range spatial con-
tiguity of labels, the model can produce smooth and precise
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road networks compared with non-adversarial training. How-
ever, the segmentation boundary was quite unclear, as low-
level features were used by the generative model to produce
the segmentation map. To overcome this limitation and to
obtain a high-resolution segmentation of the road network,
we propose to use a modified U-Net as the generator network.

The main contribution of this research lies in proposing
a GAN with a modified U-Net generative model to extract
roads from high-resolution aerial imagery. Compared to prior
GAN-based road extraction approaches such as GAN+FCN
proposed by [32], GAN+SegNet presented by [21], Ensem-
ble Wasserstein Generative Adversarial Network (E-WGAN)
proposed by [33], Multi-supervised Generative Adversarial
Network (MsGAN) performed by [34], andMulti-conditional
Generative Adversarial Network (McGAN) implemented
by [35], we introduce the modified U-Net model (MUNet)
for the generative term to create a high-resolution smooth seg-
mentation map, with high spatial consistency and clear seg-
mentation boundaries. The proposed model does not require
high computational time and a large training dataset and
still improves performance and addresses the aforementioned
challenges for road extraction from remote sensing imagery.
Also, compared with other comparative techniques that failed
to refine the imperfect structures of roads, the proposed
method in the current study preserves the edges and struc-
ture of roads and generates high-quality road segmentation
maps in agreement with ground truth labels. The rest of
the paper is organized as follows: Section II illustrates the
methodology of the proposed model for road semantic seg-
mentation and explains the dataset preparation. Section III
presents the experimental results obtained using the pro-
posed approach. Section IV compared the proposed approach
against other state-of-the-art methods. Section V summarizes
the conclusions.

II. METHODOLOGY
Figure 1 shows the overall methodology for training and
evaluating the proposed GAN-based approach for road net-
work extraction organized as four major steps: (i) gener-
ation of training and testing samples; (ii) local Laplacian
filtering (LLF)-based pre-processing to enhance image qual-
ity; (iii) GAN optimization using the training samples, and
extraction of the road network from images in the test set
using the generator from the optimized GAN; and (iv) perfor-
mance quantification for the proposed method using common
metrics.

A. PRE-PROCESSING
As a pre-processing step, we use LLF to enhance the quality
of images prior to using them in the proposed model for
training/testing. LLF is a nonlinear image filtering framework
based on Laplacian pyramids (LP) that enables edge-aware
processing using simple local processing operations. The
filtered LLF image is obtained by rendering its LP coefficient
by coefficient based on locally adaptive processing of the
input image [36]. LLF was introduced in [37], where it was

FIGURE 1. Workflow for training and evaluating the proposed approach.

verified that this filtering technique can enrich image details
without introducing halos or other artifacts and can be effec-
tively used for range compression and tone mapping. With
appropriate approximation and parallel implementation, LLF
can be significantly speeded up to enable interactive use [36].

B. GAN FRAMEWORK FOR SEMANTIC SEGMENTATION
As illustrated in Fig. 2, the GAN framework [38] uses two
subnetworks: a generator G and a discriminator D. The
generator attempts to generate data representative of the
ground truth provided for training, whereas the discrimina-
tor attempts to distinguish true ground truth data from data
produced by the generator. The two subnetworks are jointly
trained in an adversarial game to obtain the min-max oper-
ating point where the road maps created by G minimize the
maximum discrepancy for D between the true and generated
pairs. Figure 3 illustrates the detailed network architecture
illustrating the structure of the generator and discrimina-
tor. For the generator, we utilized the MUNet model that
includes two corresponding arms, a contracting (downsam-
pling) encoder and an expanding (upsampling) decoder, with
skip-connections that append every upsampled feature map
at the decoder with the corresponding one in the encoder that
has the same spatial resolution [39].

The generator subnetwork seeks to learn a map G : x → y
that produces a binary segmentation map y from the input
image x based on the distribution p seen in the training data.
The discriminator maps a pair {x, y} comprised of an input
image and a segmentation map to a value between 1 and 0
indicating the discriminators’ estimate of whether y repre-
sents a ground truth mask or an estimate from a generator
subnetwork.
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FIGURE 2. GAN training to generate a road segmentation map from an RGB image; the generator network seeks to create a representation that cannot be
distinguished from the ground truth image by the discriminator network, which in turn is trained to best distinguish generated samples from real ground
truth data.

FIGURE 3. Detailed structures of generative and discriminative networks comprising the proposed GAN for road network segmentation.

