
Journal of Real-Time Image Processing
DOI 10.1007/s11554-017-0668-5

Ahmed Elliethy, Gaurav Sharma
University of Rochester

Accelerated Parametric Chamfer Alignment Using a
Parallel, Pipelined GPU Realization

Received: 15 July 2016 / Accepted: 16 January 2017

Abstract Parametric chamfer alignment (PChA) is com-
monly employed for aligning an observed set of points
with a corresponding set of reference points. PChA esti-
mates optimal geometric transformation parameters that
minimize an objective function formulated as the sum of
the squared distances from each transformed observed
point to its closest reference point. A distance transform
enables efficient computation of the (squared) distances
and the objective function minimization is commonly
performed via the Levenberg-Marquardt (LM) non-linear
least squares iterative optimization algorithm. The point-
wise computations of the objective function, gradient,
and Hessian approximation required for the LM itera-
tions make PChA computationally demanding for large
scale data sets.

We propose an acceleration of the PChA via a paral-
lelized and pipelined realization that is particularly well-
suited for large scale data sets and for modern GPU ar-
chitectures. Specifically, we partition the observed points
among the GPU blocks and decompose the expensive
LM calculations in correspondence with the GPU’s sin-
gle instruction multiple thread (SIMT) architecture to
significantly speed-up this bottleneck step for PChA on
large-scale datasets. Additionally, by re-ordering com-
putations, we propose a novel pipelining of the LM al-
gorithm that offers further speed-up by exploiting the
low arithmetic latency of the GPU compared with its
high global memory access latency. Results obtained on
two different platforms for both 2D and 3D large-scale
point data sets from our ongoing research demonstrate
that the proposed PChA GPU implementation provides
a significant speed-up over its single CPU counterpart.

Keywords

Chamfer alignment, pipelining, parametric registra-
tion, GPU acceleration.

Ahmed Elliethy and Gaurav Sharma
Dept. of Electrical and Computer Engineering, University of
Rochester, Rochester, NY, 14627
E-mail: {ahmed.s.elliethy, gaurav.sharma}@rochester.edu

1 Introduction

Alignment of an observed set (OS) of points with a cor-
responding reference set (RS) of points is an important
task in many computer vision applications such as object
localization [1], multi-modality medical data registration
[2], stereo matching [3], object modeling [4], range data
registration [5, 6, 7], and geo-registration of aerial wide
area motion imagery (WAMI) frames [8, 9]. Usually the
observed points and the reference points are obtained
from different views for the same scene/object and to
fuse the useful information contained in both views, an
alignment must be performed. The goal of the alignment
is to estimate the parameters of the geometric transfor-
mation that maps the observed points in the OS to the
coordinate system of the reference points in the RS.

Existing point set alignment algorithms can be coarsely
divided into two categories: correspondence based align-
ment and correspondence free alignment. Correspondence
based alignment algorithms usually iterate between two
steps. The first step estimates the correspondences be-
tween the points in the OS and the points in the RS. In
the second step, the parameters of the geometric trans-
formation that map each observed point in the OS to its
corresponding reference point in the RS are estimated.
The estimated correspondences can be either hard as-
signments as in the iterative closest point algorithm [10,
11], or soft assignments as in the expectation maximiza-
tion like algorithms [12, 13].

Correspondence free alignment algorithms [14, 15] on
the other hand, avoid the correspondence estimation step
by modeling the alignment metric based on a different
representation of the point sets. For example, the dis-
tance transform (DT) [16] is used in [14] to represent
the RS, and the alignment is achieved by finding the
optimal geometric transformation parameters that min-
imize an objective function formulated as the sum of the
distances between each transformed observed point to its
closest point in the RS, where these distances are com-
puted efficiently using the DT. The formulated objec-



2

tive function is commonly minimized via the Levenberg-
Marquardt (LM) [17] non-linear least squares iterative
optimization algorithm. Motivated by the terminology
for the first such algorithms[18], we refer to this tech-
nique as “Parametric Chamfer Alignment” (PChA).

Despite the computational efficiency of the DT, the
overall computational cost of the PChA grows with the
number of points in the OS, because of the point-wise
computations required in each iteration of the LM algo-
rithm. Specifically, in each iteration, the LM algorithm
performs the following steps: (1) computes an estimate
of the Hessian matrix and the gradient vector of the ob-
jective function at the current estimate of the alignment
parameters, (2) solves a linear system of equations de-
fined in terms of the computed Hessian and gradient to
estimate the update to the alignment parameters, (3)
generates a candidate solution using the estimated pa-
rameter update and (4) decides whether or not to update
the current estimate to the candidate parameters by eval-
uating and comparing the objective function at both the
candidate and current parameters. The objective func-
tion evaluation (Step 4) and the Hessian-gradient calcu-
lations (Step 1) have to be computed per observed point,
and these steps represent a computational bottleneck for
achieving real/near-real time performance for large scale
point data sets.

Modern day graphical processing units (GPUs) pro-
vide computational hardware that can easily perform
billions of general-purpose floating-point operations per
second. In this paper, we propose an acceleration of the
PChA via a parallelized and pipelined realization on
GPU platforms. Specifically, we map the LM calcula-
tions to the GPU by partitioning the observed points
and decomposing the calculations associated with the
objective function, the Hessian matrix, and the gradi-
ent vector into independent, per-partition, computations
that align well with GPU’s single instruction multiple
thread (SIMT) architecture and therefore run efficiently
on the GPU. Additionally we propose a novel pipelining
of the LM algorithm that benefits from the low arith-
metic latency compared with the high global memory
access latency of the GPU by combining the evaluation
of the objective function at the candidate solution (Step
4 above) with the Hessian matrix and the gradient vector
calculations evaluated at that candidate solution (Step
1 above). Our pipelined LM allows the gradient-Hessian
calculations to be pre-computed relatively inexpensively
(in terms of run time) because the gradient-Hessian cal-
culations use the data that is already fetched from GPU
global memory in order to evaluate the objective func-
tion at the candidate solution.

There are previous efforts for accelerating individ-
ual components of the PChA using the GPU. For ex-
ample, in [19, 20], a GPU based implementation of DT
is proposed. Although the significant speed-up achieved
by the DT implementation on the GPU compared to its
CPU counterpart, the PChA performance is still limited

by the running time of the LM algorithm, because the
DT is computed only once before performing the itera-
tive and expensive LM algorithm steps. In [21], a GPU
based implementation of the LM is proposed that con-
currently performs a number of LM model fittings such
that each LM model fitting uses a single GPU compu-
tational block. However, the shared memory per GPU
computational block is limited and therefore this LM
implementation is not suitable for our large scale align-
ment problem. In [22], an OpenGL environment based
GPU implementation of the LM algorithm is proposed.
Because there is no mechanism available for communi-
cation between the computational units (shaders) in the
OpenGL environment [23], the implementation uses in-
efficient multiple texture read and write passes for data
sharing, and thus does not completely benefit from the
available computational power of modern GPUs.

In this paper, we provide an efficient parallelized and
pipelined realization of the PChA on GPU that uses
the Compute Unified Device Architecture (CUDATM)
NVIDIATM GPU programming language and efficiently
exploits the GPU’s computational cores and the char-
acteristics of the GPU memory hierarchy to achieve a
significant performance speed-up compared to the CPU
implementation. Our contributions in this paper are a
partitioning and decomposition scheme that handles the
expensive LM computations efficiently on the GPU and
our novel pipelining of the LM algorithm. We demon-
strate our GPU based implementation of the PChA on
both 2D and 3D point large-scale data sets that are re-
lated to ongoing research from our group onWAMI aerial
image geo-registration [8, 9] and homologous building
analyses using range imaging [7, 24]. In these applica-
tions, our GPU based implementation of the PChA exe-
cuted on two different computer systems shows a signif-
icant performance speed-up compared to its single CPU
counterpart.

This paper is organized as follows. Section 2 presents
a brief overview of the PChA. In Section 3, we describe
our GPU based implementation of the PChA, where we
discuss our partitioning and decomposition scheme along
with our novel pipelining of the LM algorithm. Section 4
describes the GPU and CPU implementations and the
hardware configurations that we use for benchmarking.
Results and comparison against the CPU-based PChA
implementation evaluated on applications from our on-
going research, are presented in Section 5. Section 6 is
a discussion of the results along with a discussion of
the factors that contribute to variability across different
parametric transformations. Section 7 summarizes our
concluding remarks.

2 Parametric chamfer alignment

To formulate the PChA, we begin with the following ab-
stract setting. In R

n, we are given a reference set (RS)



3

of Nq data points Q = {qj}
Nq

j=1, qj ∈ R
n and a corre-

sponding observed set (OS) of Np points P = {pi}
Np

i=1,
pi ∈ R

n, where the majority of the observed data points
result from observations of the reference data points af-
ter a parametric geometric transformation Tᾱ : Rn →

R
n has been applied where ᾱ = [ᾱ1, . . . , ᾱL]

T
is an L-

dimensional vector of the transformation parameters and
L depend on the geometric transformation type. This ab-
straction represents a number of common situations in
computer vision and image processing tasks, where the
reference and the observed data points are observations
of a common scene/object from different viewpoints. Due
to differences in sampling and potentially missing obser-
vations the number of points need not be identical be-
tween the RS and OS. For example, when a single geo-
metric 3D object is observed via range imaging from two
different view points related via rotation and translation
(Euclidean geometric transformation), ᾱ would be a 6
parameter vector, i.e., L = 6, that corresponds to the
three rotation angles and the three translations across
the three dimensions.

To align the data points in the OS with the data
points in the RS, PChA computes an optimal estimate
α∗ of the geometric transformation parameters ᾱ by
minimizing the objective function

f(α) =

Np∑

j=1

‖r (Tα(pj)) ‖
2, (1)

where r (Tα(pj)) represent the residual vector defined as
the difference between the transformed location Tα(pj)
of the jth observed point pj under the geometric trans-
formation Tα and the corresponding closest point in the
RS Q. Mathematically,

r (χ) = µQ (χ)− χ, (2)

where

µQ (χ) = argmin
q∈Q

‖q− χ‖2, (3)

is the closest point in the RS Q for a point χ ∈ R
n.

