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Abstract—Pan-sharpening is a common postprocessing oper-
ation for captured multispectral satellite imagery, where the
spatial resolution of images gathered in various spectral bands is
enhanced by fusing them with a panchromatic image captured at
a higher resolution. In this paper, pan-sharpening is formulated
as the problem of jointly estimating the high-resolution (HR)
multispectral images to minimize an objective function comprised
of the sum of squared residual errors in physically motivated
observation models of the low-resolution (LR) multispectral and
the HR panchromatic images and a correlation-dependent regu-
larization term. The objective function differs from and improves
upon previously reported model-based optimization approaches
to pan-sharpening in two major aspects: 1) a new regularization
term is introduced and 2) a highpass filter, complementary to the
lowpass filter for the LR spectral observations, is introduced for
the residual error corresponding to the panchromatic observation
model. To obtain pan-sharpened images, an iterative algorithm is
developed to solve the proposed joint minimization. The proposed
algorithm is compared with previously proposed methods both
visually and using established quantitative measures of SNR,
spectral angle mapper, relative dimensionless global error in
synthesis, Q, and Q4 indices. Both the quantitative results and
visual evaluation demonstrate that the proposed joint formulation
provides superior results compared with pre-existing methods.
A software implementation is provided.

Index Terms—Pan-sharpening, satellite imagery, image fusion,
spectral imaging.

I. INTRODUCTION

ATELLITE based multi and hyperspectral image capture

systems use on-board imaging sensors that vary in spatial
resolution. Typical sensor configurations capture one panchro-
matic image with high spatial resolution and multiple spectral
images with low spatial resolution. The panchromatic sensor is
sensitive over a wide wavelength range and therefore provides
no spectral resolution whereas each spectral image sensor is
responsive only over a relatively narrow wavelength band that
it resolves spectrally. The spectral sensors are designed with

lower spatial resolution, which allows a better signal to noise
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because of the associated larger physical area over which light
is captured for each pixel in the image sensor. Before they are
used in further analysis, LR spectral images are commonly
post-processed, to obtain versions that match the higher reso-
lution sampling of the panchromatic image [1]. This process,
commonly referred to as pan-sharpening, merges together the
low resolution and spectral information captured in the spectral
channels with HR detail from the panchromatic image.

The goal of pan-sharpening is to estimate images that
would be captured by an ideal system where the spectral
sensors retain their existing spectral sensitivities but have a
higher spatial resolution matching that of the panchromatic
sensor [2]. Techniques for pan-sharpening have been
extensively researched and reported in the literature. Reviews
summarizing the different approaches and comparative
benchmarking data for the prominent methods can be found in
[3]-[9]. Component substitution (CS) and multi-resolution
analysis (MRA) are two of the dominant frameworks for pan-
sharpening. The CS framework is characterized by the use of
per-pixel transformation of the spectral channels to generate
the pan-sharpened images, which is attractive because of its
simplicity. The LR images are spatially interpolated to match
the panchromatic image size and transformed into a “color”
representation where perceptual detail concentrates within a
single channel. This channel is replaced with a HR image
derived from the panchromatic image and the inverse of the
transform is applied to obtain pan-sharpened images. One of
the earliest techniques used an intensity-hue-saturation (IHS)
representation for thee spectral channels with substitution
of the intensity channel. Since then, alternatives that better
preserve spectral accuracy and/or generalize to more than
three channels have been proposed, including the Brovey
transform, principal component replacement, and the Gram-
Schmidt (GS) transform [10] and a generalized IHS (GIHS)
method [11]. Data adaptive versions of the GIHS approach
and of the Gram-Schmidt approach designated GIHSA and
GSA, respectively, are among the most promising current
techniques in the CS framework [12].

Different from the per-pixel channel transformations used
in the CS methodology, MRA based pan-sharpening tech-
niques utilize spatial transformations. The basic methodology
operates as follows. For each spectral channel, first, via a
grayscale transformation (e.g., histogram matching) of the
panchromatic image, a HR image is generated with global
statistics matched to those of the captured LR spectral image.
Next, a spatial multi-resolution transformation is applied to the
synthesized image and the low-frequency subband data in the
multi-resolution decomposition is replaced with information
derived from the captured LR spectral image. Finally, the
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inverse multi-resolution transform recreates a pan-sharpened
image for the channel in consideration. Within the broad MRA
framework a number of different pan-sharpening schemes have
been developed. A large majority of these use multi-scale
wavelet transforms [13], although other MRA decompositions
such as curvelets have also been explored. Recent work on
pan-sharpening has explored hybrid approaches that combine
elements of the CS and MRA frameworks. Several of these
techniques are reviewed in [13] and [9].

While a majority of pan-sharpening methods adopt a CS,
MRA, or a hybrid CS+MRA approach, techniques indepen-
dent of these frameworks have also been proposed. Among
these, most relevant to our discussion are methods that adopt
a model-based optimization (MBO) framework, where pan-
sharpening is posed as an optimization problem minimizing
a cost function based on a model of the imaging sensor or
of the interrelation between the captured LR spectral and HR
panchromatic images [14]-[19]. In this paper, we propose a
new pan-sharpening method in the MBO framework. We pose
the problem of estimating the HR multispectral images, jointly,
as the minimization of an objective function formed as the sum
of three terms. The first two terms form a combined squared
residual error in physically motivated observation models of
the LR multispectral and the HR panchromatic images. The
third term represents a correlation dependent regularization.
We develop an iterative algorithm to solve the minimization
with modest computational complexity. Compared with prior
MBO methods for pan-sharpening, the proposed approach
presents novelty via an objective function that combines:
a) a new regularization term that incorporates high-frequency
detail from the panchromatic image into the estimated HR
spectral image in a correlation weighted fashion, reducing
to constrained least-squares regularization in the absence of
correlation, b) a squared error term corresponding to the
panchromatic observation model that includes a spatial high
pass filter that removes the influence of this term on low
spatial frequencies where the observed multi-spectral images
provide a better model, and c) explicit models for both spatial
blurring and down-sampling the observation model for the
LR spectral image. The first two of these innovations are new
and have not been previously utilized in MBO methods. The
third has previously been used in some [14], [17], [19] MBO
based pan-sharpening methods. Other MBO pan-sharpening
methods [15], [16] have used a simplification in which ver-
sions of the LR images interpolated to the HR sampling grid
are considered the observed LR images. We further highlight
the attributes that distinguish our work from the prior MBO
methods in Section VI after we present details of our method,
using the context we establish in our presentation for better
elaboration. Using approximate frequency-domain analysis we
help develop intuition regarding the utility of, and trade-offs
between, the three individual terms in our proposed objective
function also demonstrate that the algorithm exhibits correct
behavior under idealized conditions. Results benchmarking
and comparing the proposed method against the leading exist-
ing alternatives demonstrate its advantage: it offers superior
performance in both visual comparison and in numerical
metrics used for assessment of quality.

