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bstract. Color look-up tables (CLUTs) that provide transforma-
ions between various color spaces are commonly embedded in
rinter firmware where they are stored in relatively expensive flash
emory. As the number of look-up tables in color devices increases

n size, the space requirements of storing these CLUTs also in-
rease. In order to conserve memory and thereby reduce cost, it is
esirable to compress CLUTs prior to storage and restore tables as
equired. We consider methods for improving the performance of
xisting lossless compression methods for this application through
omputationally simple preprocessing. The preprocessing combines
redictive coding and data reordering to better exploit the redun-
ancy in CLUT data. Two predictive coding methods are consid-
red: (a) hierarchical differential encoding methods, which general-

zes differential coding to multiple dimensions, and (b) cellular
nterpolative predictive coding, which refines a CLUT in a coarse to
ne order using interpolative prediction. Space filling curves that
reserve continuity in the multidimensional CLUT structure are uti-

ized for reordering the residuals obtained from hierarchical differen-
ial encoding. For the cellular interpolative prediction, we reorder the
ata in the coarse to fine order utilized for prediction. Results indi-
ate that the proposed preprocessing methods offer significant per-
ormance improvements in comparison with direct compression.
he best performance is obtained using the cellular interpolative
redictive coding and corresponding reordering with the LZMA algo-
ithm. This method provides a compression ratio of 3.19 over our
epresentative CLUT data set, and an improvement of 31.33% over
irect LZMA compression, the latter being the best performing direct
ethod. © 2008 Society for Imaging Science and Technology.

DOI: 10.2352/J.ImagingSci.Technol.�2008�52:4�040901��

NTRODUCTION
olor look-up tables (CLUTs) that provide transformations
etween various color spaces are extensively used in color
anagement, common examples being the transformations

rom device independent color spaces (such as CIELAB) to
evice dependent color spaces (e.g., CMYK) and vice versa.
or color printers, these CLUTs are often embedded in the
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rinter hardware, where they require relatively expensive
ash memory for the purpose of storage. The firmware
emory requirements for storing these CLUTs can become a

oncern, particularly as the number of the look-up tables in
olor devices increases due to the need for supporting mul-
iple color spaces, print media, and preferences. The trend
oward finer sampling of the spaces and larger bit depths
lso results in an increase in table sizes, further exacerbating
hese memory concerns. Compression of these CLUTs there-
ore becomes desirable for the purpose of conserving

emory.
Though firmware memory provided the initial motiva-

ion for our research, the same concerns of memory and
torage space are applicable for CLUTs that are embedded in
olor documents, for example, as International Color Con-
ortium (ICC) source profiles included in portable docu-

ent format documents. The compression of these CLUTs
herefore becomes desirable for the purpose of conserving

emory and storage or for minimizing network traffic and
elay. As an example consider that the majority of office
ocuments today utilize “untagged RGB” content with the

mplied assumption that the RGB content should be inter-
reted as sRGB.1 This assumption was justified in the past by

he fact that a majority of electronic displays were based on
athode ray tube (CRT) display technologies whose prima-
ies were close to the sRGB primaries. The emergence of
ewer display technologies that are not based on CRTs has
endered these assumptions obsolete. A proposed solution is
o include profiles that describe the color context, which,
owever, poses the challenge that the profile metadata in-
reases the size of documents. In particular, for documents
ontaining CMYK image data, the inclusion of a source pro-
le along with an image can often exceed the size of the

mage itself. In such scenarios, the methods proposed here
ould be applied to the compression of the CLUTs in ICC
rofiles thereby reducing the storage overhead they impose

hen embedded in documents.

Jul.-Aug. 20081
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In this article, we address methods for improving loss-
ess compression performance on CLUT data. Toward this
nd, we develop predictive coding and data rearrangement
reprocessing methods that improve compression perfor-
ance when utilized with standard lossless compression al-

orithms. Specific contributions of this research are:

(1) hierarchical differential encoding, a multidimen-
sional extension of differential encoding with recur-
sive and nonrecursive versions;2

(2) cellular interpolative predictor, a coarse to fine
predictive modeling of CLUT data;

(3) data reordering methods for improving compres-
sion performance. Space filling curves are utilized
with hierarchical differential encoding and a coarse
to fine ordering conforming to the prediction order
is utilized with the cellular interpolative predictor.