The minimization of the objective function (1) is com-
monly performed via the Levenberg-Marquardt (LM) [17]
non-linear least squares iterative optimization algorithm.
In each iteration, the LM algorithm estimates the param-
eter update vector δ ∈ R

L×1 such that the value of the
objective function is reduced when moving from α to
α + δ, with the parameters converging to a minima of
the objective function with the progression of iterations.
The parameter update vector δ is obtained by solving
the linear system of equations

(H+ λI)δ = −g, (4)

where λ is a non-negative damping parameter automat-
ically adjusted at each iteration [17] to determine the

step size, I is the identity matrix, and g ∈ R
L×1 is the

gradient of f(α), computed as

g =
∂f

∂α
= −2

Np∑

j=1

JT
j r (Tα(pj)) , (5)

where Jj ∈ R
n×L is the Jacobian matrix computed at

the transformed point Tα(pj), computed as

Jj =
∂Tα(pj)

∂α
=

(
∂Tα(pj)

∂α1
, . . . ,

∂Tα(pj)
∂αL

)

=








J1
j,1 J1

j,2 . . . J1
j,L

J2
j,1 J2

j,2 . . . J2
j,L

...
...

. . .
...

Jn
j,1 Jn

j,2 . . . Jn
j,L








, (6)

and H ∈ R
L×L is the approximation of the Hessian ma-

trix, obtained as

H =

Np∑

j=1

JT
j Jj . (7)

The explicit expressions for the Jacobian matrix en-
tries {Jc

j,l : c ∈ {1, . . . , n}, l ∈ {1, . . . , L}}, for n = 2
and for different types of geometric transformations, are
provided in Table 1.

Motivating PChA example

To help visualize the steps within the PChA algorithm,
we use a motivating example from our recent work on
geo-registration of aerial WAMI frames [8, 9]. We achieve
the geo-registration of a WAMI frame by (1) detecting
vehicle locations in the WAMI frame using vehicular mo-
tion and (2) posing the WAMI frame geo-registration
as the problem of finding the geometric transformation
that aligns the detected vehicle locations with a geo-
referenced vector road network. Examples of an aerial
WAMI frame and a vector road network are shown in
Fig. 1 (a) and (c) respectively. We adopt PChA to effi-
ciently solve the problem of aligning vehicle detections
with the vector road network [8], where in this scenario,
the OS comprises vehicle detections locations shown as
white points in the image shown in Fig. 1 (b), while the
RS comprises the locations corresponding to the network
of roads shown as white points in Fig. 1 (c).

The distance transform (DT) [16, 25] efficiently cal-
culates the residual vectors (2) between each vehicle de-
tection point in the OS to its closest road network point
in the RS, where these residual vectors are used in the
calculations of both the objective function (1) and the
gradient vector (5). Specifically, in the implementation
we consider, the DT pre-computes and stores as a “look
up table” the residual vector r (χ) between any point
χ ∈ Ω to its closest point µQ (χ) in the RS, where



4

Transformation
Parameters

Relation Jc
j,l

type p′

j = Tα (pj) c = 1 c = 2 l

Euclidean α = [θ, tx, ty]

(

x′

j

y′

j

)

=

(

cos(θ) − sin(θ)

sin(θ) cos(θ)

)(

xj

yj

)

+

(

tx

ty

) −R2
θ(pj) R1

θ(pj) 1

1 0 2

0 1 3

Similarity α = [s, θ, tx, ty]

(

x′

j

y′

j

)

= s

(

cos(θ) − sin(θ)

sin(θ) cos(θ)

)(

xj

yj

)

+

(

tx

ty

)

R1
θ(pj) R2

θ(pj) 1

−sR2
θ(pj) sR1

θ(pj) 2

1 0 3

0 1 4

Affine α = [α1, . . . , α6]

(

x′

j

y′

j

)

=

(

α1 α2

α4 α5

)(

xj

yj

)

+

(

α3

α6

)

xj 0 1

yj 0 2

1 0 3

0 xj 4

0 yj 5

0 1 6

Projective α = [α1, . . . , α8]

xj/wj 0 1

yj/wj 0 2

x′

j = (α1xj + α2yj + α3) /wj 1/wj 0 3

y′

j = (α4xj + α5yj + α6) /wj 0 xj/wj 4

wj = α7xj + α8yj + 1 0 yj/wj 5

0 1/wj 6

−x′

jxj/wj −y′

jxj/wj 7

−x′

jyj/wj −y′

jyj/wj 8

Table 1: Explicit expressions for the Jacobian matrix entries {Jc
j,l}, for n = 2 and for different types of geometric

transformations. Note that pj = [xj , yj ]
T
, p′

j =
[
x′
j , y

′
j

]T
, R1

θ(pj) = xj cos(θ)− yj sin(θ), and R2
θ(pj) = xj sin(θ) +

yj cos(θ).

Ω ⊂ R
n is the support of the RS that defines the spatial

extent of the RS. In our scenario, Ω represents all points
within the road network image shown in Fig. 1 (c). The
residual vectors for some points within Ω are shown in
Fig. 1 (d), where the residual vector for a point χ ∈ Ω is
represented as an arrow originating from the point and
ending at the closest point in the RS. Figure 1 (e) shows
the residual vectors overlaid with transformed versions
of the OS (vehicle detections) obtained by applying the
estimated geometric transformation Tα (at an intermedi-
ate iteration). From the distance transform, the residual
vector r (Tα(pj)) at a geometrically transformed vehicle
detection location Tα(pj) is obtained by simple lookup
at that transformed point location. Thus the DT allows
extremely efficient calculation of the objective function
value and the gradient vector.

Although the DT is extremely efficient as compared
to a brute force minimization in (3), the expensive per-
iteration calculations of the LM; such as the point-wise
Jacobian matrix (6), the approximation of the Hessian
matrix (7), the summation over all the observed points
encountered in the objective function (1), and the gra-
dient (5) calculations; are still a challenge in achieving
a real time performance for large scale problems, such

as the WAMI geo-registration problem considered here.
We address this limitation by proposing an accelerated
parallelized and pipelined PChA designed for GPU plat-
forms. Our algorithm realization is motivated by the fact
that in each LM iteration, the computation of the gra-
dient and the Hessian approximation are point-wise and
independent, making PChA an ideal algorithm for par-
allelized implementation.

The complete parametric chamfer alignment using
the LM algorithm is shown in Algorithm 1

3 GPU based implementation of the parametric
chamfer alignment

In the following, we first provide a brief description of the
GPU hardware and programming models using CUDATM,
then present our proposed GPU based implementation.

3.1 GPU programming using CUDATM

Although initially dedicated for graphics related tasks,
GPUs became a general programmable architecture after



5

(a) WAMI frame (b) Vehi
le dete
tions

(
) Road network image (d) Residual ve
tors (e) T

�

-transformed vehi
le dete
tions

Fig. 1: WAMI frame geo-registration as a motivating example for PChA. The objective is to geo-register the WAMI
frame shown in (a) by estimating the parameters for a projective transformation that aligns locations of detected
vehicles shown in (b) with the geo-refrenced vector road network shown in (c). In this example, the OS comprises
the vehicle detections locations and the RS comprises the locations corresponding to the network of roads shown
by white points in (c). The DT is illustrated in (d) by showing computed residual vectors for selected locations
in the image. Subfigure (e) shows how the DT is utilized, the geometrically transformed versions of the vehicle
detection locations Tα(pj), j = 1, 2, . . . , Nv obtained with a current estimate α of the alignment parameters are
superimposed on the DT; the residual vector r (Tα(pj)) at the geometrically transformed vehicle detection location
Tα(pj) can be readily obtained by simple lookup of the residuals stored in DT at that location. Thus the DT allows
extremely efficient calculation of the objective function value and the gradient vector.

NVIDIATM released CUDATM in 2006, which allowed
a heterogeneous programming model where both CPU
and GPU can be used concurrently to run general tasks
that may not necessary be graphics related [26]. From
the CUDATM point of view, the GPU executes tasks
called kernels using thousands of parallel threads orga-
nized into blocks of grids, where thread, block, grid are
the CUDA representations of a core, a streaming multi-
processor (multi core processor), and the GPU itself [26].
The best GPU performance is obtained when the kernel
is a single instruction multiple thread (SIMT) scheme
in which each thread executes the same instruction but
operates on different data.

CUDATM provides a hierarchy of memory with dif-
ferent types and characteristics [26]. A block-thread can

access (1) its local memory and registers, (2) the shared
memory of its block which allows the thread to communi-
cate and co-operate efficiently with other threads in the
same block, (3) the read only constant memory, and (4)
the GPU global memory. The registers of the thread are
the fastest level in the hierarchy, but provide very lim-
ited storage space. The constant memory is optimized for
broadcast of its contents to all threads, while the global
memory represents the slowest level in the hierarchy.