2597

Part of this work has previously been presented in
preliminary form in [20]. The present manuscript improves
and extends the work in [20] via: (a) the addition of a
regularization term to the objective function that is essential
in the presence of noise and model uncertainty, (b) a more
complete presentation of the development and implementation,
(c) approximate analysis of the algorithm in the frequency
domain, and (d) expanded benchmarking of the performance
of both the proposed algorithm and previously proposed
alternatives, and (e) an enhanced and more intuitive notational
convention for the presentation.

The rest of this manuscript is organized as follows.
Section II introduces our joint formulation of the pan-
sharpening problem as a minimization problem. Section III
develops an iterative minimization approach for solving the
minimization in a computationally tractable fashion. Approx-
imate analysis of the proposed method is presented in
Section IV to provide some insight into its operation. Exper-
imental results obtained using the proposed algorithm are
presented in Section V. A discussion of the differences
between the proposed approach and prior MBO methods is
presented in Section VI along with a comparison of the com-
putational complexity of the different methods. Concluding
remarks bring the paper to a close in Section VII.

II. PROPOSED FORMULATION OF PAN-SHARPENING
AS AN OPTIMIZATION PROBLEM

We begin with a physical model for the multispectral
imaging system. A spatio-spectral distribution r(y, v; 1) of
light intensity is incident upon the sensor image planes used
for capturing the panchromatic and the spectral images,! where
the pair (y,v) € R? represents an orthogonal coordinate
system for the sensor image plane aligned with the sen-
sor sampling grid and 1 denotes the wavelength of light.
A panchromatic image is obtained, using a sensor sensitive
to a wide wavelength range and having a sampling interval X

along each dimension, represented as a 2D orthogonal lattice

A %t {(k1 X, k2 X)|k1,ko € Z}. The captured panchromatic

image is represented as p[x] = p(k1 X, ko X) + no[x], x =
(k1 X, kyX) € A, where

PU ) = WG )+ [ v Dddz, ()
with H(’)\ (x, v) and 79(1) representing, respectively, the point
spread function (PSF) and the spectral responsivity of the
panchromatic imager, * representing the convolution opera-
tion, and 7p[x] denoting the noise in the observations. Simul-
taneously, K spectral images are also acquired via imagers
sensitive to narrow? spectral bands on the sparser orthogonal
sampling lattice I" e {(k1gX, kagX)|k1,ky € Z} having a
spatial-sampling interval ¢X along each dimension, where
q > 1 so that the spectral channels have a lower resolu-
tion than the panchromatic. These captured spectral images

lThroughout this paper, we assume that the captured images are spatially
registered using suitable techniques.
2Relative, to the panchromatic channel.
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are represented by c¢;[x] = c¢;i(ki1gX, kogX) + ni[x], x =
(k1gX,kogX)eT, fori=1,2,..., K, where

éi(x,m=H,~F(x,v)*/r(x,v;z)r,-(z)dz, ®)

with Hir (x, v) and 7;(1) representing, respectively, the point
spread function (PSF) and the spectral responsivity of the i th
spectral imager, and #;[x] denoting the noise in the obser-
vations for the i spectral channel. When the panchromatic
image p and the spectral images {c,-}l.K: | are acquired by the
same satellite, g is typically an integer factor and I' C A,
which is the situation we focus on in this paper. Generaliza-
tions to rational downsampling factors between A and I' are
straightforward.

The PSF H(’)\(X, v) is matched with the dense sampling
lattice A and the PSFs Hir (x,v),i =1,2,..., K are matched
with the sparse sampling lattice I". Spatial resolution is max-
imized without introducing aliasing in the sampled images
when these PSFs correspond to ideal low pass filters with
a cut-off frequency corresponding to the Nyquist frequency
for the corresponding lattices. Due to practical manufac-
turing and cost constraints actual PSFs deviate from this
ideal behavior. For typical deployed systems, the modulation
transfer function (MTF), which corresponds to the magnitude
of the Fourier transform of the PSF, exhibits both a fall-
off from the maximum within the desired passband as one
approaches the Nyquist frequency and a residual nonzero
response above the Nyquist frequency that contributes to a
(small) amount of aliasing in the captured imagery. Note that
unlike some other imaging scenarios, the noise level usually
varies quite significantly across the different spectral bands
because of the significant differences in the noise sources
and in the native sensitivity of the underlying sensor used
to capture the images. As a result, differences as high as
3-dB are not uncommon for the SNR for the different spectral
bands [21].

Given the observed HR panchromatic image p[x], x € A
and the LR spectral images {c; [x]}iK: 1» X € I', our objective

is to recover HR spectral images f;[x] def fki1X, kX), x=
(ki1X,koX)e Afori=1,2,..., K, where

Firs 0) =H{\()(,v)*/r(x,v;i)ri(i)di. 3)

where HIA(){, v) defines a suitable PSF for the i spectral
channel matched with the HR sampling lattice A. More than
one reasonable choice exist for H{\()(, v). One reasonable
choice, for instance, is: Hf\()(, v) = Hir (x/q,v/q) for
i =1,2,..., K, in which case the PSF for each desired HR
spectral image is defined by scaling the PSF for the actually
captured corresponding spectral image by a factor (1/¢) along
each spatial direction, so that the corresponding modulation
transfer function, and effective bandwidth, are scaled by a
factor g, as is desirable when the sampling density is increased
by ¢ (along each dimension). An alternate reasonable choice is
to set, H(x, v) = Hy(x, v) fori = 1,2, ..., K, in which
case the PSF for all of the desired HR spectral images is
chosen to match the PSF for the panchromatic channel, which
is natively captured at HR.
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éi[x]
filx] — hilx] JAST 4(?%% [x]
Noise n;[x]
Fig. 1. Discrete domain observation model for the LR spectral image c¢;[x]

in terms of the corresponding HR image f;[x].

The problem of estimating the HR spectral images
{ f,-[x]}l.K: |» X € A, is a special version of the resolution
enhancement/super-resolution problem [22]. Unlike typical
single image super-resolution, however, for pan-sharpening,
the panchromatic image p[x], x € A provides some of the
high frequency spatial information that is missing in the cap-
tured LR spectral imagery. To proceed to formulate the pan-
sharpening problem, we specify the observation model for the
LR observed spectral images in the discrete domain as a low-
pass filter /;[x] on the lattice A followed by downsampling
to the lattice I', which is illustrated in Fig. 1. Using the
standard stacked notation [23, p. 212], we obtain the operation
in matrix-vector format as

¢; = Hif; + 1, 4)

where ¢; and f; are the stacked notation vectors representing
ci[x] and f;[x], respectively, and H; is the rectangular matrix
representing the low-pass filtering and sub-sampling, having
essentially one row for every ¢ columns,® and #; represents
the noise in stacked format. If the filter H;(y, v) is an
ideal band-limited filter matched to the Nyquist bandwidth
for the lattice I', the discrete domain observation model is
exact [24]. Because ideal filters are non-realizable and due to
other limitations, practical systems use non-ideal filters. The
filters h;[x],i = 1,2, ..., K can then be optimally designed as
in [25] using knowledge of HiF (x, v) provided as part of the
system specifications. For our formulation, analogous to the
filters h;[x],i = 1,2, ..., K for the multispectral channels, we
also define a lowpass filter hp[x] on A for the panchromatic
image such that ho[x] * p[x] downsampled to I', approximates
capture of a LR panchromatic image on the lattice I" via a
filter with impulse response Hg (x,v) & H(’)\[q X>qV].