In the following section we provide a brief overview of
he preprocessing framework which motivates the develop-

ent of the methods for improving lossless CLUT compres-
ion. These methods are discussed in detail in the next two
ections. The implementation parameters and the summa-
ized results for the methods developed are then presented
ollowed by concluding remarks.

REPROCESSING FRAMEWORK FOR IMPROVING
OSSLESS CLUT COMPRESSION
ompressing data involves an encoding algorithm that takes
message and generates a “compressed” representation.

ubsequent decompression requires a decoding algorithm
hat reconstructs the original message (or some approxima-
ion of it) from the compressed representation. Figure 1
hows the block diagram of a compression-decompression
rocess. All compression algorithms assume that some in-
uts are more likely than the others. For example, in English

ext, following the letter q, the letter u is more likely than the
etter z. Most compression algorithms are based on an as-
umption that the data exhibits structure of this form as
pposed to being random.

Although there are no references for CLUT compression
n prior literature, compression methods have been exten-
ively studied for a number of other applications.3 Compres-
ion methods can be categorized as lossless or lossy. The
ormer class of methods is used extensively, where it is re-
uired that the recovered data from the compressed repre-
entation must match the original data exactly, i.e., the de-
ompressed data must be mathematically equal to the
riginal data. Lossy compression methods on the other hand
re commonly used in applications where the requirement of
athematical equality between the compressed and decom-

ressed forms of data can be relaxed and distortions that are

Figure 1. Block diagram of compression-reconstruction process.
erceptually negligible (or small) can be tolerated. Speech, i

. Imaging Sci. Technol. 040901-
udio, image, and video communication are common ex-
mples of such applications. In this article, we will focus our
ttention on the lossless data compression of CLUTs.

Techniques for lossless data compression lie in one of
wo main categories: The first class of methods attempts to
uild an (adaptive) dictionary of “patterns” observed in the
ata and represents specific data values encountered as
ointers to the dictionary location in which the values can
e found. The LZW4,5 compression method and its variants,

ncluding those used for zip files,3 are common examples of
his first class of methods. These methods perform extremely
ell when the data contain frequent and long repeats since

he dictionary representation becomes extremely efficient
nder these circumstances. A second class of methods oper-
tes by modeling the probability distribution of observed
ata values. In order to achieve compression, frequently oc-
urring symbol values are assigned shorter binary represen-
ations and longer representations are used for infrequent
ymbol values (while maintaining distinctness that allows
econstruction of the original values from these representa-
ions). Huffman coding and arithmetic coding3,6–9 are rep-
esentative of this class of techniques.

In order to improve lossless compression performance
ver CLUTs, we introduce a preprocessing step as shown in
igure 2. The preprocessing combines predictive coding and
ata rearrangement. The predictive coding is used to reduce

he variance of the CLUT data. The data rearrangement
echnique is used to reorder the multidimensional CLUT
ata into a one-dimensional (1D) stream that is better suited

or the lossless compressor than the default order. Both these
echniques utilize the knowledge that the CLUT data repre-
ent a smooth and continuous transformation between dif-
erent spaces.

In applications where the data being compressed loss-
essly represents a (quantized version of a) continuous val-
ed signal, often the compression performance can be im-
roved by preprocessing the data by employing predictive
oding. This concept is illustrated in the diagrams of
igure 3. We assume that the data to be encoded are repre-
ented in the form of a 1D sequence U�n�, n=0,1 , . . . At the
ncoder, using past values of the data, a predictor obtains an

stimate Û�n� for the current data value. The prediction

esidual e�n�=U�n�− Û�n� is computed and forms the input
o the lossless compressor. For an appropriately chosen pre-
ictor, the prediction residual has a lower variance than the
riginal data and hence requires a lower data rate after com-
ression than what is required for the original data.