3.2 GPU based implementation

Our GPU based implementation of PChA takes advan-
tage of the high-degree of parallelism provided by the



6

Algorithm 1: Parametric chamfer alignment using
the LM algorithm

Input : Set of observed points P, set of reference
points Q, and initial parameter α0

Output: Optimal geometric transformation
parameters α∗

1 Compute r(χ), ∀χ ∈ Ω; //DT calculations

2 t← 0; update← true; et ← f(αt), iteration← 0;
3 repeat /*LM iterations*/
4 if update then
5 Compute g and H using (5) and (7),

respectively with αt;
6 end
7 Estimate LM update δ for transformation

parameter vector using (4);
8 αnew ← αt + δ; /*Generate candidate solution*/
9 enew ← f(αnew);

10 if (enew < et) then /*Check the candidate
solution*/

/*Accept the candidate solution */
11 t← t+ 1; αt ← αnew; et ← enew;
12 λ← λ/10; update← true;
13 else

/*Reject the candidate solution */
14 λ← λ ∗ 10; update← false;
15 end
16 iteration++;
17 until (‖δ‖2 ≤ ǫ) or (iteration > max iterations);
18 α∗ ← αt;

GPU to accelerate the computationally demanding and
highly parallelizable parts of PChA, while leaving the
other less computationally demanding parts for CPU ex-
ecution1. Figure 2 illusrates the partitioning of the algo-
rithm implementation between the CPU and the GPU.
The GPU calculates the value of the objective function
f defined in (1), the gradient vector g defined in (5), and
the approximation of the Hessian matrixH defined in (7)
that are required by each LM iteration while the CPU
calculates the DT and the parameters update vector δ
using (4) with the H and g obtained from the GPU com-
putations. As indicated in the introduction, the PChA
performance is limited by the execution time of the LM
algorithm, because the DT is computed only once before
performing the iterative and expensive LM algorithm
steps. Furthermore, for most applications, the reference
dataset is available in advance, allowing for the DT to
be precomputed and stored. Therefore, the focus of the
proposed GPU-based implementation is to reduce the
execution time indicted by “Execution time” in Fig. 2.

In the following, we first explain how we map the cal-
culations of the objective function f , the approximation
of the Hessian matrixH, and the gradient vector g to the
GPU by partitioning the observed points and decompos-

1 Later in this paper, in Fig. 11, we provide results from
profiling a single CPU implementation of PChA that empir-
ically demonstrates that the components of PChA that we
select for GPU implementation represent a substantial part
of the execution time for the complete single implementation.

ing these calculations across different GPU blocks. Then
we describe our novel pipelining of the LM algorithm.

3.2.1 Partitioning and decomposition

To handle the computations of the objective function
f , the approximation of the Hessian matrix H, and the
gradient vector g efficiently on the GPU, we partition
the Np points in P into equal sized Nb partitions, where
each partition contains Nt points

2. These partitions are
distributed across the GPU blocks such that each block
is responsible for computing the objective function, the
approximation of the Hessian matrix, and the gradient
vector for only the points assigned to that block. Within
a single block, each observed point is assigned to a single
block-thread for performing required calculations associ-
ated with the point.

To express this partitioning scheme mathematically,
we can re-write the objective function in (1) as

f =

Nb∑

b=1
︸︷︷︸

Grid

∑

j∈B(b)
︸ ︷︷ ︸

Block

rj
︸︷︷︸

Thread computes the per-point residual

, (8)

where rj = ‖r (Tα(pj)) ‖
2 and B(b) is the set that con-

tains the indices of the observed points that are assigned
to block b. Similarly, the approximation of the Hessian
matrix (7) can be written as

H =

Nb∑

b=1
︸︷︷︸

Grid

∑

j∈B(b)
︸ ︷︷ ︸

Block

n∑

c=1










(
Jc
j,1

)2
Jc
j,1J

c
j,2 . . . Jc

j,1J
c
j,L

Jc
j,1J

c
j,2

(
Jc
j,2

)2
. . . Jc

j,2J
c
j,L

...
...

. . .
...

Jc
j,1J

c
j,L Jc

j,2J
c
j,L . . .

(
Jc
j,L

)2










︸ ︷︷ ︸

Thread computes per-point Hessian approx. Hj

,

(9)

and the gradient vector (5) can be written as

g = −2

Nb∑

b=1
︸︷︷︸

Grid

∑

j∈B(b)
︸ ︷︷ ︸

Block

JT
j r (Tα(pj))

︸ ︷︷ ︸

Thread computes the per-point gradient gj

.

(10)

The decompositions of the computations of f , H, and
g as shown in (8), (9), and (10), respectively, align well
with the SIMT architecture and enable these computa-
tions to be efficiently performed on the GPU. Specif-
ically, each block-thread operates on a different input
observed point and performs independent and similar
calculations to compute the per-point residual value rj ,

2 We augment the points in the OS to ensure Np = NbNt.



7

Global Mem

Compute

Constant Mem

It
er

at
iv

e 
st

ep
Si

ng
le

 s
te

p

No

Yes

Distance transform

Compute

CPU GPU

E
xe

cu
tio

n 
tim

e

Converged?

�

t

2 R

L�1

e

t

2 R

f

g 2 R

L�1

H 2 R

L�L

r(�); 8� 2 


Observed set P

Update �

t+1

Estimate Æ

H, g

Referen
e set Q

Optimal PChA parameters �

�

Fig. 2: Schematic diagram that illustrates the decompo-
sition of PChA into different computational tasks and
indicates the amount of data transfer between CPU and
GPU. The figure shows that there is a large amount of
data transfer but only in the first single step. For the next
iterative steps, the amount of data transfer is very small.
Specifically, L single precision numbers copied from CPU
to GPU and L2 + L+ 1 single precision numbers copied
from GPU to CPU.

the per-point Hessian approximation Hj , and the per-
point gradient vector gj . Then, the calculated rj , Hj ,
and gj are summed up; first within each block to obtain
the per-block sums in (8), (9), and (10), then within the
grid to obtain the final f , H, and g in (8), (9), and (10),
respectively.

The approximation of the per-point Hessian matrix
Hj is completely determined by a smaller subset of its
elements. Specifically, we exploit the frequent binary (0-
1) values of the Jacobian matrix entries {Jc

j,l} and the
frequent similarity between them across different c and l
as shown in Table 1, to reduce the computations required
to determine Hj , where for each transformation type, we
define the vector hj that contains the Hessian approxi-
mation matrix elements that are computed by GPU and
which determine the per-point Hessian approximation
Hj . Moreover, we define the vector ρj that contains the
Jacobian matrix elements required to compute the vector
hj . Table 2 lists hj and ρj for different transformation
types.

Our partitioning and decomposition scheme is illus-
trated in Fig. 3. Each block-thread computes the scalar
rj , and the vectors hj and gj for a single observed point
pj , and stores the computed elements in the shared mem-
ory of the thread block. Furthermore, a reduction sum-
mation operation [27] is carried out to obtain the sum
of rj , the sum of hj , and the sum of gj for all observed

points assigned to that block, i.e., for j ∈ B(b) in (8), (9),
and (10), where the resultant per-block sums

∑

j∈B(b)

rj ,

∑

j∈B(b)

hj , and
∑

j∈B(b)

gj are stored in the global mem-

ory. To obtain the final per-grid sums

(
Nb∑

b=1

)

in (8), (9),

and (10), of the previously stored per-block sums in the
global memory, the GPU performs the final reduction
summation operations, synchronized by one or more suc-
cessive CPU reduction summation kernel launches. Be-
cause there is no synchronization mechanism across dif-
ferent GPU blocks, we employ the CPU to synchronize
these final reduction summation operations to obtain the
per-grid sums.

Figure 3 shows our proposed utilization of the differ-
ent types of memory in the GPU. We efficiently utilize
the different types of GPU memory according to spe-
cific memory characteristics to obtain the best perfor-
mance. We use the constant memory to store the geomet-
ric transformation (matrix) Tα because of its small size
and because all threads require the common value of Tα.
The constant memory is ideally suited for this purpose
as it is highly optimized for broadcast [26]. Moreover, we
store rj , hj , and gj that are calculated by each block-
thread in the shared memory of that block for the fur-
ther reduction summation operation to obtain the per-
block sums. The block shared memory is accessible by
all block-threads and has very low latency [26], therefore
it is an ideal choice for the reduction summation oper-
ation which requires significant communication between
threads in the same block to calculate the per-block sums
∑

j∈B(b)

rj ,
∑

j∈B(b)

hj , and
∑

j∈B(b)

gj in (8), (9), and (10), re-

spectively.

3.2.2 Pipelined LM

As shown in Algorithm 1, the traditional LM algorithm
generates the candidate solution αnew (Step 8), then
evaluates the value of the objective function at that can-
didate solution (Step 9). If the candidate solution αnew

has a lower objective function value than the current
solution αt, the traditional LM algorithm accepts the
candidate solution and updates the current solution to
that candidate solution (Step 11), then the process is
continued to the computation of the approximation of
the Hessian matrix and the gradient vector at the up-
dated current solution. The sequence of the traditional
LM steps implies that the algorithm performs the expen-
sive Hessian and gradient calculations only for a solution
that is better than the current one.

The partitioning and decomposition scheme discussed
previously handles the computations of the objective func-
tion f , the approximate of Hessian matrix H, and the
gradient vector g efficiently on the GPU. However, GPU
based implementation of the LM algorithm with the same



8

Transformation
Required Hessian and Jacobian elements

type

Euclidean

H =
Np
∑

j=1







(

J1
j,1

)2
+
(

J2
j,1

)2
J1
j,1 J2

j,1

J1
j,1 1 0

J2
j,1 0 1







hj =
[

(

J1
j,1

)2
+
(

J2
j,1

)2
, J1

j,1, J
2
j,1

]

ρj =
[

J1
j,1, J

2
j,1

]

Similarity

H =
Np
∑

j=1













(

J1
j,1

)2
+
(

J2
j,1

)2
0 J1

j,1 J2
j,1

0 s2
(

(

J1
j,1

)2
+
(

J2
j,1

)2
)

−sJ2
j,1 sJ1

j,1

J1
j,1 −sJ2

j,1 1 0

J2
j,1 sJ1

j,1 0 1













hj =
[

(

J1
j,1

)2
+
(

J2
j,1

)2
, J1

j,1, J
2
j,1

]

ρj =
[

J1
j,1, J

2
j,1

]

Affine

H =
Np
∑

j=1





















x2
j xjyj xj 0 0 0

xjyj y2
j yj 0 0 0

xj yj 1 0 0 0

0 0 0 x2
j xjyj xj

0 0 0 xjyj y2
j yj

0 0 0 xj yj 1





















hj =
[

x2
j , xjyj , xj , y

2
j , yj

]

ρj =
[

J1
j,1, J

1
j,2, J

2
j,4, J

2
j,5

]