For road map segmentation, the GAN objective function is
then formulated as

LGAN (G,D) = Ex,y∼pdata(x,y)[logD(x, y)]

+Ex∼pdata(x)[log(1− D(x,G(x)))] (1)

Note that maximization of the objective function aligns
with maximization ofD(x, y)andminimization ofD(x,G(x)),

which seeks to train the discriminator subnetwork D to make
right decision. On the other hand, the generator subnetwork
G should generate outputs that are indistinguishable from
the true data to hamper the discriminator D from making
right decision and should therefore be chosen to minimize the
objective function. We defined the objective function as min-
imax of the objective function in (1) with maximization over
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choices of D and minimization over choices of G, as the final
purpose is to achieve realistic probability outputs from G.

In addition to the GAN objective function, we also used
a second binary cross-entropy loss function that is common
in segmentation and has also recently been incorporated in a
GAN framework for segmentation [39] of retinal images,

LSEG(G) = Ex,y∼pdata(x,y)[−y. logG(x)

− (1− y). log(1− G(x))] (2)

Combining both the segmentation loss and the GAN objec-
tive function, the optimal generator network for road map
segmentation is obtained as

G∗ = argmin
G

[max
D

LGAN (G,D)]+ λLSEG(G) (3)

where the impact of the two objective functions can be bal-
anced by the weighting parameter λ. In practice, we used
the Prop-GAN architecture to train from a low to a high
resolution on the ground truth segmentation maps. During
training, we incrementally added layers to the generator and
discriminator to increase the spatial resolution of the gener-
ated segmentation maps. Per pixel semantic class labels is the
output of the generator. We first created per-pixel likelihood
scores of belonging to every semantic label, and then sampled
every semantic class per pixel to synthesize segmentation
layouts. Then, we used tanh function on the generator’s last
layer to calculate the per-pixel probability scores, which
resulted in probability maps. The synthesized samples fed to
the Prop-GAN discriminator should still have distinct labels,
similar to the real samples. As a result, we computedminimax
for both forwards and backwards passes, with the goal of
achieving practical probability outputs.

C. GENERATOR AND DISCRIMINATOR ARCHITECTURE
The detailed architectures of the generator and discriminator
subnetworks used in our work are shown in Fig. 3. The gen-
erator uses the MUNet architecture [40] and it is built from
scratch and trained according to our dataset. The upper half
corresponds to the contracting encoder arm where resolution
decreases and feature depth increases as one proceeds from
left to right and the lower half corresponds to the expanding
decoder arm where resolution increases and feature depth
decreases as one proceeds from right to left. The feature map
size for the downscaling and upscaling layers of the generator
is listed in Table 1.

The skip connections characteristic of the U-Net architec-
ture [41] connect corresponding resolution layers between the
encoder and decoder arms allowing for the insertion of details
in the upsampling for each resolution expansion. Compared
to U-Net, the changes in the MUNet architecture include:
the introduction of batch normalization, the use of the ReLU
activation function in the decoder and Leaky ReLU for the
encoder, and elimination of the pooling layer. Specifically,
as shown in Fig. 3, in the contracting arm of the MUNet,
we used convolutional layers with a kernel size of 4 × 4
followed by batch normalization and Leaky ReLU activation

TABLE 1. The detailed architecture of the generator subnetwork
including downscaling and upscaling parts.

function, and in the expanding arm, we used deconvolution
layers with a 4 × 4 stride followed by batch normalization
and ReLU activation function. Finally, for mapping every
32-component feature vector to the desired number of classes
(road and non-road), we used the final deconvolution layer
with the 4 × 4 stride and a tanh activation function [31] for
mapping predicted values to classification probabilities. The
ReLU and Leaky ReLU activation functions are, respectively,
defined as

ReLU (k) =

{
0 if k <= 0
k if k > 0

(4)

LReLU (k) =

{
k if k > 0
αk if k <= 0

(5)

where α is a small constant between 0.1 and 0.3 [42].
The discriminator architecture used in our work is also

shown in Fig. 3. The ground truth data and segmentation
results are fed into the discriminative term to find whether
the generator output is fake (0) or real (1). The discriminator
uses a fully convolutional architecture with 17 layers, with
a structure that mimics the encoder arm of the generator
comprising of convolutional layers with a kernel size of 4×4
and stride of 2×2 followed by batch normalization and Leaky
ReLU activation function. The final layer used a sigmoid
function to produce a value between 0 and 1 indicative of
the discriminator’s assessment of the probability that the pre-
sented road segmentation map corresponds to labeled ground
truth [43].

