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ABSTRACT

We propose an informed watermark embedding method in
fractional Fourier domain. Detectability and imperceptibil-
ity of the watermark sequence constraints as well as real-
valuedness in spatial domain are imposed on the resulting
image using a set theoretic framework. Insertion of multi-
ple bits without using a block based scheme is also a novel
approach and provides improvement against synchronization
attacks. The watermarked image is determined using the
method of projections onto convex sets (POCS) to simultane-
ously satisfy the multiple constraints. A performance com-
parison between blind and informed embedding is illustrated
and experimental results are presented to show the effective-
ness of the informed method.

1. INTRODUCTION

Watermarking with blind detection can be modelled as com-
munication with side information. This effort has two main
branches: Informed coding and informed embedding [1] . In
informed coding the codeword representing watermark sig-
nal is generated depending on the original cover file. How-
ever in informed embedding, which will be our main concern
in this paper, already coded watermark signal is shaped de-
pending on the cover signal.

Watermark embedding is usually performed by adding a
watermark pattern to the cover data without distorting the fi-
delity of the cover data . The cover data is treated as noise
and this kind of embedding is known as “blind embedding”.
However, it has already been illustrated in the literature that
the watermark embedder can be more effective since the
cover data is known to the embedder during watermark in-
sertion. This embedding strategy is referred as “informed
embedding” [2].

The fractional Fourier domain is a time-frequency rep-
resentation of the signal. Embedding watermark sequences
into fractional Fourier domain has an important advantage
over embedding spatial domain or frequency domain. Wa-
termark in fractional Fourier domain provides extra security
against attackers since angle(s) of the transform provides ex-
tra degree of freedom [3]. Recent work in cryptanalysis of
watermarks has proven to be effective in estimating and re-
moving the watermark sequences. Mihcak et al estimate 90%
of the DSSS sequence by MAP estimation [4]. However, em-
bedding into fractional domains will make these endeavors
ineffective due to the extra degree of freedom given by frac-
tional Fourier angles.
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This nice feature of embedding into fractional Fourier do-
main has attracted attention and a blind embedding technique
is proposed by Djurovic et al [3]. However, it is not an easy
task to extend their algorithm to informed watermarking be-
cause the visual models are defined either in time domain or
frequency domain. Defining these models again in fractional
domains is a tedious and unnecessary task.

Here we propose an informed embedding method in the
fractional Fourier domain. The method implicitly shapes
the watermark power to the signal content by imposing
constraints that ensures imperceptibility, detectibility, real-
valuedness and robustness to compression. The water-
marked image is determined to satisfy these constraints us-
ing a POCS algorithm [5]. Insertion of multiple bits
without using a block structure provides extra easiness
against de-synchronization attacks since synchronizing one
pn-sequence gives synchronization with the rest of the wa-
termark pn-sequences.

We recently introduced a set-theoretic framework for wa-
termarking and a POCS based technique [5]. In this paper,
we specifically address time-frequency domains, which offer
some significant differences and advantages.

2. FRACTIONAL FOURIER TRANSFORM

The one dimensional fractional Fourier transform of a signal
x(t) is defined as:

Xa (u) =
∫ +¥

−¥
x(t) ·Ka (u, t) ·dt (1)

where Ka (u, t) is a transform kernel, given by:

Ka (u, t) =

√
1− j · cot(a )

2p
· e j·(t2+u2)cota /2− jut csc a (2)

Two dimensional fractional Fourier transform can be
obtained by successively taking one dimensional fractional
Fourier transforms of rows and columns due to the separa-
bility of the transform. The signal obtained is in purely time
domain if transformation angle a is 0 and in in purely fre-
quency domain if angle is p /2. A fast algorithm has been
developed for fractional Fourier transform which is also an
attractive feature for watermark embedding purposes. [6].

3. FRACTIONAL FOURIER DOMAIN
WATERMARKING USING POCS

In POCS method two important assumptions are made: Each
a priori information or desired property restricts the solution
to a convex set in Hilbert space H and the desired signal lie



in the intersection of all of these sets which represent the
space of acceptable solutions. The sequence of successive
projections onto these sets weakly converges to a point on
the boundary of intersection of all of these sets.

POCS can be used as a method to embed watermarks
into multimedia by defining suitable constraint sets that in-
sure imperceptibility and detectibility of the embedded wa-
termark [5]. Fractional Fourier domain watermarking can be
accomplished using the sets described in the following sec-
tion.

The convexity of the constraints is easy to see and will
not be proved here. The projection operations are written as
a constrained optimization problem and solved by Lagrange
multiplier method. Successive projections are done by order
and weakly converges to the intersection of the sets:

fk+1 = (PSn(PSn−1 ...PS1( fk)...)), k = 0,1, .. (3)

The projections are performed by using Lagrange multi-
pliers. Details of the projections can be found in[5].