Projective

H =
Np
∑

j=1































x′2
j x′

jy
′

j x′
j 0 0 0 −x′3

j −x′2
jy

′

j

x′
jy

′

j y′2
j y′

j 0 0 0 −x′2
jy

′

j −x′

jy
′2
j

x′
j y′

j 1 0 0 0 −x′2
j −x′

jy
′

j

0 0 0 x′2
j x′

jy
′

j x′
j −x′2

jy
′

j −x′
jy

′2
j

0 0 0 x′
jy

′

j y′2
j y′

j −x′
jy

′2
j −y′3

j

0 0 0 x′
j y′

j 1 −x′
jy

′

j −y′2
j

−x′3
j −x′2

jy
′

j −x
′2
j −x′2

jy
′

j −x
′
jy

′2
j −x

′
jy

′

j x′2
j (x

′2
j + y′2

j ) x′
jy

′

j(x
′2
j + y′2

j )

−x′2
jy

′

j −x
′

jy
′2
j −x

′

jy
′

j −x
′
jy

′2
j −y′3

j −y′2
j x′

jy
′

j(x
′2
j + y′2

j ) y′2
j (x

′2
j + y′2

j )































hj = [x′2
j , x

′
jy

′

j , x
′
j , y

′2
j , y

′

j ,−x
′3
j ,−x

′2
jy

′

j ,−x
′

jy
′2
j ,−y

′3
j , x

′2
j (x

′2
j + y′2

j ), x
′
jy

′

j(x
′2
j + y′2

j ), y
′2
j (x

′2
j + y′2

j )]

ρj =
[

J1
j,1, J

1
j,2, J

1
j,7, J

1
j,8, J

2
j,4, J

2
j,5, J

2
j,7, J

2
j,8

]

(see Appendix A for details)

Table 2: The Hessian matrix approximation Hj , the elements hj from which Hj is computed, and associated
Jacobian matrix elements ρj used to compute the vector hj . Rows of the table delineated by lines list these for
commonly used Euclidean, similarity, affine, and projective 2D transformations.

sequence of steps ignores the high latency of the GPU
global memory. Specifically, a block-thread fetches an ob-
served point pj and the residual vector r (Tαnew

(pj))
from the global memory in order to evaluate the objec-
tive function f(αnew) at the candidate solution αnew.
The same data is fetched again for performing the gradient-
Hessian calculations at the candidate solution if the LM
algorithm accepts the candidate solution. Thus the ex-
pensive global memory access is performed twice for fetch-
ing the same data.

Taking into account the highly parallel architecture
of the GPU that has a very low arithmetic latency com-
pared with the high global memory access latency, we
propose a pipelined LM implementation that re-orders

the steps of the traditional LM. Specifically, our pipelined
LM evaluates the Hessian matrix and the gradient vec-
tor at the candidate solution as it computes the objec-
tive function value associated with the candidate solu-
tion f(αnew). Our pipelined LM allows relatively inex-
pensive pre-computation of the Hessian-gradient calcu-
lations that are associated with the candidate solution,
without waiting to decide whether or not the candidate
solution αnew is better than the current one αt. Be-
cause of the high global memory access latency of the
GPU compared with the arithmetic latency, once the re-
quired data is fetched from the GPU global memory, the
Hessian-gradient calculations are preferably performed
when evaluating f(αnew). In other words, the time re-



9

C
on

st
an

t M
em

Global Mem

Reduce (sum) Reduce (sum)

Shared Mem Shared Mem

Global Mem

r(�); 8� 2 
P

o/p: r

j

; h

j

; g

j

j = 0 j = N

t

� 1

r

0

; h

0

; g

0

j = N

p

�N

t

j = N

p

� 1

i/p: p

j

; T

�

; r(T

�

p

j

) i/p: p

j

; T

�

; r(T

�

p

j

) i/p: p

j

; T

�

; r(T

�

p

j

)

o/p: h

j

; g

j

o/p: h

j

; g

j

i/p: p

j

; T

�

; r(T

�

p

j

)

o/p: r

j

; h

j

; g

j

blo
kIdx.x=N

b

� 1

threadIdx.x=N

t

� 1 threadIdx.x=0 threadIdx.x=N

t

� 1

threadIdx.x: 0! N

t

� 1

blo
kIdx.x=0

threadIdx.x: 0! N

t

� 1

r

N

p

�1

; h

N

p

�1

; g

N

p

�1

r

N

p

�N

t

;

P

j2B(N

b

�1)

r

j

;

P

j2B(N

b

�1)

h

j

;

P

j2B(N

b

�1)

g

j

P

j2B(0)

r

j

;

P

j2B(0)

h

j

;

P

j2B(0)

g

j

T

�

threadIdx.x=0

h

N

p

�N

t

; g

N

p

�N

t

r

N

t

�1

; h

N

t

�1

; g

N

t

�1

Fig. 3: Schematic diagram illustrating the partitioning of the observed points across GPU blocks and the decom-
position of the objective function, the approximation of the Hessian matrix, and the gradient vector calculations
according to the CUDATM programming model. Each block-thread computes rj , hj , and gj for a single observed
point pj and stores the output in the shared memory of the block. Then a reduction summation operation is carried
out to obtain the sum of rj , the sum of hj , and the sum of gj for all observed points within that block, where the
resultant per-block sums are stored in the global memory for further per-grid summations.

quired for Hessian matrix approximation and the gradi-
ent vector calculations is significantly reduced if these
evaluations are combined with the objective function
evaluation, because the data needed to compute them is
already fetched from the global memory in order to eval-
uate the objective function value associated with the can-
didate solution. Figure 4 illustrates the timed execution
for a trace of few steps for both the traditional and our
pipelined LM implementations on the GPU, where the
Hessian-gradient calculations, and the objective function
evaluation are performed separately by two GPU kernels
in the traditional LM implementation and combined into
a single kernel in the pipelined LM implementation.

Our GPU kernel that combines the Hessian-gradient
calculations with the objective function evaluation is shown
in Algorithm 2 and the overall pipelined LM is shown3

in Algorithm 3. Our pipelining of the LM calculates the
Hessian matrix approximation and gradient vector at the
candidate solution αnew concurrently with the calcula-
tions of the objective function at αnew. If αnew proves
to be better than the current solution αt, the pipelined
LM immediately uses the pre-computed Hessian approx-
imation and gradient vector to compute the parameter
update vector δ and generates a new candidate solu-
tion. Otherwise, the pipelined LM disregards the pre-
computed gradient and Hessian approximation, losing
the small amount of time that was dedicated for the

3 For clarity, we omit the final per-grid reduction summa-
tion operations from Algorithm 3 and assume that the kernel
in Algorithm 2 will return {g, H, f}.

Algorithm 2: GradientHessianResidualReduce
kernel
1 j ← threadIdx.x + blockIdx.x × blockDim.x;
2 Fetch pj from global memory and Tα from constant

memory;
3 Compute p′

j ← Tαpj ;
4 if p′

j ∈ Ω then
5 Fetch r(p′

j) from global memory;
Residual calculations:

6 Compute rj = ‖r
(

p′

j

)

‖2;
Gradient and Hessian calculations:

7 Compute ρj for pj using the formulae from
Table 1;

8 Compute hj using ρj ;

9 Compute gj from (10) using ρj and r(p′

j) ;
10 Store hj , gj , and rj in the shared memory;
11 end
12 syncthreads();

Reduce (sum):
13 Reduce : compute the per-block sums

∑

j∈B(blockIdx.x)

hj ,

∑

j∈B(blockIdx.x)

gj , and
∑

j∈B(blockIdx.x)

rj ;

14 Store the per-block sums in the global memory;

Hessian-gradient pre-calculations. Thus the pipelined LM
provides a faster execution time than the traditional LM
on the GPU because the pipelined LM performs the ex-
pensive global memory access only once for the combined
objective function evaluation and the Hessian-gradient



10

calculations while the traditional LM performs the same
expensive global memory access twice.

Algorithm 3: Parametric chamfer alignment using
our proposed pipelined LM algorithm

Input : Set of observed points P, set of reference
points Q, and initial parameter α0

Output: Geometric transformation parameter α∗

1 Compute r(χ), ∀χ ∈ Ω; //DT calculations
2 t← 0; iteration← 0;
3 {g, H, et} ← GradientHessianResidual

<<< Nb, Nt >>> (αt);
4 repeat /*LM iterations*/
5 Estimate LM update δ for transformation

parameter vector using (4);
6 αnew ← αt + δ; /*Generate candidate solution*/
7 {gnew, Hnew, enew} ← GradientHessianResidual

<<< Nb, Nt >>> (αnew);
8 if (enew < et) then /*Check the candidate

solution*/
/*Accept the candidate solution */

9 t← t+ 1; αt ← αnew; et ← enew;
10 g← gnew; H← Hnew;
11 λ← λ/10;
12 else

/*Reject the candidate solution */
13 λ← λ ∗ 10;
14 end
15 iteration++;
16 until (‖δ‖2 ≤ ǫ) or (iteration > max iterations);
17 α∗ ← αt;

4 GPU/CPU Implementations and
Configurations for Benchmarks

To illustrate the benefit of the proposed GPU realiza-
tion and to highlight how the individual elements of our
proposed scheme contribute to the overall performance
gains, we consider several alternative GPU and CPU im-
plementations for our benchmarks. The GPU based im-
plementations are:

– PGPU: The complete proposed GPU based imple-
mentation of PChA that uses the parallelization and
the pipelined LM.

– TGPU: A GPU based implementation of PChA that
uses the proposed parallelization but with the tradi-
tional, as opposed to the pipelined, LM. A compari-
son against this specifically allows us to evaluate the
benefit of pipelining.

– GGPU: an (inefficient) GPU based implementation
of PChA intended to demonsrate the benefit of the
partitioning used in PGPU across the GPU mem-
ory hierarchy. Specifically, GGPU only uses the GPU
global memory and does not use the shared memory
(but does use the pipelining for LM). GGPU uses the

global memory to (a) store the geometric transforma-
tion Tα (for which PGPU uses the constant memory)
and (b) to store rj , hj , and gj that are calculated by
each block-thread (for which PGPU uses the shared
memory).