One of the simplest predictive codes is obtained by us-

Figure 2. Overview of the system
ng the previous sample value as the prediction, i.e.,

Jul.-Aug. 20082
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ˆ �n�=U�n−1� in Fig. 3. This is referred to as differential
ncoding and has been widely adopted in data compression.

athematically differential coding can be specified by the
ncoding relation

e�n� = U�n� − U�n − 1� and e�0� = U�0� , �1�

here U�n� and e�n� denote, respectively, the input and out-
ut of the differential encoder at “time” n. The correspond-

ng decoding relation is readily obtained as

U�n� = U�n − 1� + e�n� and U�0� = e�0� . �2�

f adjacent values are highly correlated the differential en-
oding provides significant improvement in compression.

The preceding presentation of differential coding as-
umed a one-dimensional data sequence. In order to accom-

odate multidimensional CLUTs we develop a hierarchical
xtension that we describe next.

Figure 3. Predictive coding block diagram.

Figure 4. Hierarchical differential encoding shown

C, M, and Y. The CLUT is assumed to be of size q�q�

. Imaging Sci. Technol. 040901-
ierarchical Differential Encoding
s the CLUT represents a smooth, continuous transforma-

ion between two different color spaces, the application of
ifferential encoding hierarchically (as stated in the previous
ection) helps reduce the variance of the data by exploiting
he spatial correlation of the CLUT data. The hierarchical
xtension can be performed either recursively or nonrecur-
ively on the CLUT data. The former is called recursive hi-
rarchical differential encoding (RHD) and the latter
onrecursive hierarchical differential encoding (NRHD).

ecursive Hierarchical Differential Encoding
ecursive hierarchical differential encoding (RHD) may be

nterpreted as encoding a differentiable function in terms of
ts partial derivatives. In order to see this, consider the case
f a three-dimensional CLUT as shown in Figure 4, where
he three CMY axes represent the input dimensions of the
LUT. For our description, we assume that the output value
f the CLUT is R denoting the red channel (the same de-
cription will apply to other output channels as well as to
LUTs with different input and output color spaces). The
LUT size is assumed to be q�q�q. The processing steps

n RHD may then be interpreted as follows:
Step 1. First the values along each of the adjacent nodes

long lines M=m ,Y=y are encoded as differences, where m
nd y are chosen from the indices 1 , . . . ,q. This corresponds
o replacing all nodes (except C=1, M=1, Y=1 node) with

difference that approximates �R /�C. In actuality the dif-
erence will represent �R /�C times the inter-sample distance
long the C axis. We will ignore these factors corresponding
o the LUT sampling distance in our description.

Step 2. The values from each of the adjacent lines
=2, . . .q are then encoded as differences with respect to

he preceding line, corresponding to replacing all the lines
except M=1 line) with a difference that approximates
2R /�C�M.

output plane R corresponding to three input planes
for one

q.

Jul.-Aug. 20083
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Step 3. The values along each of the planes Y=2, . . .q
re then replaced by the difference with respect to the pre-
eding plane. This corresponds to replacing all the planes
except Y=1 plane) with an approximation equivalent to
3R /�C�M�Y.

Note that Step 2 computes the differences of the differ-
nces evaluated in Step 1 and likewise Step 3 computes dif-
erences of these differences. Hence the “recursive” moniker
s used for this technique. Decoding is accomplished by re-
ersing the encoding steps, proceeding in the same order as
he encoding. The resulting algorithm for a three-
imensional CLUT sized q�q�q is summarized in MATLAB

tyle vectorized pseudo code as shown in Figures 5 (encod-
ng) and 6 (decoding).

onrecursive Hierarchical Differential Encoding
onrecursive hierarchical differential encoding (NRHD) is

imilar to RHD except that the differences are not computed
ecursively. Referring to Fig. 4 the NRHD algorithm can be
nterpreted as follows:

Step 1. The first line of the CMY plane is encoded by
aking the differences along adjacent data values along the
ine. This is equivalent to replacing the nodes (except C=1,

=1, Y=1 node) with an approximation of �R /�C.
Step 2. The data in the adjacent lines along the M plane,

umbering from m=2, . . .q, are encoded as differences of
he original CLUT values along the M direction, approxi-

ating �R /�M.
Step 3. The values along the planes Y=2, . . .q are then

eplaced by the differences only along the Y direction which
ill result in an approximation equivalent to �R /�Y.