Xi+1 = Pj(Xi) = argminX∈S j
‖X − Xi‖ (4)

4. CONVEX CONSTRAINTS FOR FRACTIONAL
FOURIER DOMAIN WATERMARKING

In order to obtain a watermarked signal using POCS we de-
fine the following constraints:

4.1 Real-valuedness:

Modifying the signal in fractional Fourier domain for the
purpose of embedding will most probably disrupt the real-
valuedness of the signal in time domain. In our method we
define the constraint of real-valuedness :

S1 ≡ {X ∈ CNXN : X −Re(X) = 0} (5)

In [3], the problem is solved by adding the same water-
mark signal into fractional Fourier domain with transform
angle −a . However, this approach may introduce extra dis-
tortion to keep the signal real.

4.2 Detectibility:

The second constraint below in equation 6 ensures the de-
tectibility of the watermark by the receiver. Contrary to the
additive approach, successive projections will eliminate the
interference due to the host signal. The dot product is defined
on vectors and not matrices, so we first arranged X and W to
a row or column vector to form X* and W*. The permutation
operation performed is not important if same permutation is
used for both X* and W*. We assumed the detector side
does not have the original image hence decodes the water-
mark blindly.

S2 ≡ {X ∈ RNXN :
1

N×M
W ∗T FrFT (X∗)≥ g } (6)

It is worth mentioning that, an operationally equivalent
formulation of this detection scheme can be obtained by

preprocessing1 the watermark sequence and embedding into
spatial domain instead of embedding into fractional Fourier
domain, due to the linearity and separability of Fractional
Fourier transform. Both of the schemes can be used for extra
degree of freedom due to estimation attacks. An equivalent
formulation is as follows:

S
′
2 ≡ {X ∈ RNXN :

1
N×M

FrFT (W ∗T )X∗ ≥ g } (7)

4.3 Pointwise Fidelity:

The visual fidelity of the image is guaranteed by two visual
constraints. The first one is imposed by a spatial domain
texture masking model. Pereira et al. has proposed this visual
model which outputs allowable distortion at pixel level given
the original image. [7] The constraint below in equation 8
illustrates the resulting convex set where where X is an image
size matrix which lies in the allowable lower (L) and upper
(U) bounds.

S3 ≡ {X ∈ RNXN : L≤ X ≤U} (8)

4.4 Overall Fidelity:

The second visual model is proposed by Mannos et al [8].
They have proposed a visual distortion metric for mono-
chrome images which takes into account of the fact that hu-
man observer is more sensitive to some spatial frequencies
than others and he is more sensitive to intensity errors in gray
regions than white. He formulates a parametric filter based
on experimental results which we use in our method. The
second constraint is formulated as an inequality that forces
the overall visual distortion metric of the image be smaller
then some threshold value. ‖ · ‖ represents Euclidean dis-
tance, H(w) is the filter in frequency domain and X0 repre-
sents the original image.

S4 ≡ {X ∈CNXN :‖H(w) ·X(w)−H(w) ·X0(w) ‖< q } (9)

4.5 Robustness To Compression

The requirement of robustness to compression can be
roughly expressed by the following mathematical expres-
sion:

S5 ≡ {X ∈ RNXM :
1

N×M
W ∗ · IDCT (Q[DCT (X∗)])≥ g } (10)

where Q stands for JPEG quantization scheme, DCT and
IDCT represents discrete cosine transform and inverse dis-
crete cosine transform respectively. However, this constraint
is not convex.

So we approximated it with the following equation:

Ŝ5 ≡ {X ∈ RNXM :
1

N×M
W ∗ · IDCT (QNZ(X0)[DCT (X∗)])≥ g } (11)

1We would like to thank one of the anonymous reviewers for bringing
this to our attention.



where QNZ(X0) refers to the non-zero quantized DCT co-
efficients of the original image. This approximation has the
underlying assumption that the DCT coefficients that is quan-
tized to zero after compression is causing the major loss of
watermark information.

5. RESULTS AND ANALYSIS

We have designed an experiment to compare the performance
of blind embedding with respect to informed embedding. To
obtain an estimate of the capacity of the blind embedding, we
started to embed bits to achieve a certain detection rate. We
continue on embedding extra bits until the invisibility of the
watermark is disrupted. Then we measure the total number of
embedded bits and report the capacity as the blind watermark
capacity.

We could insert only 5 bits into fractional Fourier domain
without distorting the visual texture noise masking model.
Although exceeding a single pixel interval may not be no-
ticed in the whole image, the result of the experiment illus-
trates the success of the POCS method in embedding 100 bits
without violating any visual constraint. The bit error rate in
both of the embedding was zero, we could detect all the bits
without error.

g q S0 S1 QR

1 2.5 ·106 30 3 60

Table 1: Particularities of the models for POCS based algo-
rithm.