In addition to the GPU based implementations, for bench-
marking, we also provide a parallelized CPU accelera-
tion for the PChA. Specifically, we use OpenMP [28]
to parallelize the expensive per-point computations of
the objective function, gradient and Hessian approxima-
tion, which are required for the LM iterations in PChA.
That is, the operations shown on the right half in Fig. 2
under the GPU heading are instead parallelized on the
CPU using OpenMP. Algorithms 4 and 5 summarize,
in pseudo-code with included OpenMP compiler direc-
tive constructs, the OpenMP based acceleration for the
calculation of the objective function and of the gradi-
ent and Hessian approximation, respectively. We denote
the OpenMP based CPU implementation as CPU(n),
where n indicates the number of threads used when ex-
ecuting the implementation. For example, CPU(8) de-
notes the OpenMP based CPU implementation that uses
8 threads. Also,CPU(1) denotes a CPU implementation
that uses only single thread4, which is obtained by using
the OpenMP command “omp set num threads(1)”. All
the GPU and CPU implementations utilize the reduced
Hessian and Jacobian computations provided in Table 2.

Algorithm 4: OpenMP based acceleration for the
computation of the objective function f

1 e← 0;
#pragma omp for reduction (+:e)

2 for j = 1 to Np do
3 Compute p′

j ← Tαpj ;
4 if p′

j ∈ Ω then
5 e += ‖r

(

p′

j

)

‖2;
6 end
7 end
8 return e;

All implementations were in C++ with OpenMP 3.0
and CUDATM 7.0. As indicated by “Execution time”
annotation in Fig. 2, reported execution times for an im-
plementation represent the time from completion of the
DT computation to the convergence of the LM. Thus,
the execution time is measured for the complete PChA
algorithm excluding the computation time for the DT.
Specifically, this implies that, any reported execution
time for a GPU based implementation includes the time
for all data transfer between CPU memory and GPU
memory. Also, the speed-up factor of an implementation

4 The CPU(1) implementation offers performance close to
but not identical to that of a CPU implementation that is
obtained by completely eliminating the OpenMP compiler
directives from the code.



11

T
im

e

T
im

e

(a) Traditional LM (b) Our pipelined LM

(e

new

> e

1

) : � = � � 10

g; H from (5); (7) using �

0

(e

new

< e

0

) : f�

1

; e

1

g

 new

; � = �=10

g

new

; H

new

from (5); (7) using �

new

e

0

 f(�

0

) from (1)

g; H from (5); (7) using �

0

(e

new

> e

1

) ! � = � � 10

Æ from (4) using g; H; �

new

= �

1

+ Æ

Æ from (4) using g; H; �

new

= �

1

+ Æ

e

new

 f(�

new

) from (1)

(e

new

< e

0

) : f�

1

; e

1

;H;gg

 new

; � = �=10

Æ from (4) using g; H; �

new

= �

2

+ Æ

g

new

; H

new

from (5); (7) using �

new

Æ from (4) using g; H; �

new

= �

3

+ Æ

g

new

; H

new

from (5); (7) using �

new

Æ from (4) using g; H; �

new

= �

0

+ Æ

(e

new

< e

1

) : f�

2

; e

2

;H;gg

 new

; � = �=10

(e

new

< e

2

) : f�

3

; e

3

;H;gg

 new

; � = �=10

g

new

; H

new

from (5); (7) using �

new

e

new

 f(�

new

) from (1)

e

new

 f(�

new

) from (1)

e

new

 f(�

new

) from (1)

e

new

 f(�

new

) from (1)

f(e

0

) from (1)

g; H from (5); (7) using �

1

e

new

 f(�

new

) from (1)

e

new

 f(�

new

) from (1)

(e

new

< e

1

) : f�

2

; e

2

g

 new

; � = �=10

g; H from (5); (7) using �

2

e

new

 f(�

new

) from (1)

(e

new

< e

2

) : f�

3

; e

3

g

 new

; � = �=10

g; H from (5); (7) using �

3

Æ from (4); �

new

= �

0

+ Æ

Æ from (4); �

new

= �

2

+ Æ

Æ from (4); �

new

= �

1

+ Æ

Æ from (4); �

new

= �

1

+ Æ

Æ from (4); �

new

= �

3

+ Æ

Fig. 4: Execution timeline that shows a trace for few steps of GPU based implementations of: (a) the traditional
LM algorithm and (b) the proposed pipelined LM algorithm. The traditional LM algorithm computes the gradient
and Hessian only if the candidate solution αnew is accepted and after the acceptance. On the other hand, our
pipelined LM algorithm preemptively computes the Hessian matrix approximation and the gradient vector for the
candidate solution αnew concurrently with the evaluation of the objective function value at the candidate solution
αnew. Because the data needed for the Hessian-gradient calculations is already fetched from the high latency global
memory for the evaluation of the objective function, the gradient-Hessian calculations take little additional time
and provide very significant savings when the candidate solution is accepted and only a small overhead of wasted
time when the candidate solution is rejected.

a over an implementation b is computed as the ratio of
the execution time for b to the execution time for a.

The different GPU and CPU based implementations
were benchmarked on two different computer systems.
The first system, which we refer to as “MC1”, is a desk-
top computer with the Ubuntu 14.04.4 LTS operating
system. MC1 had 32 GB of main memory installed and
an Intel R© CoreTM i7-4790 CPU with 8 cores, 8 MB
cache, operating at 3.60 GHz. MC1 was equipped with
an NVIDIATM GeForce GTXTM 760 graphics card that
comprises a GPU based on the KeplerTM GK104 core
architecture with 2 GB of physical memory and 1152
CUDA cores operating at 1033 MHz. The second sys-
tem, which we refer to as “MC2”, is a compute node in
a linux compute cluster [29] with the Red Hat Enter-
prise Linux Server release 6.6 (Santiago) operating sys-
tem. MC2 is configured to have 16 GB of main memory

and an Intel R© Xeon R© E5-2695 v2 CPU with 12 cores,
30 MB cache, operating at 2.40 GHz. MC2 is equipped
with an NVIDIATM TeslaTM K20X graphics processing
accelerator that comprises a GPU based on the KeplerTM

GK110 core architecture with 6 GB of physical memory
and 2688 CUDA cores operating at 732 MHz. For the
GPU based implementations, the number of threads in
each block for both MC1 and MC2 was set to 128. This
number was obtained empirically by varying the number
of threads in each block and determining the value that
resulted in the smallest execution time.

5 Application Examples

In this section, we demonstrate the efficiency of our PChA
GPU based implementation on 2D/3D large scale point



12

Algorithm 5: OpenMP based acceleration for the
computation of the gradient g and the Hessian ap-
proximation H

1 H← 0; g← 0;
#pragma omp for reduction (+:H,g)

2 for j = 1 to Np do
3 Compute p′

j ← Tαpj ;
4 if p′

j ∈ Ω then
5 Compute ρj for pj using the formulae from

Table 1;
6 Compute Hj using ρj ;

7 Compute gj from (10) using ρj and r(p′

j) ;
8 H += Hj ;
9 g += gj ;

10 end
11 end
12 return H,g;

set alignment problems that are related to our ongoing
research on WAMI geo-registration [8, 9] and analyses of
homologous buildings using range imaging [7, 24].

5.1 WAMI real time geo-registration

In our previous work [8, 9], as shown in the motivating
example in Section 2, we employed the PChA to geo-
register a WAMI frame by finding the unknown projec-
tive geometric transformation that aligns the detected
vehicle locations contained in that WAMI frame with
a geo-referenced vector road map (using only a CPU
based implementation that did not use any of the op-
timizations reported here, including those in Table 2.).
We estimate the unknown projective geometric transfor-
mation using PChA and we evaluate the geo-registration
execution time on MC1 for the PGPU, CPU(1), CPU(4),
and CPU(8) implementations on a WAMI test set. Our
WAMI test set is composed of 60 frames chosen randomly
from the CorvusEye WAMI data set that is captured by
the CorvusEye system [30] at 2 frames per second. In
Fig. 5, we plot the execution time (in ms) for the PGPU,
CPU(1), CPU(4), and CPU(8) implementations applied
on each frame from the WAMI test set, where a loga-
rithmic scale is used for the execution time axis. Our
PGPU implementation achieves real time performance
on the WAMI test set and provides an average speed-
up of 6.9× compared with the single CPU implementa-
tion CPU(1), where the average is computed over the 60
frames. Additionally, for some frames, even the CPU(8)
implementation cannot estimate the projective geomet-
ric transformation in real time, while our PGPU imple-
mentation achieve real time performance for all frames.

To assess how the performance of the different PChA
implementations varies with differing vehicle counts in
a WAMI frame, we use our actual datasets to synthet-
ically generate additional vehicle detections locations.
Specifically, we first use our accurate geo-registration

scheme proposed in [9] to align the WAMI frame with
a vector road network, then we add a varying number
of vehicle detections randomly at the locations coincid-
ing with the road network in the aligned WAMI frame.
Then, we apply a different number of Euclidean, simi-
larity, affine, and projective parametric transformations
on the obtained vehicle detections to generate the OS
where we randomly generate the transformation param-
eters associated with each transformation type within
tolerances typically seen for the meta data based geo-
registration in our actual datasets. In our semi-synthetic
WAMI experiment, we first generate 100 random syn-
thetic geometric transformations for each transforma-
tion type (Euclidean, similarity, affine, and projective).
Then, we use the GPU based implementations PGPU,
TGPU, GGPU, in addition to the single CPU imple-
mentation (CPU(1)), to estimate the geometric transfor-
mation parameters and we measure the execution time
for each case on both MC1 and MC2. For each trans-
formation type, we calculate the average and the stan-
dard deviation of the execution time for the 100 random
transformations generated for that transformation type
(within established tolerance limits). Figures 6 (a), (b),
(c), (d) plot the calculated average execution time (in
ms) against the number of points Np in the OS for the
Euclidean, similarity, affine, and projective transforma-
tion types, respectively.