Note that in the NRHD method differences are com-
uted and no “differences of differences” are computed.
ence all encoded values correspond to the first order par-

ial derivatives. Both the RHD and NRHD methods are ap-
lied independently for each of the output coordinate values

n the CLUT. These methods are computationally simple
nd readily generalized to arbitrary number of dimensions.

For typical CLUTs, values at adjacent nodes are highly
orrelated since the CLUT represents a relatively fine sam-

igure 5. Recursive hierarchical differential encoding algorithm for a
hree-dimensional �3D� CLUT with q�q�q nodes.
ling of a smooth transformation between different color o

. Imaging Sci. Technol. 040901-
paces. As a result, the output from the differential encoding
rocess has a significantly lower variance than the input.
his can be seen in Figs. 7(b) and 7(c), where the histograms
f the input and the output of the two different types of
ifferential encoding are shown, respectively, in parts (a),
b), and (c). The narrower spread of the histogram in Figs.
(a) and 7(b) reflects the aforementioned reduction in
ariance.

ellular Interpolative Prediction Model
n alternate natural method for predictive coding of CLUTs

s to consider a coarse to fine sampling of the LUT axes and
se an interpolation-based predictor. We illustrate this in
igure 8 for the two-dimensional (2D) case, where the
LUT axes are assumed to be C and M. The method begins
ith the four outermost node points (0,0), (0,1), (1,0), and

1,1) in the CM plane, viz. elements of {0,1}.2 This collection
f the four points constitutes the coarsest level representa-
ion of the LUT, where there are two samples along each
xes. The LUT output values for these nodes are encoded
irectly. At the next finer level of representation of the LUT,
n additional sample is included along each axis. Thus this
evel includes the LUT nodes lying in the set which are as
hown in Fig. 8(a). The subset of nodes at this level with
oordinates in the set are available from the previous coarser
epresentation and nodes for which any one (or more) of the
oordinate values is 0.5 are not. For this latter set of nodes
shown in Fig. 8(a) as hollow circles], predicted values are
btained by interpolating over the nodes at the preceding
oarser level [which are shown in Fig. 8(a) as solid dots].
he corresponding prediction residual is then computed and
ncoded for this latter set of nodes. This process is contin-
ed recursively.

At the kth �k=0,1 , . . . log2��q−1� /2�� level representa-
ion �2k+1�2 of the LUT nodes are included. (We assume
ere that the size q of the LUT is of the form 2J +1 for some
ositive integer J. The method is readily generalized to cases
here this does not hold.) The next finer representation at

he �k+1�th level with �2�k+1�+1�2 of the LUT nodes is

igure 6. Recursive hierarchical differential decoding algorithm for a 3D
LUT with q�q�q nodes.
btained by retaining these nodes and introducing an addi-

Jul.-Aug. 20084
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ional sample point between each pair of adjacent sample
oints along each of the axes. For the additional nodes in-
roduced at the �k+1�th level, predicted values are obtained
y interpolating over the nodes at the kth level. The corre-
ponding prediction residual is then computed and encoded.
ig. 8(b) illustrates the nodes added for our two-
imensional example at level k=1. This recursive process is
ontinued until all LUT nodes are included. The method can
e readily generalized to arbitrary number of dimensions
nd arbitrary LUT sizes. The pseudo code for the two-
imensional case is listed in Figures 9 and 10.