III. RESULTS
A. DATASET
For our benchmarks, we used the Massachusetts dataset [44],
which is the largest existing road dataset. This dataset
includes 1,171 aerial images with original spatial dimen-
sions of 1500 × 1500. For validating the proposed model
on the dataset for road extraction, 100 images with complete
information and good quality were selected. The original
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images were divided into eight parts with a size of 512× 512
to accommodate computational constraints. Consequently,
761 images were used as the final dataset in the experiments.
The dataset was divided into 733 images for training and
validation: and 28 images for testing. Data augmentation
techniques, such as horizontal flip, vertical flip, zooming, and
rotation, were used to increase dataset size for training of the
proposed method.

B. PARAMETERS AND IMPLEMENTATION
For LLF, the sigma and alpha parameters were set as 0.2 and
0.3, respectively. Training of the GAN network to opti-
mize the loss function was performed using the extensively
utilized Adam optimizer [42] with learning rate of 0.001,
beta_1 of 0.9 and beta_2 of 0.999. A dropout probabil-
ity of 0.5 was used during model training to avoid over-
fitting. The proposed model was trained with batch size
1 for 100 epochs and the trained model was then applied
to the test data to extract roads. The extracted labels were
compared against the ground truth labels for evaluating the
performance. The whole process of the proposed method for
road extraction from remotely sensed imagery was imple-
mented on a GPU Nvidia Quadro P5000 with a computing
capacity of 6.1 with 2560 shading units, 160 texture mapping
units, and 64 render output units (ROPs), and a memory
of 16 GB under the framework of Keras with Tensorflow
backend.

C. PERFORMANCE EVALUATION METRICS
Five metrics were used to evaluate the accuracy assessment
of the suggested method applied for road class extraction
from high-resolution remote sensing data, namely, F1 score,
recall, precision, Matthews correlation coefficient (MCC),
and Mean intersection over union (MIOU) factors. These
metrics can be calculated from the number of false positive
(FP), false negative (FN), true negative (TN), and true posi-
tive (TP) pixels as

MCC =
TP.TN − FP.FN

√
(TP+FP)(TP+ FN )(TN + FP)(TN + FN )

Recall =
Tp

TP+ FN

Precision =
TP

TP+ FP

F1 =
2× Pr ecision× Recall
Pr ecision+ Recall

MIOU =
1
k

k−1∑
i=0

TPi
TPi + FPi + FNi

The recall represents the fraction of the labeled road pix-
els that are correctly classified and precision represents the
fraction of the road pixel classifications that are correct [20].
The F1 score [45] combines the precision and recall metrics
within a single numeric score that is considered a bal-
anced measure of accuracy when class sizes are different.

In addition, theMCC is also a correlation coefficient between
predicted and recognized binary classifications, providing a
value between −1 and +1 [46]. The proportion of unions
and intersections between the set of classified values and
the set of ground truth is computed using MIOU. In MIOU,
the number of classes k is equal to 2 presenting the road class
and background.

D. EXPERIMENTAL RESULTS
Figure 4 visually illustrates the results obtained with the pro-
posed MUNet and GANmodels for some images with varied
characteristics, specifically including non-complex and com-
plex backgrounds, shadows, and occlusions due to trees and
buildings. From the results in the figure, one can observe that,
while both the proposed approaches can extract and detect
roads in the images with good accuracy, the GAN framework
offers several advantages over the MUNet approach. The
MUNet approach is sensitive to occlusion by trees and to
shadows and predicts few FN pixels (depicted in blue box
in Fig. 4) but has its accuracy compromised due to a number
of FP pixels (depicted in yellow box in Fig. 4). Given that the
textural and spectral characteristics of parking lots, shadows,
and buildings frequently match those of roads, the proposed
MUNet model cannot reliably distinguish roads from these
other elements, resulting in incorrect classification for sev-
eral small patches. Moreover, some of the extracted road
parts are not continuous; lack of connectivity is observed
between the roads at junction regions where roads connect.
For complex images, extracting road parts can be challenging
for the proposed MUNet model. The proposed GAN model
offers a significant improvement over the MUNet approach
and generates more coherent high-resolution road segmenta-
tion maps with better preservation of the road borders and
mitigation of the effects of occlusions and shadows. Com-
pared to the MUNet approach the GAN approach predicts
fewer FP pixels, which is a key contributor to the improved
accuracy.