From Fig. 6, we can conclude that our PGPU imple-
mentation shows significantly better performance (smaller
execution time) compared with the single CPU imple-
mentation for both MC1 and MC2. The improvement
comes from the efficient partitioning of the observed points
and the decomposition of the LM calculations across the
different GPU blocks to exploit the powerful highly par-
allel architecture of the GPU. Among the GPU based
implementations, the PGPU implementation shows the
best performance highlighting the benefits of the pipelin-
ing and of the effective usage of the GPU. Specifically,
compared with the TGPU implementation, the PGPU
implementation saves a constant amount of time per-
iteration, when the new candidate solution is accepted.
The saved amount is the time required by a block-thread
to access the global memory for fetching the data for per-
forming the gradient-Hessian calculations as discussed in
Section 3.2.2. Because the time saving is constant per it-
eration, the speed-up of PGPU over TGPU is always
a constant factor, as can be seen the plots in Fig. 6.
The GGPU implementation has the worst performance
among all GPU based implementations because it uti-
lizes the high latency global memory for all computa-
tions. This highlights the importance of efficiently utiliz-
ing the different memory types of the GPU.

Under the same settings of the semi-synthetic WAMI
experiment, the plots in Fig. 7 show the average execu-
tion time of the GPU and CPU based implementations
for a dataset with 1 million observed points for different
transformation types. We use a logarithmic scale for the



13

Frame number

10 20 30 40 50 60

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

10
1

10
2

10
3

10
4

10
5

PGPU

CPU(1)

CPU(4)

CPU(8)

Fig. 5: A plot shows the execution time (in ms) for
the PGPU, CPU(1), CPU(4), and CPU(8) implementa-
tions applied on 60 WAMI frames and tested on MC1,
where a logarithmic scale is used for the execution time
axis. Our PGPU implementation achieves the real time
performance (registration within the WAMI inter-frame
duration of 500 ms).

execution time axis and show the execution time (in ms)
on MC1 and MC2 in Fig. 7 (a) and (b), respectively.
Among the implementations benchmarked, the PGPU
implementation has the best performance across the dif-
ferent transformation types and for both MC1 and MC2.
For example, on MC1, the PGPU achieves 20× - 26×
speed-up over CPU(1) and also achieves a speed-up of
between 1.3× - 1.5× over the TGPU implementation due
to the pipelining of the LM. The CPU parallel implemen-
tation shows better performance than the single CPU
implementation and the performance of the CPU paral-
lel implementation is enhanced by increasing the number
of threads used. However, using threads more than the
number of cores of the CPU is not useful for the par-
allel CPU implementation. For example, on MC1, the
performance of CPU(8) is better than CPU(12), while
on MC2, the performance of CPU(12) is better. Because
the CPU of MC1 has 8 physical cores while the CPU of
MC2 has 12 physical cores, this suggests that the best
performance of the parallel CPU implementation is ob-
tained when the number of used threads matches the
number of cores of the CPU, and adding more threads is
not useful. In contrast, the GPU based implementations
show better performance than the CPU parallel imple-
mentation because of the large number of threads that
can run concurrently on the GPU due to its large num-
ber of available computational cores compared with the
CPU. Also, the performance of GPU implementations on
MC2 is slightly better than the performance on MC1 be-
cause the GPU of MC2 has larger number of cores than
the GPU of MC1.

To assess how the performance of the different PChA
implementations varies according to the number of it-
erations of the LM, we forced the LM to perform a
specific number of iterations by setting the condition
(enew < et) to be true (Line 10 in Algorithm 1 and Line
8 in Algorithm 3) until the desired iteration count was
reached. The average and standard deviation of the ex-
ecution time was evaluated for varying numbers of data
points Np and iterations for each transformation type
(Euclidean, similarity, affine, and projective) over 100
randomly generated geometric transformations. This ex-
periment was conducted on MC1 for the PGPU, CPU(1),
and CPU(8) implementations. Fig. 8 (a), (b), (c), (d)
show plots of the average execution time against Np for
10, 50, 100, and 200 iterations, respectively. The ex-
ecution time includes the time required for the large
amount of initial data transfer to the GPU global mem-
ory (shown in the first single step in Fig. 2) and this
component is represented in all plots in Fig. 8 by a thick
black line. PGPU has a smaller execution time than the
CPU(1) implementation for all of the plots in Fig. 8. Ad-
ditionally, for a sufficiently large number of iterations or
data points, the PGPU implementation has a better per-
formance than the CPU(8) implementation. When the
number of data points or iterations is small, the execu-
tion time for the PGPU implementation is dominated by
the overhead associated with the time required for the
initial data transfer and CPU(8) implementation has a
lower execution time in these settings.

5.2 Analysis of homologous architectural buildings

In our ongoing analyses of homologous architectural build-
ings [7, 24], we are interested in identifying differences
between homologous historical buildings constructed to
a common template. We are given a reference 3D model
created from engineering drawings and corresponding
observed 3D range data captured for several historical
buildings using a lidar scanner, and our goal is to iden-
tify the differences between the observed buildings’ range
data and the reference model. Toward this goal, we em-
ploy PChA to align the 3D range data with the 3D ref-
erence model. Figure 9 shows an example, with the 3D
reference model in (a), the observed range data in (b),
and the alignment result with the observed range data
overlaid with the reference model in (c). The alignment
is obtained by finding the unknown 3D similarity trans-
formation that aligns the observed building 3D range
data with the 3D reference model. In this alignment ex-
ample, we use the PGPU and the CPU(1) implementa-
tions to align the observed 3D range data that contains
1140703 points and report results obtained on MC1. The
alignment execution time of the PGPU and the CPU(1)
implementations are 790 ms and 11850 ms, respectively.

As in Section 5.1 for the 2D case, we assessed the
impact of the number Np of observed 3D range data



14

Np = number of points (105)
0.5 0.7 1.3 3 11.8

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

10
2

10
3

10
4

10
5

PGPU-MC1

TGPU-MC1

IGPU-MC1

CPU(1)-MC1

PGPU-MC2

TGPU-MC2

IGPU-MC2

CPU(1)-MC2

(a) Eu
lidean

Np = number of points (105)
0.5 0.7 1.3 3 11.8

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

10
2

10
3

10
4

10
5

(b) Similarity

Np = number of points (105)
0.5 0.7 1.3 3 11.8

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

10
2

10
3

10
4

10
5

(
) Af�ne

Np = number of points (105)
0.5 0.7 1.3 3 11.8

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

10
2

10
3

10
4

10
5

(d) Proje
tive

Fig. 6: Average execution time for aligning the 2D semi-synthetic WAMI datasets with a corresponding roadmap
as a function of the number of observed points for (a) Euclidean, (b) similarity, (c) affine, and (d) projective
transformation types. In this experiment motivated by our WAMI to roadmap alignment problem, we use observed
datasets (OS) with a varying number of vehicle detections generated by applying a synthetic random transformation
to synthetic detections generated on the roads. An alignment transformation is then estimated by PChA using the
GPU based implementations PGPU, TGPU, GGPU, in addition to the single CPU implementation (CPU(1)) on
both MC1 and MC2. Reported values correspond to averages of the execution time over 100 runs corresponding to
100 different synthetic transformations. Standard deviations are shown as error bars and the execution time for an
implementation on MC1 and MC2 is shown in the same color but with different line styles (solid lines for MC1 and
dashed lines for MC2).

points on the different implementations by using syn-
thetically generated OS of different sizes. For each of
the Euclidean, similarity, and affine parametric transfor-
mation types, we randomly generated 100 different val-
ues for the associated transformation parameters (within
pre-determined tolerance) and obtain corresponding syn-
thetic OS of different sizes. For each of the generated OS
datasets, the PGPU, the TGPU, and the CPU(1) imple-
mentations were used to estimate the transform parame-
ters and the average execution time and standard devia-
tion were computed for each value of Np over the 100 re-
alizations. The experiment was independently conducted

on both MC1 and MC2. Fig. 10 (a), (b) and (c) show
plots of the average execution time against Np for the
Euclidean, similarity, and affine parametric transforma-
tions, respectively, on the observed range data to gener-
ate the OS where we randomly generate the transforma-
tion parameters (within pre-determined tolerance) asso-
ciated with each transformation type. Again, the PGPU
implementation shows significantly better performance
(smaller execution time) compared with the single CPU
implementation. As in Section 5.1, the PGPU also has a
nearly constant computational speed-up factor over the
TGPU implementation.



15

Transformation type

Euclidean similarity affine projective

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

10 -1

10 0

10 1

10 2

10 3

10 4

10 5

PGPU

TGPU

GGPU

CPU(12)

CPU(8)

CPU(4)

CPU(2)

CPU(1)

(a) MC1

Transformation type

Euclidean similarity affine projective

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

10 -1

10 0

10 1

10 2

10 3

10 4

10 5

PGPU

TGPU

GGPU

CPU(12)

CPU(8)

CPU(4)

CPU(2)

CPU(1)

(b) MC2

Fig. 7: Average execution time of the GPU and CPU based implementations for a dataset with 1 million observed
points and estimated for different transformation types. We use a logarithmic scale for the execution time axis and
show the execution time (in ms) on MC1 and MC2 in (a) and (b), respectively.

6 Discussion

The two main ingredients contributing to the observed
speed up for the proposed implementation in this paper
are the parallelization and the pipelining. In this section,
we characterize the improvements provided by each in-
gredient, using empirical profiling for the first and sim-
plified analysis for the second.