For the case of the CMYK LUT (and linear interpola-
ion) the cellular interpolative process outlined in the pre-
eding paragraph corresponds to the cellular Neugebauer
odel. At each level, the set of node points from the pre-

eding level defines the primaries of the cellular Neugebauer

Figure 7. Histogram of �a� original CLUT data, �
prediction residual obtained from NRHD coding, �
predictive coding.
odel which is utilized for predicting the new node points

. Imaging Sci. Technol. 040901-
dded. At the coarsest level, the initial 24 nodes correspond
o the 16 Neugebauer primaries. As the levels progress the
ode points grow in number from 24 to 34, to 54, to 94 until

he full CLUT size is reached. Fig. 7(d) shows the significant
eduction in the variance of the prediction residual of the
ellular interpolative model in comparison with the original
LUT data.

ata Serialization/Reordering
oth class of lossless compression methods described in the
revious section on the Preprocessing Framework for Im-
roving Lossless CLUT Compression operate on a sequential
stream” of input data. In order to apply these methods to
ultidimensional constructs, such as CLUTs, it is necessary

o arrange the multidimensional data in the form of a one-
imensional stream, a process that we will refer to as serial-

zation of the CLUT. In general serialization is accomplished

iction residual obtained from NRHD coding �c�,
iction residual obtained from cellular interpolative
b� pred
d� pred
Jul.-Aug. 20085
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y defining the sequence in which the nodes of the multi-
imensional LUT are traversed, producing the one-
imensional stream. Typically, the order in which data is
tored (e.g., row-major/column-major) in computer memo-
y constitutes the natural sequence for obtaining the one-
imensional data stream. However, from the characteristics
f the compression methods outlined in the previous section
n improving lossless CLUT mentioned above, it is apparent
hat improved compression may often be obtained simply by
earranging the data. This will be the case; if for instance, the
eordering increases repetition within the data. Though it is
easible to determine a data adaptive reordering,10 it can be
omputationally demanding, making it unsuitable for the
arget application. In addition, adaptive ordering requires

igure 8. Two-dimensional illustration of the cellular interpolative predic-
ion model.
hat the specification of the order in which the data was c

. Imaging Sci. Technol. 040901-
earranged also be stored in the compressed representation
o that this may be undone during decompression. Instead,
e propose simpler alternatives for data rearrangement that
tilize the knowledge that the data represents a CLUT.

ata Reordering for Hierarchical Differential Encoding
s indicated earlier, the NRHD and RHD encoded versions
f the CLUT data obtained from the hierarchical differential
ncoding method approximate the partial derivatives of the
LUT transforms. Therefore, just like the original CLUTS,

he NRHD, and RHD encoded versions also represent con-
inuous and smooth multidimensional functions. While the

Figure 9. Cellular interpolative predictive encoding algorithm.

Figure 10. Cellular interpolative predictive decoding algorithm.
ontinuity and smoothness are clearly desirable from a com-

Jul.-Aug. 20086
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ression perspective, these traits hold only in the multidi-
ensional representation of the LUT and the one-

imensional serialization of the data into a sequence for the
urpose of compression does not necessarily preserve these
raits. Specifically, consider Figure 11 where a 2D LUT is
sed for illustration.

Fig. 11(a) depicts the natural “raster-scan” order corre-
ponding to typical ordering of the LUT data in memory. A
erialization of the data in this order results in a discontinu-
us step in the 2D CLUT coordinates due to the jump from
he end of a line to the start of the next. To eliminate these
iscontinuities that are artificially induced by the data seri-
lization, we propose instead to obtain the one-dimensional
ata through the traversal of the multidimensional CLUT
long a space filling curve11–14 that assures that the data are
raversed in a manner that preserves continuity in the input
pace of the multidimensional CLUT. Specifically, in this
ork we use the C-scan ordering shown in Fig. 11(b) and

he Hilbert scan shown in Fig. 11(c).

eordering for Cellular Interpolative Prediction
or the cellular interpolative model, as one moves from a
oarse to fine LUT representation the prediction becomes
ore reliable and therefore the prediction residuals become

maller in magnitude (statistically speaking). The prediction
esiduals at the CLUT nodes, however, no longer represent a
mooth and continuous transform and therefore the meth-
ds of the preceding section are inappropriate for the pur-
ose of serializing the data. The coarse to fine progression
lso offers a natural order for serialization of the data in
hich one expects a successively decreasing variance. Figure
2 illustrates this behavior where the prediction residuals for
173 CLUT are shown along with a demarcation of the

ifferent levels.