We inserted 100 bits into Goldhill image’s real part of the
a 1 = 0.7 · p /2 and a 2 = 0.7 · p /2 fractional Fourier transform
by successive projections onto convex sets that we have de-
fined previously. One can also choose a values randomly
for each bit using a cryptographic key for security purposes.
We decided to stop inserting bits when the POCS algorithm
started to converge slowly and the new projections started to
erase the previous information we have inserted. The detec-
tor response of the correlated watermark sequence and un-
correlated random sequence is illustrated in figure 4.

To illustrate the success of the method in cancelling the
source interference cancellation, we embedded 100 bits by
blind embedding method. The histogram of the detector re-
sponse is shown in 3. Bit error rate is 86% when we set the
detection threshold to 0.75.

Figure 1 and Figure 2 illustrates the performance of vi-
sual fidelity of both methods. In figure 1 the watermark noise
is disturbing especially in flat regions of the image. POCS is
very successful in shaping the watermark noise and distrib-
uting the power in more busy regions.

To get rid of the complexity due to two visual fidelity
criteria in our analysis, we assume that the overall visual dis-

Capacity Bit Error Rate
Blind 5 bits 0
Informed 100 bits 0

Table 2: Experimental capacity of both blind and informed
embedding. 512x512 pseudo-random sequence is used for
each bit.

Figure 1: A portion of blindly watermarked Goldhill im-
age. PSNR of the whole image is 31 dB. 100 bits inserted.
BER=8%.

Figure 2: A portion of Goldhill image watermarked by
POCS. PSNR of the whole image is 30 dB. 100 bits inserted.
BER=0%.

tortion metric constraint is not binding. The upper allowable
pixel level (U) and lower allowable pixel level (L) are the
only factors that limits channel capacity. Furthermore, we
assume the texture noise masking model is very accurate and
signal in this interval is totally imperceptible. Any signal dis-
tortion beyond this interval makes the watermark perceptible
and it is not a valid watermark embedding.

In this scenario, the payload capacity of the watermark
is primarily limited by the smallest interval in the allowable
variations determined by the visual texture noise masking
model. We obtained the payload capacity values with an in-
tuitive approach. The payload capacity for the cover image is
mainly restricted by the upper and lower limits in spatial do-
main. For blind case, minimum interval determines the bot-
tleneck of the capacity. s 2

W represents watermark variance
(power) for each pixel. The signal power in fractional do-
main will be preserved in time domain due to the Parseval’s
theorem for fractional Fourier transforms, so the watermark
variance s 2

W can be used interchangeably in calculations. So,
for the blind case watermark payload capacity can be approx-



imated as follows:

Cp ≈ Total energy available for watermark
Average Watermark Power For Each Bit

(12)

Cp ≈ [mini(Ui−Li)]2

s 2
W

(13)

In POCS embedding, the resulting signal beyond L and
U are tailored by projection onto the visual texture constraint
and watermark power is distributed to rest of the intervals
to achieve the predetermined detector response rate. So, the
overall upper and lower bounds can be treated as one channel
for the whole watermark with energy s 2

W ·N2.

C
′
p ≈

[å i(Ui−Li)2]
s 2

W ·N2
(14)

We have embedded watermark without using any block-
ing structure. All bits are inserted to the same space-
frequency slice. This property is worth mentioning due to
its advantages for de-synchronization attacks. For detector
side, the endeavor for re-synchronization all bits is as sim-
ple as re-synchronization one bit since every bit shares the
same time-frequency window. Robustness to compression
constraint incerases the robustnes of the watermark against
compression and is discussed in depth in [5].

The algorithm converges in 30 iterations. It takes less
than 10 minutes to embed 100 bit watermark with a Pentium
M 1.8 GHz processor computer.
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Figure 3: Histogram of detector response for blindly water-
marked image. 100 bits inserted, watermark size is equal to
image size.

6. CONCLUSION

In this paper we have introduced a set theoretic fractional
Fourier domain watermark embedding technique for mono-
chrome images. The proposed technique can be readily ap-
plied to any watermarking technique currently using spread
spectrum and can easily be adopted for color images as well.
We have shown that POCS is a very efficient method for in-
formed watermark embedding and can improve the water-
mark insertion capacity into fractional Fourier domains sig-
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Figure 4: Histogram of detector response for informed wa-
termarking. Left hand side of the threshold line illustrates
detector response of uncorrelated sequence. Right hand side
of the threshold line illustrates detector response of water-
mark sequence.100 bits inserted, watermark size is equal to
image size.

nificantly without distorting visual fidelity. The multi-bit wa-
termark embedding without blocking property is especially
beneficial for dealing with de-synchronization attacks.
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