To assess the relative contribution of the parallelized
components to the overall computations required for the
PChA, we empirically profiled the average execution time
for each component of the PChA. As in Section 5.1, a
semi-synthetic dataset was used for this purpose with
Np = 1 million data points and 1000 realizations for
each geometric transformation type (Euclidean, similar-
ity, affine, and projective) obtained by using syntheti-
cally generated random parameters. For each transfor-
mation type, average execution times were computed for
each component of the PChA using the single CPU im-
plementation CPU(1) on MC2. The results summarized
in the bar graphs in Fig. 11 show that the execution
times for the computation of f , H, and g, which are
parallelized in the GPU implementation presented in this
paper are much larger than the execution time for the
computation of δ, which is not parallelized here. The
parallelization in the implementation presented therefore
effectively targets the computationally most demanding
components of PChA. For reference, the time required
for the computation of the DT5 is also included in Fig. 11,
although, as we already noted, most applications do not
require the DT to be computed in real-time.

As noted in Section 3.2.2, the proposed pipelined LM
implementation saves a significant amount of time when

5 The DT is calculated using the method in [25].

the candidate solution is accepted but causes a small
overhead when the candidate solution is rejected. We
quantify the speed-up of the PGPU implementation over
the TGPU implementation as the percentage of candi-
dates accepted ranges from 100 through 0. For the TGPU
implementation, we use the NVIDIATM Profiler to mea-
sure the execution time Tf for the GPU kernel that cal-
culates the objective function at the candidate solution,
and the execution time Tgh for the GPU kernel that cal-
culates the gradient and the Hessian approximation at
the candidate solution. Similarly, for the PGPU imple-
mentation, we measure the execution time Tfgh for the
GPU kernel that calculates the objective function, the
gradient, and the Hessian approximation. The speed-up
S of PGPU over TGPU can then be estimated as

S =
A(Tgh + Tf ) + (100−A)Tf

100Tfgh

, (11)

where 0 ≤ A ≤ 100 is the percentage of the candidates
accepted. Figure 12 shows the speed-up factor for Eu-
clidean, similarity, affine, and projective transformation
types as the acceptance percentage A varies from 100
through 0.

We draw three important conclusions from Fig. 12.
First, S is maximum when A = 100, and starts to de-
crease with the decrease of A. Because the PGPU causes
a small overhead when the candidate solution is rejected,
the overhead is accumulated with the decrease in A and
reduces the speed-up factor. Second, for a specific trans-
formation, S is inversely related to the number of compu-
tations required to estimate the parameters of the trans-
formation, for the same value of A. For example, for same
value of A, S is higher for the Euclidean transformation
than for other transformation types. Because the cal-
culations for the Euclidean case are simpler than other



16

Np = number of points (105)
0.5 0.7 1.3 3 11.8

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

10
2

10
3

10
4

10
5

CPU(1)-Euc

CPU(8)-Euc

PGPU-Euc

CPU(1)-Sim

CPU(8)-Sim

PGPU-Sim

CPU(1)-Aff

CPU(8)-Aff

PGPU-Aff

CPU(1)-Proj

CPU(8)-Proj

PGPU-Proj

(a) 10 iterations

Np = number of points (105)
0.5 0.7 1.3 3 11.8

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

10
2

10
3

10
4

10
5

(b) 50 iterations

Np = number of points (105)
0.5 0.7 1.3 3 11.8

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

10
2

10
3

10
4

10
5

(
) 100 iterations

Np = number of points (105)
0.5 0.7 1.3 3 11.8

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

10
2

10
3

10
4

10
5

(d) 200 iterations

Fig. 8: Average execution time for aligning the 2D semi-synthetic WAMI datasets with a corresponding roadmap
as a function of the number of observed points, obtained using the PGPU, CPU(1), and CPU(8) implementations,
and executed for (a) 10, (b) 50, (c) 100, and (d) 200 iterations. In all plots, we report the average execution time
over 100 runs and the standard deviations are shown as error bars. The thick black line represents the average time
required for the initial large data transfer to the GPU global memory. As shown in the plots, the PGPU always has
a better performance than the CPU(1). Additionally, the PGPU has a better performance than the CPU(8) when
the PGPU is either executed for a sufficiently large number of iterations or applied for a large number of points.
Otherwise, the CPU(8) has better performance because the execution time of the PGPU in this case is dominated
by the overhead associated with the time required for the initial data transfer.

(a) Referen
e 3D model (RS) (b) Observed 3D range data (OS) (
) Alignment result

Fig. 9: Example of PChA applied for aligning an observed 3D range point dataset for a building to a corresponding
3D reference model: (a) 3D reference model, (b) the range data for a corresponding building, and (c) the alignment
result visualized as an overlay of the observed building 3D range data (shown in green) with the reference 3D model
(shown in magenta) for the estimated optimal alignment parameters.



17

Np = number of points (105)
0.9 1.5 2.8 6.9 30.7

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

10
1

10
2

10
3

10
4

10
5

PGPU-MC1

TGPU-MC1

CPU(1)-MC1

PGPU-MC2

TGPU-MC2

CPU(1)-MC2

(a) Eu
lidean

Np = number of points (105)
0.9 1.5 2.8 6.9 30.7

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

10
1

10
2

10
3

10
4

10
5

PGPU-MC1

TGPU-MC1

CPU(1)-MC1

PGPU-MC2

TGPU-MC2

CPU(1)-MC2

(b) Similarity

Np = number of points (105)
0.9 1.5 2.8 6.9 30.7

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

10
1

10
2

10
3

10
4

10
5

PGPU-MC1

TGPU-MC1

CPU(1)-MC1

PGPU-MC2

TGPU-MC2

CPU(1)-MC2

(
) Af�ne

Fig. 10: Average execution time for aligning the 3D semi-synthetic range-image dataset for a building with a
corresponding model as a function of the number of observed points for: (a) Euclidean, (b) similarity, and (c)
affine transformation types. In this semi-synthetic experiment, we use observed range datasets (OS) with different
number of points generated from the reference range dataset (RS) by applying a synthetically generated transfor-
mation. An alignment transformation is then estimated by PChA using the PGPU, the TGPU, and the CPU(1)
implementations. Reported values correspond to averages of the execution time over 100 runs corresponding to
100 different synthetic transformations. Standard deviations are shown as error bars and the execution time for an
implementation on MC1 and MC2 is shown in the same color but with different line styles (solid lines for MC1 and
dashed lines for MC2).

Transformation type

Euclidean similarity affine projective

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

10
0

10
2

10
4

DT
H,g

f

δ

Fig. 11: PChA computational profile: The bar graphs
show the average execution time for each component of
the PChA for the single CPU implementation CPU(1)
running on MC2 for solving a 2D WAMI semi-synthetic
dataset with 1 million points. Averages are computed
over 1000 runs. The plots confirm that the parallelized
in the GPU implementation presented in this paper tar-
gets the computationally most demanding components of
PChA (computation of f , H, and g), whereas the contri-
bution of the non-parallelized component (computation
of δ) to the overall execution time is several orders of
magnitude smaller than that of the other components.

transformation types, Tfgh is closer to Tf in the Eu-
clidean case than for other transformation types, which
translates to a higher speed-up for the same value of A.
Finally, S > 1 for Euclidean, similarity, affine, and pro-
jective transformation types, when A > 24%, A > 27%,
A > 40%, and A > 80%, respectively. To improve per-

formance in practice, our implementation performs pa-
rameter estimation using the hierarchy of transforma-
tion types in order of increasing generality and num-
ber of computations required for estimating the parame-
ters. For example, to estimate projective transformation
parameters, we proceed in four stages estimating in se-
quence parameters for Euclidean, similarity, affine, and
then projective transformations, where at each stage the
parameters are initialized using the best estimates for the
preceding simpler transformation. This hierarchical pa-
rameter estimation procedure ensures good initialization
for the more complex transformation types and results
in a higher effective speed-up factor because of both in-
creased acceptance percentage and fewer iterations for
the complex transformations.

7 Conclusion

In this paper, we propose a parallel and pipelined realiza-
tion of parametric chamfer alignment (PChA) for GPU
implementation. The proposed parallelization achieves a
significant speed-up by partitioning the OS points across
different GPU blocks and decomposing the expensive
per-point gradient and Hessian computations required
for the LM iterations in PChA in correspondence with
the GPU’s single instruction multiple thread (SIMT) ar-
chitecture. Additional speed-up is obtained by the pro-
posed pipelining of the LM algorithm. The pipelining ex-
ploits the GPU’s low arithmetic latency compared with
high global memory access latency by precomputing gra-
dient and Hessian at candidate solution preemptively
even before a decision to accept or reject the candi-
date is made. The preemptive computation eliminates



18

A (% of candidates accepted)
020406080100

S
(S
p
ee
d
u
p
o
f
P
G
P
U

ov
er

T
G
P
U
)

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Euclidean

Similarity

Affine

Projective

Fig. 12: The speed-up of the PGPU implementation over
the TGPU implementation as the percentage of candi-
dates accepted ranges from 100 through 0, for Euclidean,
similarity, affine, and projective transformation types.

the need for fetching data a second time from high la-
tency GPU global memory and offers a speed-up in typ-
ical application scenarios. Results obtained on two dif-
ferent computer systems for both large scale 2D and 3D
point data sets from our ongoing research demonstrate
that our PChA GPU implementation offers a very signif-
icant speed-up over its single CPU counterpart. Specifi-
cally, the speed-up allows us to achieve real-time PChA
based alignment of vector roadmaps to wide area motion
imagery (WAMI).

A Compositional approach for projective
transformation estimation

The Jacobian matrix elements {Jc
j,l} associated with the pro-

jective transformation in Table 1 require a division oper-
ation per-element, which is computationally expensive. To
simplify the Jacobian calculations, we adopt a compositional
approach [31] that eliminates the division operations and also
enables further simplifications. The compositional approach
for our 2D point set alignment by projective transformation
proceeds as follows:

– The projective transformation defined by the current esti-
mate αt of the parameters is applied to each OS point pj

to obtain a corresponding warped point p′

j = Tαt (pj).
– Each LM iteration, then estimates the incremental pa-

rameter update δ that minimizes

f(δ) =

Np
∑

j=1

∥

∥

∥r
(

T(αI+δ)
(

p′

j

)

)∥

∥

∥

2

, (12)

where αI = [1, 0, 0, 0, 1, 0, 0, 0] is the parameter vector
that corresponds to the identity transformation, i.e.,
TαI

(

p′

j

)

= p′

j .
– The updated projective transformation is obtained as

Tαt+1
= Tαt ◦ Tδ, (13)

where ◦ denotes composition, or equivalently multiplica-
tion of the corresponding matrix representations.