XPERIMENTAL RESULTS
he proposed methods were implemented in C�� and
ATLAB, in order to assess their performance. A collection of
LUTs representative of a typical printer configuration was
tilized for performing the evaluation. The CLUTs used an
bit output data representation one of either 17 or 33 sam-

ling nodes along each CLUT dimension. The set of 8 bit 17
ode tables included:

(1) Four forward CMYK device tables (mapping to de-
vice independent color space) each of size 174 �3,

Figure 11. Sca
totaling 1,002,252 bytes. These correspond to two

. Imaging Sci. Technol. 040901-
standard CMYK tables (SWOP and EURO) and
two device response tables (obtained by two differ-
ent methods).

(2) Four forward RGB device tables, each of size
173 �3, totaling 58,956 bytes, corresponding to
different RGB input spaces, and

e filling curves.

igure 12. Serialization of the prediction residuals after cellular interpo-
ative predictive coding.
(3) Nine pairs of inverse printer (correction) tables

Jul.-Aug. 20087
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(mapping from device independent color space to
printer CMYK), each of size 173 �4, for a total of
265,302 bytes. The tables correspond to the nine
different media choices for the printer (transpar-
ency, plain paper, coated paper, etc.) and two ele-
ments in each pair differed in their black
generation.

A similar set of printer tables were used for 33-node
epresentation. The evaluation of compression was per-
ormed using the following preprocessing methods:

(1) NRHD, RHD encoding methods along with one
out of C-scan, Hilbert, and raster scan options for
the serialization of CLUT data;

(2) cellular interpolation prediction model.

Five compression methods—LZMA,15 bzip2,16 gzip,
ZW and AAC—were evaluated. In addition to the pro-
osed preprocessing based methods, direct compression of

he tables was also performed using each of these methods
or benchmarking our performance improvement. In the
ollowing, the additional processing steps are outlined and
he results summarized.

able I. Average compression ratios for recursive hierarchical differential and
onrecursive hierarchical differential compression methods. Averages are computed
ver four forward CMYK device tables, where size of each table is 250563 bytes in
ncompressed format

Preprocessing

RHD+ NRHD+

C-scan Hilbert Raster C-scan Hilbert Raster

LZMA 2.58 2.58 2.56 3.15 3.07 2.83
bzip2 2.38 2.31 2.37 2.93 2.85 2.37

Gzip 2.31 2.30 2.30 2.68 2.64 2.29

AAC 2.63 2.63 2.63 2.40 2.41 2.35

LZW 2.15 2.14 2.09 2.42 2.49 2.45

able II. Compression performance of nonrecursive differential encoding and cellu
ompression and compression ratio�. Results represent averages over four tables with

Blind Compression
�Baseline�

C-scan+ NR
Compressi

File Size
�Bytes�

Comp.
Ratio

File Size
�Bytes�

Savings
Baseli

LZMA 423908 2.36 318598 105310 �2
bzip2 450575 2.22 344328 106247 �2

Gzip 540373 1.85 374472 165901 �3

AAC 842445 1.19 417604 424841 �5

LZW 1041991 0.96 414377 627614 �6
. Imaging Sci. Technol. 040901-
From the information on the sizes of the different
ables, we see that CMYK tables account for a major part
72%) of the CLUT data. We therefore begin by comparing
he performance for different methods over these tables. We
rst compare the performance across the different variants
f the proposed hierarchical differential encoding methods.
able I lists the average compression ratios over the CMYK
able data set for the different possible combinations of
RHD/RHD differential encoding methods with the raster/
-scan/Hilbert space filling curves for data reordering, and
ZMA/bzip2 for compression. From a comparison of the
umbers in Table I, it is apparent that the NRHD+C-Scan
LZMA method performs best with NRHD+Hilbertscan
LZMA as a fairly close second.