We now formulate pan-sharpening as the estimation of
{fi [x]}iK: , for x € A by combining the LR and partly
aliased information in {ci[x]}iK: 1» X € I' with the higher
resolution spatial information available in the panchromatic
image p[x], x € A, exploiting, in the process, the spectral cor-
relation between the panchromatic and the spectral channels
due to their overlap. The specification of the spectral sensitiv-
ities of the panchromatic and the individual spectral channels
provides a model for the spectral correlation. Specifically,
we write

K
0(0) = > witi(2) + (), )

i=1
where the summation represents the best attainable approxi-
mation to the spectral responsivity zo(4) for the panchromatic

3Because our final implementations are all based on discrete filtering
operations, we leave unspecified the sizes of the images and the corresponding
vectors and matrices.
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channel in terms of the spectral responsivities {z;(1)} lK: I
for the K spectral channels, treated as a basis, and ¢(4)
represents the residual error in the approximation. The weights
{a)i}iK: | can be obtained from the specification of the spectral
sensitivities via least squares regression. If the specified PSFs
H{‘(;{, v), i = 1,2,...,K for the desired HR spectral
images are identical to the PSF H{)\( x,v) for the observed
panchromatic image, one can readily see that the spectral
relation in (5) induces a corresponding relation for the (noise-
free) HR images

K
PIXIE piX, koX) = > i filxl +¢Ixl, (6)
i=1
where x = (k1 X, k2X), the image ([x] is defined as the
one corresponding to an imager with a virtual spectral sen-
sitivity ¢(4), PSF H{)\()(, v), and sampling lattice A. For
i =1,2,..., K, we also denote by «; the projection of the
panchromatic channel spectral sensitivity onto the i spectral
channel sensitivity, specifically,

s T, w0() _ J5 w)ri(A)da

Ki = = . 7
llzo (D)l /ffooo rg(/l)d/l
Next, on the lattice A, fori =0, 1,2, ..., K, we define the

complementary high-pass filter for the low pass filter h;[x],
by gi[x] = J[x] — h;[x], where J[-] represents the (Kronecker)
delta function. Finally, we formulate pan-sharpening as the
joint optimization:

N

f = argmin j(f', ¢, p),
f

K K 2
J £ D IHif; —cill* + o |Go (Zwifi - P)
i=1 i=l1
K
+ 6, IG; (f — xip)|I, ®)

i=1

where we use the stacked notation [23, p. 212] to compactly
represent images as the corresponding vectors and the fil-
tering (and downsampling) operations as matrices. We also,
re-use the terms introduced in (4) and add the notation p
to denote the panchromatic image p[x] in stacked form, the
matrix G; to denote filtering by g;[x] for i = 0,1,...,K,
and f and ¢ to jointly represent the complete set of HR
and LR spectral images {f;}X | and {¢;}X |, respectively. The
parameters 01, 02, . . ., Ok are scalar nonnegative regularization
factors for which, suitable values can be determined by cross-
validation [26]. For our immediate discussion, we assume that
the parameter a introduced in (8) is chosen to be a = 1;
subsequently we introduce other values allow us to formu-
late an alternative pan-sharpening approach for benchmarking
purposes. The individual terms in the objective function are
described and motivated next.

The first summation term Zlel |H;f; — ¢; || in the objec-
tive function J represents the data-fidelity requirement for the
K observed spectral channels under the observation model

2
of Fig 1. The second term HGO (ZiKzla)ifi —p) H (with
1) represents the requirement for consistency of the

2
[

o =
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K estimated HR images with the spectral correlation model
for the panchromatic image in (6), where this requirement
is imposed only on the high pass filtered components of
the images. The high pass filtering is beneficial because the
residual ([x] in (6) is ignored, it is helpful not to include
in the second term lower frequency components that would
erroneously compete with the more accurate low frequency
spectral information included through the first term. This idea,
specifically motivates the use of the complementary filter
go[x] in the second term in objective function in (8), which
is represented by the matrix Go. The third and final term
Z,‘K=1 0; |G; (£f; — icip)||2 in the objective function J in (8)
represents a regularization term that is required because the
pan-sharpening problem is ill-posed. Specifically, the high
frequency components of the K HR spectral images in f are
under-determined given the observed data because the second
term of the objective function constrains only the sum of the K
highpass filtered HR spectral images. The regularization (third)
term is carefully designed to provide spectral correlation
dependent regularization. When x; = 0, the regularization
term reduces to ||G,~f,~||2 which is constrained least-squares
regularization (independent of p). For a nonzero value of «;
the regularization is guided by the correlation between G;f;
and G;p and incorporates spatial detail from the panchromatic
channel into the spectral channel. A suitable value of the
regularization factors 61, 6;,...,0x can be determined via
cross-validation [26]; a small value is expected to be optimal
to give precedence to the observed data terms. The spatial
detail introduced in the pan-sharpened images via optimization
of (8) is determined by the combination of the second and
third terms. The third term introduces spatial detail but is
constrained by the second term that ensures that high fre-
quency spatial detail in the panchromatic image p[x] must be
appropriately apportioned to the spectral channels and cannot
be excessively re-utilized nor unduly ignored. With these three
terms, the objective function in (8) combines the dual goals
of spectral and spatial consistency with the observed data.

Note that by setting the parameter o = 0 we can elimi-
nate the second term in our objective function in (8). With
this setting, we can readily see that the optimization of (8)
separates into K individual optimizations and corresponds
to a per-channel formulation of pan-sharpening that retains
all other aspects of our proposed framework. This highlights
the versatility of the proposed framework and also allows
us to evaluate the benefit of the proposed joint formulation
by comparing pan-sharpened images obtained for the joint
(e = 1) and the per-channel (a¢ = 0) scenarios. Other variants
are also possible by varying the correlation terms x; and
the highpass filter G¢ in the third term and second terms,
respectively, of the objective function. These variants allow us
to estimate the usefulness of the different components used in
our objective function and will be explored for this purpose
in Section V.

III. ITERATIVE MINIMIZATION ALGORITHM

The objective function in (8) is readily seen to be con-
vex (in fact, quadratic) in the optimization variables in f.
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The optimal estimate can therefore be obtained as the solution
to the system of equations V;J = 0, where the gradient
V;J of our objective function in (8) is obtained, via relatively
straightforward algebra, as (9), shown at the top of this page,
where we introduce o; £ aw; to allow for more compact
representation of the equations. Although, these equations
are linear, the number of variables in f‘, i.e., the number
of spectral channels times the number of pixels in each
HR spectral image, and corresponding sizes of the matrices
involved are too large to allow for a direct solution using
our spatial domain matrix representation.* Unlike the typical
image restoration setting, a closed form solution can also not
be obtained by transforming to the frequency domain because
of the downsampling operation in the operators H;.