Considerable simplification of the Jacobian matrix calcula-
tion is obtained because the calculation is performed at αI ,
where the term wj in Table 1 becomes unity, eliminating the
need for division operations. Specifically, the Jacobian matrix
Jj at the transformed point p′

j ≡ TαI (p′

j), is computed as

Jj =
∂Tα(p

′

j)

∂α

∣

∣

∣

∣

α=αI

=

(

x′ y′ 1 0 0 0 −x′2 −x′y′

0 0 0 x′ y′ 1 −x′y′ −y′2

)

. (14)

The Hessian matrix approximation elements are shown in Ta-
ble 2, where additional simplifications are also incorporated.

Acknowledgement

We thank Bernard Brower of Harris Corporation for making
available the CorvusEye [30] WAMI datasets used for demon-
strating PChA on real-world 2D datasets. We also thank our
colleagues from the Architectural Bio-metrics project for pro-
viding the 3D datasets of building models and lidar scans that
are used in our evaluation. We also thank the Center for Inte-
grated Research Computing (CIRC), University of Rochester,
for providing access to computational resources for this re-
search.

References

1. Ming-Yu Liu, O. Tuzel, A. Veeraraghavan, and R. Chel-
lappa. Fast directional chamfer matching. In IEEE Intl.
Conf. Comp. Vision, and Pattern Recog., pages 1696–
1703, June 2010.

2. Hongjian Jiang, Kerrie S Holton, and Richard A Robb.
Image registration of multimodality 3-D medical images
by chamfer matching. In SPIE/IS&T 1992 Symposium
on Electronic Imaging: Science and Technology, pages
356–366. International Society for Optics and Photonics,
1992.

3. Yu-Tseh Chi, SM Nejhum Shahed, Jeffrey Ho, and Ming-
Hsuan Yang. Higher dimensional affine registration and
vision applications. In Proc. European Conf. Computer
Vision, pages 256–269. Springer, 2008.

4. Faysal Boughorbel, Muharrem Mercimek, Andreas
Koschan, and Mongi Abidi. A new method for the reg-
istration of three-dimensional point-sets: The Gaussian
fields framework. Comp. Vis. and Image Understanding.,
28(1):124 – 137, 2010.

5. Adrien Gressin, Clment Mallet, Jrme Demantk, and
Nicolas David. Towards 3D lidar point cloud registra-
tion improvement using optimal neighborhood knowl-
edge. Journal of Photogrammetry and Remote Sensing,
79:240 – 251, 2013.

6. Martin Danelljan, Giulia Meneghetti, Fahad Shah-
baz Khan, and Michael Felsberg. A probabilistic frame-
work for color-based point set registration. In IEEE Intl.
Conf. Comp. Vision, and Pattern Recog., pages 1818–
1826, June 2016.

7. L. Ding, A. Elliethy, E. Freedenberg, S. A. Wolf-Johnson,
J. Romphf, P. Christensen, and G. Sharma. Comparative
analysis of homologous buildings using range imaging.
In IEEE Intl. Conf. Image Proc., pages 4378–4382, Sept
2016.

8. Ahmed Elliethy and Gaurav Sharma. Vector road
map registration to oblique wide area motion im-
agery by exploiting vehicles movements. In IS&T
Electronic Imaging: Video Surveillance and Trans-
portation Imaging Applications, pages VSTIA–
520.1–8, San Francisco, California, 2016. URL



19

http://ist.publisher.ingentaconnect.com/contentone
/ist/ei/2016/00002016/00000003/art00008.

9. Ahmed Elliethy and Gaurav Sharma. Automatic reg-
istration of vector road maps with wide area motion
imagery by exploiting vehicle detections. IEEE Trans.
Image Proc., 25(11):5304 – 5315, November 2016. doi:
10.1109/TIP.2016.2601265.

10. P. J. Besl and H. D. McKay. A method for registration
of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intel.,
14(2):239–256, Feb 1992.

11. Zhengyou Zhang. Iterative point matching for registra-
tion of free-form curves and surfaces. Intl. J. Computer
Vision, 13(2):119–152, 1994.

12. A. Myronenko and X. Song. Point set registration: Co-
herent point drift. IEEE Trans. Pattern Anal. Mach.
Intel., 32(12):2262–2275, Dec 2010.

13. M. Sofka, G. Yang, and C. V. Stewart. Simultaneous co-
variance driven correspondence (CDC) and transforma-
tion estimation in the expectation maximization frame-
work. In IEEE Intl. Conf. Comp. Vision, and Pattern
Recog., pages 1–8, June 2007.

14. Andrew W Fitzgibbon. Robust registration of 2D and
3D point sets. Image and Vision Computing, 21(1314):
1145 – 1153, 2003.

15. M. Rouhani and A. D. Sappa. Correspondence free regis-
tration through a point-to-model distance minimization.
In IEEE Intl. Conf. Comp. Vision., pages 2150–2157,
Nov 2011.

16. Gunilla Borgefors. Distance transformations in digital
images. Comp. Vis., Graphics and Image Proc., 34(3):
344–371, June 1986.

17. J. Nocedal and S. J. Wright. Numerical Optimization.
Springer, New York, 2nd edition, 2006.

18. H. G. Barrow, J. M. Tenenbaum, R. C. Bolles, and H. C.
Wolf. Parametric correspondence and chamfer matching:
Two new techniques for image matching. In Proc. Int.
Joint Conf. Artificial Intell., pages 659–663, 1977.

19. C. Sigg, R. Peikert, and M. Gross. Signed distance trans-
form using graphics hardware. In IEEE Visualization,
pages 83–90, Oct 2003.

20. Thanh-Tung Cao, Ke Tang, Anis Mohamed, and Tiow-
Seng Tan. Parallel banding algorithm to compute exact
distance transform with the GPU. In Proceedings of the
2010 ACM SIGGRAPH Symposium on Interactive 3D
Graphics and Games, pages 83–90, New York, NY, USA,
2010. ACM.

21. Xiang Zhu and Dianwen Zhang. Efficient parallel
Levenberg-Marquardt model fitting towards real-time
automated parametric imaging microscopy. PloS one,
8(10):e76665, 2013.

22. Bo Li, Alistair A Young, and Brett R Cowan. GPU accel-
erated non-rigid registration for the evaluation of cardiac
function. In Medical Image Computing and Computer-
Assisted Intervention, pages 880–887. Springer, 2008.

23. R. Amorim, G. Haase, M. Liebmann, and R. Weber dos
Santos. Comparing CUDA and OpenGL implementa-
tions for a Jacobi iteration. In IEEE Intl. Conf. High
Performance Computing Simulation, pages 22–32, June
2009.

24. Architectural Biometrics Project.
https://architecturalbiometrics.com/.

25. Pedro Felzenszwalb and Daniel Huttenlocher. Dis-
tance transforms of sampled functions. Technical Re-
port TR2004-1963, Cornell University, 2004. URL
https://ecommons.cornell.edu/handle/1813/5663.

26. David B Kirk and W Hwu Wen-mei. Programming mas-
sively parallel processors: a hands-on approach. Newnes,
2012.

27. Mark Harris. Optimizing parallel reduction in CUDA.
2007. NVIDIA Developer Technology.

28. The OpenMP API specification for parallel program-
ming. http://www.openmp.org/.

29. University of Rochester, BlueHive Cluster.
https://info.circ.rochester.edu/BlueHive/
System Overview.html.

30. CorvusEyeTM1500 Data Sheet.
http://www.exelisinc.com/solutions/corvuseye1500/
Documents/CorvusEye500DataSheetAUG14.pdf.

31. Richard Szeliski and Heung-Yeung Shum. Creating full
view panoramic image mosaics and environment maps.
In Proceedings of the 24th Annual Conference on Com-
puter Graphics and Interactive Techniques, SIGGRAPH
’97, pages 251–258, 1997.

Ahmed Elliethy received the B.Sc. degree (excellent with
honors) in computer engineering and the M.Sc. degree
in electrical engineering from the Military Technical Col-
lege, Cairo, Egypt, in 2003, and 2010, respectively. He
is currently pursuing his Ph.D. degree at University of
Rochester. His research interests are computer vision and
security, specifically, multiple object tracking, optical flow,
and media forensics.

Gaurav Sharma is a professor at the University of Rochester
in the Department of Electrical and Computer Engineer-
ing, in the Depart- ment of Computer Science and in the
Department of Biostatistics and Computational Biology.
From 2008 to 2010, he served as the Director for the Cen-
ter for Emerging and Innovative Sciences (CEIS), a New
York state funded center for promoting joint universi-
tyindustry research and technology development, which
is housed at the University of Rochester. He received the
BE degree in electronics and communication engineering
from Indian Institute of Technology Roorkee (formerly
Univ. of Roorkee), India, in 1990; the ME degree in elec-
trical communication engineering from the Indian Insti-
tute of Science, Bangalore, India, in 1992; and the MS de-
gree in applied mathematics and Ph.D. degree in electri-
cal and computer engineering from North Carolina State
University, Raleigh, in 1995 and 1996, respectively. From
August 1996 through August 2003, he was with Xerox
Research and Technology, in Webster, NY, initially as a
Member of Research Staff and subsequently at the po-
sition of Principal Scientist. Dr. Sharmas research inter-
ests include image processing and computer vision, color
science and imaging, multi- media security and water-
marking, and bioinformatics. He is the editor of the Color
Imaging Handbook, published by CRC press in 2003. He
is a fellow of the IEEE, of SPIE, and of the Society of
Imaging Science and Technology (IS&T) and a member
of Sigma Xi.