Next we compare the best performing hierarchical dif-
erential encoding method �NRHD+C-Scan+LZMA�
gainst the cellular interpolative prediction. Table II com-
ares the performance of these two methods against each
ther and against direct compression over the four CMYK
ables. From the tabulated values we can see that these two

ethods perform uniformly and significantly better than di-
ect compression. From the detailed results, we have seen
hat the performance across CLUTs is rather similar and
herefore averaged values over the CLUTs may be used to
raw useful and significant conclusions. Observing the num-
ers in Table II it is apparent that cellular interpolative pre-
iction model performs best (with a 31% saving in memory
equirements over direct compression). The nonrecursive hi-
rarchical encoding with C-scan reordering provides a sav-
ng of 25% over direct compression.

In Table III we compare the performance of the afore-
entioned two methods against direct compression over the

omplete data set of the printer tables. Once again, from the
ompression results enumerated in Table III, we see that the
roposed methods offer significant gains over direct com-
ression. The best performing method (cellular interpolative
rediction model+LZMA) offers a reduction in memory of
7.10% in comparison with uncompressed binary tables.

As stated in the Introduction, finer sampling of the
LUT input space increases the sizes of the tables exponen-

ially, causing additional concerns regarding memory re-

polative prediction model on CMYK front end tables �in bytes, savings over direct
le 250563 bytes in uncompressed binary format.

Cellular Interpolative Prediction
Model+ Compression

Comp.
Ratio

File Size
�Bytes�

Savings over
Baseline

Comp.
Ratio

3.15 291108 132800 �31.33%� 3.45
2.91 344328 106247 �23.58%� 2.93

2.68 345584 194789 �36.05%� 2.91

2.40 303819 538626 �63.92%� 3.31

2.42 352830 689170 �66.14%� 2.86
lar inter
each tab

HD+
on

over
ne

4.84%�

3.58%�

0.70%�

0.43%�

0.23%�
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uirements. We also evaluated the algorithms developed in
his work over finer sampled 33 node tables. The results
btained with the best performing methods are summarized

n Table IV. From the entries in the table, it can be seen that
nce again considerable savings can be achieved with the
roposed preprocessing methods in comparison with the di-
ect compression (without preprocessing). The compression
atios actually improve for the finer sampled case and can
artly alleviate the concern about memory requirements for
ner sampled CLUTs.

To assess the relative contributions of the predictive
oding and the reordering stages, we also evaluated LZMA
ompression with hierarchical differential encoding without
eordering over our data set; this provided a compression
atio of 2.71 for the 17 node tables. Note that, when used
ogether, predictive coding and reordering with LZMA pro-
ide a compression ratio of 3.04 (refer to Table III). Thus we
ee that both the predictive coding and the reordering make
ignificant contributions to the improvement in

able III. Compression ratio �total bytes uncompressed/total bytes compressed� over
he printer data set for direct compression and the best performing compression meth-
ds. The set of tables included four CMYK, four RGB, and nine pairs of back end tables
otaling 1414944 bytes in binary format.

Front End
Tables Back

End
Tables

Complete
Device
TablesCMYK RGB

irect Compression LZMA 2.36 1.65 2.13 2.26

bzip2 2.22 1.59 1.95 2.11

Gzip 1.85 1.25 1.65 1.76

LZMA+ Cellular Interpolative
Prediction Model

3.45 2.67 2.72 3.19

LZMA+ NRHD+ C Scan 3.15 2.24 2.93 3.04

able IV. Compression ratio �total bytes uncompressed / total bytes compressed� over
he printer data set for direct compression and the best performing compression meth-
ds over CLUTs with 33 nodes per input dimension. The set of tables included seven
MYK, four RGB, and eight pairs of back end tables totaling 27635553 bytes in binary
ormat.

Front End
Tables Back

End
Tables

Complete
Device
TablesCMYK RGB

irect Compression LZMA 4.05 2.65 3.26 3.60

bzip2 3.84 2.74 3.23 3.49

Gzip 2.92 2.02 2.47 2.65

LZMA+ Cellular Interpolative
Prediction Model

5.96 4.83 3.98 5.06

LZMA+ NRHD+ C Scan 4.94 3.77 4.14 4.51
ompression.