We therefore develop a gradient-descent [27] based iterative
algorithm for optimization along with an efficient filter based
implementation. From (9), it follows that the gradient descent
iteration with a numerical step size AT can be written in per-
channel (although still coupled) form as

(n+1)
fl."

K
=t AT (B (1"~ ;) +aiG] Go [ ;" —p
j=1

+0:GI Gy (17— xip) |, (10)

where -7 denotes matrix transpose, and the superscript -
denotes the iteration index.

The sizes or the matrices and vectors involved do not
allow for a literal implementation of the iteration in (10).
Instead, a memory and computation efficient implementation
is obtained by realizing the required iterations via filtering
and down/up sampling stages. The filtering equivalents corre-
sponding to G; and the filtering and downsampling interpre-
tation for H; have already been discussed. The operation GiT
is a convolution matrix corresponding to the space-reversed
PSF g;[—x]. If g; is quad-symmetric (g;[x] = g;[—x]), then
Gl.T = G;. The matrix Hl.T represents up-sampling from I' to A
followed by convolution with the space reversal filter i;[—x].
The block diagram for the practical implementation of the
update step in (10) for the ith spectral channel image is shown
in Fig. 2. The algorithm is initialized by setting fl.(o) to the

4For imagery from the IKONOS satellite imaging system, a typical set of
four spectral images, represented at the panchromatic resolution at typically
captured image sizes, has over 400 million pixels in aggregate.

image obtained by interpolation of ¢; for i = 1,2..., N,
specifically bicubic interpolation in our implementation.

Because the objective function in (8) is convex, the itera-
tions defined by (10) are guaranteed to converge to the (global)
minimum provided the step size AT is chosen suitably.
Specifically, a line search procedure [27] for the step size
AT ensures monotonic convergence in our problem setting.
We can also adopt the standard convergence criterion used in
iterative optimization to terminate the iterations when both
the change in images from one iteration to the next and
the improvement in the objective function are smaller than
pre-determined thresholds. In practice, however, these mea-
sures are unnecessary because the bicubic interpolation pro-
vides a good initial starting point. In our implementation,
we therefore eliminate the per-iteration computational cost
for estimating step size and testing for convergence by using
a constant iteration count Npax and a fixed schedule for
the step size AT. Specifically, we use a fixed step size
AT = ATy for an initially determined number Ny of iterations
and then geometrically scale the step size for iterations Ny + 1
through Npax, i.€., use a step size AT = y”_NOATo for
iteration n when n > Ny. The values ATy, Nmax, No, and y
are empirically determined as described in Section V and in
the Supplementary data (Section S.VI).

IV. APPROXIMATE FREQUENCY DOMAIN ANALYSIS

The behavior of the proposed algorithm can be approxi-
mately analyzed by considering the solution for the system
ViJ = 0 in the frequency domain using the expression
for the gradient in (9). Specifically, denoting by [u, v] the
two orthogonal frequency variables associated with the two
spatial dimensions in X, we can consider the discrete-space
frequency region [0, 0.5] x [0, 0.5] associated with the fine
lattice A, where a discrete frequency values of 0 and 0.5 cor-
respond to continuous space frequency values of 0 and 1/(2X),
respectively, and intermediate frequency values scale linearly
to cover this range. To understand the behavior of the proposed
algorithm, we note that the low pass filters /;[x] have a unity
response in the low frequency domain [0, 1/(2¢) — B] x
[0, 1/(2¢g) — B] and near zero response in the high frequency
region [1/(2q) + B,0.5] x [1/(2q) + B, 0.5] where 2B repre-
sents the transition band for these filters. The complementary
high-pass filters g;[x] exhibit the opposite behavior.

In the low-frequency region, i.e., [u, v] € [0, 1/(2g) — B] x
[0, 1/(2q) — B], the second and third terms in the summations
representing the gradients in (9) are zero because G;[u,v] =~ 0
in these regions for all i = 0,1,..., K. In this region of
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Fig. 2. Practical implementation of (10) for updating the ith spectral channel image in an iteration of the proposed pan-sharpening method.

frequency space, therefore the solution is determined entirely
by the first data term. Using the fact that H;[u, v] ~ 1 in these
regions of frequency space, we can see that

Filu,v] ~ cilqu, qvl. (11)

Thus, in this low-frequency region, the estimated HR spec-
tral images are completely consistent with the observed LR
spectral images, as is desirable.

In the high-frequency region, i.e., [u,v] € [1/(2q) +
B,0.5] x [1/(2q) + B, 0.5], the first term in the summations
representing the gradients in (9) are zero because H;[u,v] ~ 0
in these regions for all i = 0,1,..., K. In this region of
frequency space, therefore the solution is determined entirely
by the second and third terms. Using the fact that G;[u, v] = 1
in these regions of frequency space for all i = 1,2,..., K,
we can see that the estimated images satisfy the system of
equations

K
a; ijﬁj[u, v]—Plu,v]|+0; (I:"i[u, v]—x; Plu, v]) ~0,
j=1
(12)

fori=1,2,...,K.

For the per-channel formulation for pan-sharpening in our
framework (e = 0), (12) reduces to I:}[u,v] = ki Plu,v],
i.e., the high frequency components of individual channels are
determined purely by the correlations between panchromatic
image and the individual spectral images. On the other hand,
for our proposed joint formulation (e = 1) under the typical
situation where 6; << 1, Vi, we see that resulting solution
obtains the high-frequency components of the spectral images
based on the correlations between the panchromatic image and
the individual spectral images, while strongly enforcing con-
sistency between the spectral and panchromatic components
implied by (5). It is instructive to consider a few special cases
for the joint scenario (o = 1):

o When w; =0, i.e., the it channel makes no contribution
to the panchromatic image, the first term drops out and
we have I:"i[u, v] = x; Plu,v], the image is determined
purely by the correlation between the spectral and the
panchromatic channels.

o If x; = 0 then (it can be readily seen that) we also have
w; = 0 and in this case we have I:"i[u,v] =0, 1e.,a
smooth estimate is favored when no correlated data is
available for the high frequencies.

o« When the sensitivities corresponding to the K spectral
images are orthogonal (i.e., non-overlapping) and the
panchromatic channel sensitivity zo(1) is a weighted sum
of some selection of these, say,

0(h) = D w;ti(d)
JjeS
Then the solution to (12) reduces to

0 j¢S

Filu,v0] = D2
— @il @Dy || Plu,v] j e S.
S es(willz])? il !

13)

That is, the energy in P[u,v] is allocated in an “energy
proportional” fashion to the spectral bands that form the
panchromatic band and other spectral bands have their
high frequency components set to zero.

o A special case of the above arises when the K spectral
bands are unit-energy equi-bandwidth splits of a spec-
trally flat panchromatic channel, we have w; = 1 and
Ki = 1/«/? fori =1,2,..., K. The solution to (12) then
reduces to I:"i[u,v] = (1/vK)P[u,v], ie., the “detail
information” contained in the high frequency components
in p[x] is apportioned equally in energy among the
estimated spectral channels.