The accuracy of the proposed MUNet and GAN models
was also evaluated numerically in terms of the five met-
rics defined in Section III B and the results are summa-
rized in Table 2. The numerical results in Table 2 reinforce
the findings from the visually presented results in Fig. 4;
compared with the MUNet model the GAN model provides
significantly higher precision but slightly lower recall, indi-
cating that the MUNet model predicts more false positive
and less false negative pixels than the GAN model. For the
combined F1 score and MCC accuracy metrics, the GAN
model achieves scores of 92.20%, and 91.13% compared
with scores of 90.18%, and 88.92% for the MUNet, respec-
tively. The improvements of 2.02% and 2.21%, respectively,
for F1 score and MCC demonstrate the superiority of the
proposed GAN approach for road extraction. Although the
proposed GAN approach offers state of the art performance,
it is also impacted by the complicated backgrounds and occlu-
sions, as well as the challenge of common spatial and spectral
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TABLE 2. Quantitative accuracy metrics for the proposed approaches for
the individual images in the massachusetts road dataset. Values are
reported in percentage, and the best metrics are indicated by bold font.

characteristics of roads with other regions, such as parking
lots, and buildings. We also conducted some experiments
to check the effect of different hyper-parameters on the
performance of the model for road extraction. We changed
the Adam optimizer to Stochastic gradient descent (SGD)

with a learning rate of 0.001 and ReLU activation function
used in the encoder part of the model to Exponential linear
unit (ELU). We then performed the Prop-GAN with these
hyper-parameters (Pro-GAN+ELU+SGD) on the dataset.
We measured the evaluation metrics for the same test images
after adding the SGD and ELU parameters. We achieved
an average accuracy of 88.01% for Precision, 92.02%
for F1 score, 90.99% for MCC, and 87.25% for MIOU.
As it is shown, the Prop-GAN approach with ReLU and
Adam parameters (Prop-GAN+ReLU+Adam) obtained bet-
ter accuracy and improved the results by 3.53%, 0.18%,
0.14%, and 0.18% for Precision, F1 score, MCC, and
MIOU, respectively. In contrast, the Prop-GAN+ELU+SGD
method obtained 96.43% for Recall compared to the Pro-
GAN+ReLU+Adam with 92.92%, which shows that more
FPs and fewer FNs were predicted by the method. Fur-
thermore, we depicted some qualitative results of the Prop-
GAN+ELU+SGD method in Figure 4 (e). As it can be seen,
compared with the same test images in Figure 4 achieved
with Prop-GAN+ReLU+Adam, more non-road pixels were
predicted by the Prop-GAN+ELU+SGD, which leads to
obtaining less accurate qualitative results compared to the
Prop-GAN+ReLU+Adam.

IV. COMPARISON AND DISCUSSION
The performance of the proposed MUNet and GAN
approaches over the Massachusetts road dataset was also
compared against six state-of-the-art prior approaches
for road extraction from high resolution aerial imagery:
(1) The SEEDS-MCNN proposed recently by Lv, et al. [47],
which uses super-pixels extracted via energy-driven sam-
pling (SEEDS) followed by a CNN classifier, (2) The
CNN [18] approach of Zhong, et al. [23](3) The RSR-
CNN [38] approach of Wei, et al. [48] which uses road
structure-refined CNN model that is provided with road geo-
metric information and spatial correlation, (4) The Road-
RCF [39] technique proposed by Hong, et al. [49] which
uses richer convolutional features (RCFs) for road extraction,
(5) the RDRCNN [40] approach proposed by Gao, et al. [50]
which uses a novel architecture called the refined deep resid-
ual CNN composed of dilated perception and residual con-
nected units, and (6) the RDRCNN+Postprocessing [40]
approach of Gao, et al. [50] which performs a post-processing
step on the RDRCNN output using mathematical morphol-
ogy and a tensor-voting method to incorporate split roads.
The referenced publications for these prior methods reported
precision, recall, and F1 score on the Massachusetts road
dataset and those values are compared in Table 3 against the
corresponding metrics for the MUNet and GAN approaches
proposed in this paper.

The results in Table 3 demonstrate the effectiveness of
the proposed GAN approach, which provides the high-
est F1 score among all the methods compared, which at
92.20% is 0.7% better than the next best performing Road-
RCF [39] technique and 2.02% better than the proposed
MUNet approach. The proposed GAN approach yields the
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FIGURE 4. Sample image blocks and corresponding extracted road regions using alternative techniques: (a) image block, (b) ground truth road
segmentation, (c) road segmentation obtained with the proposed modified U-Net model (Prop-MUNet), (d) road segmentation obtained with the
proposed GAN approach (Prop-GAN+ReLU+Adam), and (e) road segmentation obtained with the proposed GAN approach with new parameters
(Prop-GAN+ELU+SGD). The blue and yellow boxes present the FNs and FPs, respectively.