. Imaging Sci. Technol. 040901-
ONCLUSIONS
reprocessing of CLUT data prior to lossless compression
rovides significant improvement in compression perfor-
ance. In experimental evaluation over a representative

rinter dataset, the best performing method offered memory
avings of approximately 69% compared with the uncom-
ressed tables. Compared with direct compression of these

ables (without preprocessing) the proposed methods save
pproximately 32% in memory requirements. The prepro-
essing methods proposed here are computationally simple
nd can be readily implemented in printer firmware and in
oftware with little computational overhead.

Among the compression techniques evaluated, LZMA
ith cellular interpolative predictive coding, along with a

oarse to fine data reordering, offered the best performance
ver a representative set of printer CLUTs. Over a full data
et of 17 node CLUTs representative of current hardware,
his method offered a compression ratio of 3.19. For finer
ampled 33 node CLUTs a compression ratio of 5.06 was
btained in our evaluation. The next best performing
ethod, non-recursive hierarchical differential encoding

NRHD) with C-scan reordering, was also competitive and
ielded a compression ratio of 3.04 for 17 node CLUTs.

EFERENCES
1 M. Anderson, R. Motta, S. Chandrasekar, and M. Stokes, “Proposal for a

standard default color space for the internet-sRGB”, in Proc. IS&T/SID
Fourth Color Imaging Conference: Color Science, Systems and
Applications (IS&T, Springfield, VA, 1996), pp. 238–246.

2 S. R. A. Balaji, G. Sharma, M. Q. Shaw, and R. Guay, “Hierarchical
compression of color look up tables”, in Proc. IS&T/SID Fifteenth Color
Imaging Conference: Color Science and Engineering: Systems,
Technologies, Applications (IS&T, Springfield, VA, 2007), pp. 261–266.

3 K. Sayood, Introduction to Data Compression, 2nd ed. (Morgan
Kaufmann, San Francisco, 2000).

4 T. A. Welch, “A technique for high-performance data compression”,
Computer 17, 8–19 (1984).

5 A. Lempel and J. Ziv, “On the complexity of finite sequences”, IEEE
Trans. Inf. Theory IT-22, 75–81 (1976).

6 G. E. Blelloch, “Introduction to data compression”, http://
www.cs.cmu.edu/afs/cs/project/pscicoguyba/realworld/www/
compression.pdf, accessed Sept. 2007.

7 G. G. Langdon and J. J. Rissanen, “A simple general binary source code”,
IEEE Trans. Inf. Theory IT-28, 800 (1982).

8 J. Rissanen, “Generalized Kraft inequality and arithmetic coding”, IBM J.
Res. Dev. 20, 198 (1976).

9 G. G. Langdon, “An introduction to arithmetic coding”, IBM J. Res.
Dev. 28, 135–149 (1984).

10 S. Vucetic, “A fast algorithm for lossless compression of data tables by
reordering”, in Proceedings of Data Compression Conference (IEEE
Computer Press, Los Alamitos, CA, 2006), p. 1.

11 H. Sagan, Space-Filling Curves (Springer, Berlin, 1994).
12 S. Kamata, M. Nimmi, and E. Kawaguchi, “A gray image compression

using Hilbert scan”, Proc. International Conf. on Pattern Recognition
(ICPR) (IEEE Computer Press, Los Alamitos, CA, 1996, Vol. 3, pp.
905–909.

13 Z. Song and N. Roussopoulous, “Using Hilbert curve in image storing
and retrieving”, Information Systems 27(8), 523–536 (2002).

14 T. Bially, “Space Filling Curves: Their generation and their application to
bandwidth reduction”, IEEE Trans. Inf. Theory 15, 658–664 (1969).

15 “7-zip software development kit”, http://www.7–zip.org/sdk.html,
accessed Sept. 2007.

16 “Bzip2”, http://www.bzip.org, accessed Sept. 2007.
Jul.-Aug. 20089