In the transition region where the one of the orthogonal
spatial frequency components lies in [1/(2¢)—B, 1/(2¢q)+B],
all three of the terms contribute to the estimates and we
cannot readily obtain an expression for the estimates but from
continuity arguments can see that the solution tends to the low
and high frequency estimates at the appropriate boundaries and
intermediate behavior can be expected in between.

We note that our analysis excludes consideration of any
aliasing in the process of downsampling from A to T.
If the discrete filters h;[x] are designed based on known
specifications of the continuous time spatial filters Hir (x,v)
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and Hf\( X, V), the aliasing can partly be comprehended and
exploited in the pan-sharpening process as has been demon-
strated for the related upsampling problem in [28].

V. RESULTS

To evaluate our proposed pan-sharpening method, we use
imagery from the IKONOS multispectral imaging satel-
lite [29], for which details of the system specifications,
including the spectral responsivities and point-spread function
characteristics are publicly available [21] along with a number
of image datasets [30] comprised of coarsely registered pan
and multispectral images at their native capture resolutions.
Together these data provide an ideal test set for evaluating
our proposed algorithm and for benchmarking its performance
against previously proposed pan-sharpening alternatives. The
IKONOS satellite has five imaging channels: a panchromatic
channel p[x] with a nominal ground resolution of X = 1m
along each dimension and spanning the spectral range> from
525.8 through 928.5 nm and K = 4 multispectral bands
with a nominal ground resolution of 4X = 4m along each
dimension (i.e., ¢ = 4) and having spectral bandwidths
for the channels as follows [21]: (a) MS-1 (Blue) c[x],
444.7-516.0 nm, (b) MS-2 (Green) c3[x], 506.4-595.0 nm,
(c) MS-3 (Red) c¢3[x], 631.9-697.7 nm, and (d) MS-4 (VNIR)
c4[x], 757.3-852.7 nm. Plots of the normalized spectral sen-
sitivities are included in the Supplementary data (Fig. S.1).
For processing and computation, the 11 bit pixel data was
converted to a floating point values by a linear mapping with
the digital value of 2047 represented as 1.0. Output images
were linearly mapped to an 8 bit 0 to 255 scale to facilitate
viewing and comparison on common 8 bit display systems.
For computing numerical benchmarks for comparing different
methods, required “ground truth” was generated in the usual
manner [1], [16], [31] by lowpass filtering and downsampling
the panchromatic and the spectral data by a factor of 4 along
each dimension using the system MTF parameters. The spec-
tral images generated from this procedure are then used as the
LR spectral observations and the original captured spectral
images serve as HR ground truth data. Accordingly, the sim-
ulations use Hf\()(, v) = Hir()(/q, v/q) fori =1,2,...,4
for our spectral channels. For our algorithmic implementation
(shown in Fig. 2), we realize the filters h;[x],i = 1,2, ..., 4 as
zero-phase finite-impulse-response (FIR) designed according
to the specifications for the IKONOS system [21] via the
optimization methodology proposed in [25]. Additional detail,
including frequency responses for these filters, is provided in
the Supplementary data accompanying this paper (Table S.I
and Fig. S.2).

Required parameters for our pan-sharpening algorithm are
obtained as follows. Using the publicly available specification
data for the spectral sensitivities with least squares regression,
we obtain the weights6 w1 = 0.04, v = 0.18, w3 = 0.21,
and wq4 = 0.34. From the same data, we have x; = 0.039,

SStated spectral bandwidths correspond to full-width at half-max.

(’Although these weights are obtained purely from the spectral responsivity
data for the sensors, they are close in values to those obtained in [12] by
regression over a set of sample images.
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xy = 0.091, k3 = 0.092, and x4 = 0.152. Through empirical
observation of the convergence behavior of the algorithm, the
parameter values for the gradient descent iterations were set
to an initial step size of ATy = 4, a maximum iteration count
of Nmax = 50, with a geometric reduction in the step size
by a factor y = 0.95 for iterations greater than Ny = 20.
With these parameters, the iterations exhibited reasonably fast
and almost monotone convergence, as is illustrated in in the
Supplementary data (Section S.VI).

We compare the performance of the proposed (Prop)
algorithm against: (a) bicubic interpolation (BC), (b) promi-
nent pan-sharpening approaches in the CS and MRA
frameworks, and (c) a recently proposed alternative MBO
technique for pan-sharpening. Specifically, the bench-
marked methods include: generalized IHS (GIHS) [11],
Gram-Schmidt’ (GS) [10], multiscale wavelets (MSW) [2],
with 3 levels® for the wavelet decomposition (MSW3), GIHS
adaptive (GIHSA) [12], GS adaptive (GSA) [12], and a
recently reported alternative MBO approach that uses a total
variation regularizer (MBTV) [19]. We note that [19] also
includes a number of comparisons of the MBTV approach
against other MBO methods and therefore also allows indirect
comparison of our proposed approach against several other
MBO methods. To highlight the contribution of the individual
elements introduced in our framework, we also include four
additional variants in our proposed framework as follows:
Prop-PC-the per-channel variant obtained by setting o = 0;
Prop-AP-the variant in which the second (joint) term in the
objective function is not subject to the highpass filtering,
ie., Go is set to the all pass identity operator I in the
second term; Prop-CLS-the variant with x; = 0 in which the
regularization reduces to a constrained least squares (CLS)
regularizer instead of the correlation dependent regularization;
and Prop-NR-the variant with no regularization [20] obtained
by setting 8 =6, =63 =64, = 0.

Because there is currently no single consensus metric for
the evaluation of pan-sharpening [32], we consider multiple
metrics for the assessment of pan-sharpened images. Specif-
ically, for each of the pan-sharpening methods, we evaluate
the fidelity of the estimated HR spectral images { fi[x]}iK: h
to the original images { f,-[x]}l.K: | by computing the following
metrics:

o Per-spectral channel SNR defined (in dB) as [33, p. 129]

> (filx] - ﬁ-)z) .
>k (dilx] —d_i)2

where d;[x] £ filx] — fi[x] represents the difference
(image) between the original and the estimated images
and f; (d;) denotes the spatial average of f;[x] (d;[x]).

TWe use the second GS variant described in [10], for which, the low-
resolution panchromatic image used for computing the Gram-Schmidt trans-
formation matrix is obtained by spatially degrading the high resolution
panchromatic image based on the ratio between the resolutions. The first
GS variant, which typically performs worse than second, uses a panchromatic
image formed as a linear combination of the spectral images, with weights
determined by regression.

8The multiscale wavelet technique was also tested with 4 levels of decom-
position but performed worse than the reported 3 level case.
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o The spectral angle mapper distortion (SAM) [31] defined
as the spatial average of the absolute angular differ-
ence A®[x] between the K-vectors v[x] = [fi[x],
AIx), ..., fxlx)T and ¥x]=[Ai[x], Alx]..... fx(x]]"
corresponding to the true and the estimated values for the
pixel x, where A®[x] is computed as

v! [x]¥[x]

. 15
Jv[x]Tv[me[x]G[x]) (1

o The relative dimensionless global error in synthesis
(ERGAS) [1], [34], [35], which can be expressed as

AD[x] £ arccos(

€ (S (fix - fixl)’

1|1
ERGAS £ 100— | — z
q | K3 (>, filx))?