highest precision metric, which at 91.54% is almost 5.74%
better than the next best Road-RCF [39] technique and 5.62%
better than the proposed MUNet approach, which has the
third best precision value. The proposed GAN approach also
has a high recall metric, which at 92.92% is only superseded
by the 98.5% value for the Road-RCF [39] technique but is
better than all other prior methods and only slightly worse
than the 95.01% value for the proposed MUNet. Among
the prior methods, the Road-RCF [39] technique offers per-
formance that is clearly superior to other methods in all
three reported metrics. The CNN and RSRCNN achieved the
lowest accuracy compared with the other methods and our
proposed methods in this paper.

In addition to the numerical results presented in Table 3,
we also present a sample set of images and extracted road
regions for the images to highlight and compare the per-
formance of the alternative techniques that are depicted
in Figure 5. The first and second columns present the
test and ground truth images, whereas the third column
depict the results achieved by the state-of-the-art SEEDS-
MCNN Lv, et al. [47], CNN [18] and RDRCNN [40]
methods. The fourth column shows the results achieved
by the state-of-the-art Road-RCF [39], RSRCNN [38] and
RDRCNN [40]. Finally, the fifth and sixth columns illus-
trate the extracted road parts using proposed MUNet and
GAN models, respectively. These images further highlight
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FIGURE 5. Comparison of road segmentation obtained with the proposed method (GAN) against other techniques illustrated on the three images from
the Massachusetts road dataset. The yellow boxes highlight regions with the FP and FN pixel predictions by the models.

TABLE 3. Average precision, recall, AND F1 score metrics over the
massachusetts road dataset for the proposed approach and alternative
techniques. For each metric, the best value obtained across the different
methods is indicated by bold font.

the effectiveness of the proposed GAN approach, which
is particularly effective in preserving the edges of the
roads while maintaining high fidelity with the ground truth
labels.

Also, we compared the performance of the proposed
GAN+MUNet approach with other GAN-based road
extraction approaches reported in the literature such as
GAN+FCN [32], GAN+SegNet [21], E-WGAN [33],

TABLE 4. Average precision, recall, and F1 score metrics for the proposed
GAN+MUNET and alternative gan-based road detection approaches. bold
font indicates the best value.

MsGAN [34], and McGAN [35] to test the efficacy of the
presented model in road extraction. For comparison purpose,
that the statistical measure such as the accuracy, recall, and
F1 scores reported in the referenced papers vs. our proposed
Prop-GAN approach are shown in Table 4. The quantita-
tive results indicate that the presented GAN+MUNet model
attained the highest F1 score value with 92.20%, which could
improve the earlier methods by 2.57% compared to the sec-
ond highest approach called GAN+SegNet. Also, the model
could improve the F1 score value compared to the other
GAN-based road extraction methods such as GAN+FCN,
E-WGAN, MsGAN, and McGAN to 5.2%, 7.2%, 6%, and
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7.3%, respectively, assert the GAN+MUNet model’s ability
to extract roads from aerial imagery. Also, we estimated the
runtime of the suggested approach applied on the dataset,
which took 78.6s per epoch and 71ms per step for training
and testing process, respectively. The model was trained for
100 epochs and tested on 28 images; thus, it took 131 minutes
for training and 2s for testing. Overall, the proposed model
does not require high computational time and a large training
dataset and still achieved the best performance among other
comparative models in term of both quantitative and qualita-
tive results.

V. CONCLUSION
We proposed a deep learning approach for segmenting road
regions from high-resolution images that incorporates two
new innovations: a modified U-Net (MUNet) architecture
for the extraction of road regions and a generative adversar-
ial neural network (GAN) framework for optimizing learn-
ing and improving the accuracy of the segmentation map.
Experimental results validated the efficacy of the proposed
approach. Compared with prior state-of-the-art approaches
and GAN-based road detection methods, the proposed GAN
framework offers significant improvements in precision and
in the F1 score metrics. Visual comparison indicates that the
proposed GAN approach yields high-quality segmentation
maps where, compared with prior approaches, the edges are
particularly well preserved and in agreement with ground
truth labels. However, the accuracy of the proposed deep
learning model is slightly lower, and the method could nei-
ther identify roads from complex areas nor extract con-
tinuous road parts from these images. These factors are
the main limitations of the proposed GAN method. Future
research can address these limitations and use some topolog-
ical characteristics like connectivity or curvature and slope
to improve the accuracy of our proposed approach for road
extraction.
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