(16)

o The average Q%% of the per channel universal image
quality index [36], defined for the i th channel as [36]

o e Yt R
(@F + o)) + 12(f))

where o4, denotes the covariance between images a
and b, aaz the variance of image a, and u(a) the mean of
image a, each of the terms being estimated over a sliding
window of size W x W, which we indicated by a subscript
as Qi';g for our metric.

« The extension Q%V of the universal image quality index
(UQUI) [37] that aims to estimate jointly the quality of
four band imagery using a quaternion representation to
jointly represent the 4 spectral bands, where W indicates
the window size, as before.

7)

The SNR and individual channel Q' measures are extensively
used in the signal and image processing communities as
mean-squared-error based and visual measures of quality,
respectively. The SAM and ERGAS measures are commonly
utilized in the remote sensing community. The SAM measure
is motivated by the need to maintain the relative magnitudes
of the spectral bands, which is important for identifying
material characteristics, and ERGAS is considered as a global
measure of the quality of the pan-sharpened image set with
values below 3 being commonly considered acceptable [1].
The joint Q%V measure comprehends correlation between the
four channels while still allowing for a visually meaningful
measure and has therefore also been adopted in the remote
sensing community [37]. Larger values indicate better perfor-
mance (1) for SNR, Q;V,g, and Q“‘,V with the maximum value
of 1 representing the ideal performance for Q;V,g, and Q“‘,V.
Smaller values indicate better performance (| ) for SAM and
ERGAS, with 0 being the ideal value.

Table I compares the quantitative performance of the dif-
ferent algorithms using the different quality measures, where
the best score for each measure is shown in bold. Results
are shown individually for the four image sets available in
the GeoEye dataset [30]. Because the measures vary signif-
icantly over the different images, we do not present average
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performance over the images. From the numerical measures
we see that the proposed technique (Prop) outperforms the
other techniques, offering either the best or close to the best
performance with respect to almost all of the measures and for
each of the image sets. The variant Prop-CLS in the proposed
framework that uses a constrained least squares regularizer
instead of the correlation dependent regularizer, offers the next
best performance. Among the methods that are not variants
of the proposed framework, GS, GSA, and GIHSA perform
very close to each other and rank next after Prop-CLS. The
results also highlight that the different components intro-
duced in our framework are essential. The Prop-PC, Prop-NR,
Prop-AP, and Prop-CLS variants that drop, respectively, the
second “joint” data term, the third regularization term, the
high pass filtering for the second term, and the correlation
dependence for the regularization, each perform worse than
the full proposed scheme (Prop). In particular, Prop-PC and
Prop-AP exhibit severe degradation in performance compared
with Prop whereas Prop-CLS suffers only a small degradation
in performance and the non-regularized Prop-NR scheme
performs well over the first couple of datasets but does
quite poorly on the third and fourth datasets. The MBTV
approach which is also an MBO method but uses a total
variation regularizer, offers performance that is better than
several of the alternative methods but not competitive with
the proposed technique. Reasons for this have already elabo-
rated in the context of the variants of the proposed method:
specifically the two key innovations introduced in the objective
function for the proposed method are absent in the MBTV
approach.

Next we present images that allow visual evaluation and
assessment of the proposed algorithm against the other meth-
ods benchmarked in Table I. In our comparisons, we also
include images on the fine lattice A obtained via bicubic
interpolation (BC), in order to represent the baseline upon
which pan-sharpening seeks to improve, and the panchromatic
image (PAN) used in the pan-sharpening process. To allow
detail in the images to be seen, we show a small corresponding
region of the images obtained by each of the alternative
techniques. The images corresponding to the R, G, B bands
are combined as a single three-channel color image to allow
compact presentation and also easy visualization of changes
in relative magnitudes of the R, G and B channels, which
are manifested as color shifts in the composite color images.
Sample results for one dataset are shown in Fig. 3 for the
pan-sharpening performed with the actual (non-simulated)
recorded dataset. Fig. 3 includes the bicubic interpolated (BC),
the original panchromatic image (PAN), and pan-sharpened
images for the proposed method (Prop), for the CS methods
GS, GIHSA, and for the MBTV MBO method. Results for
additional pan-sharpening methods, for the NIR channel, for
other datasets, and for the simulation scenario are presented
separately in the Supplementary data accompanying this paper.
For all these cases, the regularization parameters were set
to 1 = 0.05,0, = 0.1,603 = 0.1,604 = 0.16 to adapt to
the varying SNR seen across channels. IMPORTANT: The
images are best viewed in their native TIFF format versions
submitted as supplementary material with the paper, where
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TABLE I
QUANTITATIVE PERFORMANCE MEASURES OF DIFFERENT PAN-SHARPENING METHODS FOR THE IKONOS SAMPLE DATA SETS
“CHINA-SICHUAN xxxxx_0000000.2000xxxx” OBTAINED FROM GEOEYE [30]. FOR THE PROPOSED METHOD
THE REGULARIZATION PARAMETERS WERE SET TO €] = 0.04, 6, = 0.1, 63 = 0.15, 64 = 0.04 BASED ON
CROSS-VALIDATION [26]. THE METRICS ARE COMPUTED OVER THE IRREGULAR

SHAPED SUPPORT FOR VALID DATA IN THE IMAGE FILES

Algorithm

SAM
(deg)

ERGAS

SNR (dB)

| R

[ G

[ B

[ NIR

avg

32

x

Dataset: China-Sichuan 58204_0000000.20001116: 3,153, 692 valid pixels
BC 3.6 2.70 2495 | 26.75 | 29.31 17.56 0.693 | 0.693
GIHS 4.2 3.06 22.64 | 2294 | 2272 | 18.52 0.727 | 0.838
GIHSA 3.7 2.37 2627 | 27.42 | 27.51 | 19.02 0.768 | 0.821
MSW3 4.2 2.58 25.09 | 25.78 | 25.18 | 18.85 0.710 | 0.804
GS 3.8 2.39 2575 | 27.04 | 27.82 | 19.05 0.749 | 0.813
GSA 3.8 2.47 25.11 | 2622 | 26.89 | 19.11 0.748 | 0.827
MBTV 4.0 2.66 2546 | 27.18 | 28.10 | 18.41 0.767 | 0.787
Prop 3.0 2.14 26.67 | 28.83 | 31.13 | 19.67 0.828 | 0.855 ||
Prop-PC 3.4 2.49 2543 | 27.45 | 3022 | 18.32 0.749 | 0.751
Prop-AP 5.7 6.53 17.47 | 20.56 | 29.02 | 13.65 0.812 | 0.845
Prop-CLS 3.0 2.16 26.45 | 28.67 | 31.04 | 19.64 0.823 | 0.854
Prop-NR 3.3 2.28 25.11 | 27.24 | 28.32 | 19.89 0.764 | 0.848
Dataset: China-Sichuan 58205_0000000.20001003: 2, 593, 511 valid pixels
BC 3.2 247 20.62 | 22.39 | 26.37 | 14.93 0.621 | 0.597
GIHS 3.6 2.89 18.38 | 19.05 | 18.70 | 16.47 0.701 | 0.833
GIHSA 3.3 2.10 21.62 | 2320 | 22.88 | 17.52 0.736 | 0.810
MSW3 3.8 2.46 19.75 | 2091 19.90 | 17.76 0.660 | 0.815
GS 3.9 243 19.37 | 21.44 | 2196 | 17.07 0.674 | 0.788
GSA 4.0 2.61 18.40 | 20.41 | 20.85 | 17.17 0.665 | 0.806
MBTV 3.7 242 20.03 | 22.33 | 22.21 16.23 0.679 | 0.733
Prop 2.5 1.77 22.23 | 24.57 | 27.79 | 18.88 0.819 | 0.862
Prop-PC 3.1 2.26 21.30 | 23.29 | 27.52 | 15.67 0.705 | 0.677
Prop-AP 4.3 5.58 17.20 | 20.58 | 26.99 | 17.26 0.799 | 0.853
Prop-CLS 2.4 1.77 2220 | 2455 | 27.95 | 18.90 0.818 | 0.862
Prop-NR 3.8 2.66 17.33 | 20.50 | 20.59 | 18.34 0.662 | 0.841
Dataset: China-Sichuan 58207_0000000.20000831: 4, 598, 200 valid pixels
BC 2.7 2.53 18.89 | 21.66 | 2648 | 16.62 0.574 | 0.571
GIHS 2.7 2.27 19.61 21.86 | 22.04 | 19.36 0.742 | 0.825
GIHSA 2.6 2.08 20.28 | 23.07 | 23.55 | 19.63 0.755 | 0.811
MSW3 29 2.37 1898 | 21.23 | 20.64 | 20.00 0.689 | 0.822
GS 2.2 1.97 20.18 | 23.30 | 27.15 | 19.85 0.790 | 0.814
GSA 22 1.97 20.13 | 23.26 | 27.05 19.90 0.803 | 0.829
MBTV 3.5 2.80 17.59 | 21.14 | 20.86 | 17.96 0.652 | 0.723
Prop 2.1 1.87 20.29 | 23.67 | 27.34 | 20.78 0.821 ] 0.860 ||
Prop-PC 2.6 2.32 19.58 | 22.56 | 27.42 | 17.38 0.690 | 0.660
Prop-AP 4.1 6.58 17.55 | 21.66 | 27.01 | 20.19 0.792 | 0.852
Prop-CLS 2.0 1.85 20.41 | 23.77 | 27.62 | 20.80 [| 0.824 | 0.860
Prop-NR 3.9 3.37 13.94 | 1833 | 18.70 | 20.20 0.602 | 0.833
Dataset: China-Sichuan 58208_0000000.20001108: 6, 895, 972 valid pixels
BC 5.6 4.33 16.13 | 19.56 | 25.46 | 12.14 0.637 | 0.610
GIHS 5.6 3.80 17.10 | 18.99 | 1827 | 14.74 0.758 | 0.847
GIHSA 53 3.41 18.18 | 21.47 | 21.27 | 14.78 0.778 | 0.823
MSW3 5.9 3.76 17.14 | 19.26 | 17.82 | 15.03 0.718 | 0.829
GS 4.7 322 17.92 | 21.74 | 2643 | 15.20 0.824 | 0.830
GSA 4.6 3.18 17.86 | 21.73 | 26.33 | 15.42 0.833 | 0.846
MBTV 5.8 3.93 16.71 | 20.18 | 21.21 13.55 0.741 | 0.759
Prop 3.8 2.94 18.12 | 22.24 | 27.06 | 16.36 0.852 | 0.878 ||
Prop-PC 5.2 3.97 16.74 | 20.45 | 26.37 | 12.93 0.720 | 0.690
Prop-AP 6.0 6.04 15.62 | 19.63 | 26.55 15.29 0.835 | 0.867
Prop-CLS 3.8 2.97 17.89 | 22.11 | 27.16 | 16.37 0.846 | 0.877
Prop-NR 5.6 3.85 15.14 | 18.40 | 19.47 | 15.78 0.730 | 0.861

differences can be studied by viewing in a 1 : 1 scaling with
a suitable image viewer. Images in electronic PDF versions of
the paper, may be subject to compression or post-processing in
the publication process which may mask actual differences or
introduce spurious variations. Each figures’ caption identifies
the corresponding TIFF file.

From the images in Fig. 3 the HR capabilities of the
IKONOS panchromatic imager are apparent; the panchromatic
images show significant spatial detail and a number of features
such as roads, buildings, etc can be readily resolved. By com-
paring the pan-sharpened images against the low-resolution
BC version, we see that all of the pan-sharpening methods
considered here offer a significant improvement over the low-
resolution captured MS image by incorporating detail from the
panchromatic image. The multi-resolution pan-sharpened mul-
tispectral images obtained with the proposed method (Prop)
exhibit improved spatial detail compared with the CS methods

(GS), (GIHSA)—an effect that is best seen by viewing the
image in its entirety. By focusing on smaller regions within
the pan-sharpened images obtained by the methods, we can see
that the proposed method (Prop) also exhibits improvements
over the MBTV method. While the MBTV method preserves
edges in the images well, it over-smooths the non-edge regions
giving the corresponding pan-sharpened image in Fig. 3
a posterized appearance in which the regions bounded by
edges appear artificially uniform in appearance. We observe
that the pan-sharpened image obtained with the MSW3 method
appears sharper than the proposed method (Prop) but upon
closer examination reveals spatio-chromatic artifacts around
strong color edges. These artifacts are not seen in the
images obtained with the proposed method. For the images
in Fig. 3 these artifacts are most apparent around the colored
rooftops of the buildings in the scene (see Fig. S.4 in the
Supplementary Materials). The artifacts in the wavelet-based
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GIHSA

Fig. 3.

MBTV

Sample pan-sharpening result for a portion of the China-Sichuan 58208_0000000.20001108 dataset (See FullResComparel 58208_MS.tif).

The R, G, and B spectral channels presented as a three channel image. Images are identified by the labels (placed below). See text for additional details.
The corresponding NIR channel results can be found in the supplementary materials Fig. S.5 (File FullResComparel_58208_NIR.tif).

pan-sharpening technique arise because the near-perfect recon-
struction filterbanks [38] used in the wavelet based scheme
are designed with matched forward and inverse transforms
where aliasing introduced in the forward transform is canceled
by the inverse transform. This alias cancellation property is,
however, rendered ineffective in the wavelet pan-sharpening
scheme by the substitution of the higher order bands in the
spectral images from the panchromatic channel (whereas, the
lower order subbands are retained from the spectral channel).

The spatio-spectral model in the proposed method, on the other
hand, better represents the relation between the HR and the
LR images.

VI. DISCUSSION

The pan-sharpening method proposed in this paper is moti-
vated and formulated based on explicit physically-motivated
sensor models for the panchromatic and spectral channels.
This is also the case for previously proposed techniques
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in the MBO framework but clearly distinct from methods
in the CS and MRA frameworks where the sensor models
are implicit rather than explicit. Compared with previously
proposed techniques in the MBO framework [14]-[16], [19]
the proposed formulation also presents several novelties and
key differences, that we outline next.

o Variational pan-sharpening formulations are proposed

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 23, NO. 6, JUNE 2014

constrained least squares restoration. Interpolated ver-
sions of the captured LR spectral images are treated as
observed data and the standard linear spatially-invariant
blur plus additive noise model used in image restoration
is used to represent these images as degraded versions of
the true HR spectral images. The observed panchromatic
image is also modeled as a linear combination of the

in [14] and [19] that also use an objective function that
is the sum of three parts, where the first term in (8)
forms one of the three parts. The second term in (8)
differs from its corresponding term in [14] and [19] in
that the proposed term in (8) involves the spatial filter
Gy and therefore impacts only the higher spatial fre-
quency components, wheres the corresponding terms in
[14] and [19] do not include a spatial filter and therefore
impact all spatial frequency components. As already
noted, the spatial filtering via Gq is desirable because
it limits the impact of the second term to higher spatial
frequencies and removes the influence of this term on
low spatial frequencies where the observed multi-spectral
images provide a better model than can be obtained by
modeling the pan-chromatic channel as a linear com-
bination of the spectral channels. Also, instead of the
correlation based regularization term in (8), [14] uses
an alternative regularization that is motivated by the
underlying morphological assumption that the geometry,
i.e., the edges, of the spectral channels are contained
within the panchromatic image. The approach in [19]
uses a total variation regularization term that encourages
images that are piece-wise smooth between edges. Com-
pared with these methods the proposed correlation-based
regularization has the advantageous characteristic that the
significance of the regularization term varies both based
on spatial frequency because of the spatial filters Gy,
i = 1,2,3,4 and based on the correlation of a given
channel with the panchromatic image. The regularization
reduces to a constrained least squares regularizer when
the spectral channel is uncorrelated with the pan (See
Section 1V).

An alternative MBO pan-sharpening approach is pro-
posed in [15], by defining a Markov random field (MRF)
inspired energy functional that is minimized subject to
the constraints of the simple observation model in which
pixels in captured LR images are assumed to be spatial
averages of corresponding g x g pixel regions in the HR
image. The spatial neighborhood weights for the MRF are
computed from the panchromatic image to transfer edge
information from the panchromatic image to the pan-
sharpened images. Compared with [15], the formulation
we propose in this paper uses a more refined and broadly
accepted spatial model for the captured LR spectral
images. The spatial regularization via the third term in (8)
in our formulation inherently avoids conflict with the first
observation model term whereas this is required as an
explicit constraint in [15]. Also, [15] has no equivalent
of the second term in (8).

Another MBO pan-sharpening approach is proposed
in [16], where the problem is formulated as a regularized

HR spectral images, after removal of the mean from
all images. The restoration of the HR panchromatic
image is then posed as the minimization of an objective
function that additively combines the squared-errors in
these two observation models with a constrained least
squares regularization term. A discrete-sine transform
(DST) is used to diagonalize the resulting system of
equations and to obtain a closed form solution which is
made computationally feasible using a block-based imple-
mentation. The method proposed in this paper, differs
from [16] in several aspects. The observation model for
the LR spectral channels explicitly incorporates down-
sampling (see next point, for additional elaboration). The
second term in (8) corresponding to the square error
for the observation model of the panchromatic image
incorporates the high-pass spatial filter Go and thereby
avoids competition at low-spatial frequencies with the
more accurate observation model for the spectral chan-
nels. The correlation-weighted regularization represented
in the third term also serves to bring in spatial detail
from the panchromatic channel instead of the constrained
least squares regularizer that serves purely as a smoothing
prior.

o The proposed approach also differs from the prior model
based formulations in how the filters H;, i =1,2,..., K
are determined. Specifically, these are non-square
matrices estimated using the methodology described
in [25] based on knowledge of the analog PSF for
the desired HR and the captured LR spectral images
and the spatial down-sampling factor ¢g. The filters H;,
i =1,2,..., K model potential aliasing in the process
of mapping fi[x], x € A to ¢i[x], x € I in the
observation model, which, in turn, allows for the aliasing
to be partly resolved via the high frequency information
contributed by the panchromatic image instead of being
treated as noise in the data fidelity term. The utility of this
approach has been demonstrated for the closely related
image upsampling problem in [28]. In particular, this
advantage cannot be realized with approaches that treat
the spectral images interpolated up to the panchromatic
resolution as the observed data [16] or use a simplistic
model of the spatial relation between the images [15].

A comparison of the results for the proposed method (Prop)

against those for the CS and MRA methods and for the
other variants in our framework provides insight into the
contributions of the different components in our formulation.
The GS, GSA, and GIHSA methods that represent the state
of the art in CS-based pan-sharpening methods, improve
upon prior CS methods by better accounting for correlations
between the spectral channels and the panchromatic channel.
The proposed technique also accounts for the correlations
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between the spectral channels via the joint second term in (8)
but improves upon the CS techniques, because of the more
comprehensive spatial model in addition to the spectral model.
Compared with the MSW3 MRA technique, the proposed
method offers an improvement because the latter uses only an
implicit spatial model and a rather simple spectral correlation
model. The fact that the variants Prop-PC, Prop-AP, Prop-NR,
and Prop-CLS do not perform as well as the complete pro-
posed method (Prop) highlights the fact that each of the
ingredients in the proposed method provides a benefit. The
relative performance of the methods indicates, in particular,
that the regularization term and the high pass filter for the joint
second term in (8) both make a significant contribution to the
improved performance of the proposed method. Introduction
of correlation dependence in the regularization, provides a
small benefit.

Methods in the CS and MRA frameworks have an advantage
of much lower computational complexity compared with meth-
ods in the MBO framework in general and with the proposed
method in particular. However, the much higher computational
complexity of the proposed method is less of a concern
for common situations where the pan-sharpened images are
generated once and utilized many times over. In these settings,
improving the quality of the pan-sharpened images is the
predominant consideration over-riding the computational cost.
Furthermore, parallel processing could be utilized to signifi-
cantly reduce computation times. Although, the development
of a parallel algorithm is beyond the scope of the present paper,
we particularly note that the spatial filtering and re-sampling
operations used in our iterations are inherent in common image
processing tasks for which significant acceleration has been
demonstrated using parallel processing, particularly, graphics
processing units (GPUs).

VII. CONCLUSION

A new model-based optimization approach is proposed
that jointly determines pan-sharpened HR spectral images
to minimize an objective function that combines squared
residual error in physically motivated observation models of
the LR multispectral and the HR panchromatic images and a
regularization term. A computationally tractable iterative algo-
rithm is introduced for solving the resulting optimization. The
method is benchmarked against the commonly employed prior
pan-sharpening methods. Numerical performance metrics and
visual comparison validate that the method offers improved
quality of pan-sharpened images, although at the cost of
significant computational cost. A MATLAB™implementation
of the proposed pan-sharpening method is provided.’
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