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Abstract. Color look-up tables (CLUTs) that provide transforma-
tions between various color spaces are commonly embedded in
printer firmware where they are stored in relatively expensive flash
memory. As the number of look-up tables in color devices increases
in size, the space requirements of storing these CLUTs also in-
crease. In order to conserve memory and thereby reduce cost, it is
desirable to compress CLUTs prior to storage and restore tables as
required. We consider methods for improving the performance of
existing lossless compression methods for this application through
computationally simple preprocessing. The preprocessing combines
predictive coding and data reordering to better exploit the redun-
dancy in CLUT data. Two predictive coding methods are consid-
ered: (a) hierarchical differential encoding methods, which general-
izes differential coding to multiple dimensions, and (b) cellular
interpolative predictive coding, which refines a CLUT in a coarse to
fine order using interpolative prediction. Space filling curves that
preserve continuity in the multidimensional CLUT structure are uti-
lized for reordering the residuals obtained from hierarchical differen-
tial encoding. For the cellular interpolative prediction, we reorder the
data in the coarse to fine order utilized for prediction. Results indi-
cate that the proposed preprocessing methods offer significant per-
formance improvements in comparison with direct compression.
The best performance is obtained using the cellular interpolative
predictive coding and corresponding reordering with the LZMA algo-
rithm. This method provides a compression ratio of 3.19 over our
representative CLUT data set, and an improvement of 31.33% over
direct LZMA compression, the latter being the best performing direct
method. © 2008 Society for Imaging Science and Technology.
[DOI: 10.2352/J.ImagingSci.Technol.(2008)52:4(040901)]

INTRODUCTION

Color look-up tables (CLUTs) that provide transformations
between various color spaces are extensively used in color
management, common examples being the transformations
from device independent color spaces (such as CIELAB) to
device dependent color spaces (e.g., CMYK) and vice versa.
For color printers, these CLUTs are often embedded in the

“IS&T Member.

Received Jan. 28, 2008; accepted for publication May 23, 2008; published
online Jul. 22, 2008.

1062-3701/2008/52(4)/040901/9/$20.00.

J. Imaging Sci. Technol.

040901-1

printer hardware, where they require relatively expensive
flash memory for the purpose of storage. The firmware
memory requirements for storing these CLUTs can become a
concern, particularly as the number of the look-up tables in
color devices increases due to the need for supporting mul-
tiple color spaces, print media, and preferences. The trend
toward finer sampling of the spaces and larger bit depths
also results in an increase in table sizes, further exacerbating
these memory concerns. Compression of these CLUTs there-
fore becomes desirable for the purpose of conserving
memory.

Though firmware memory provided the initial motiva-
tion for our research, the same concerns of memory and
storage space are applicable for CLUTs that are embedded in
color documents, for example, as International Color Con-
sortium (ICC) source profiles included in portable docu-
ment format documents. The compression of these CLUTs
therefore becomes desirable for the purpose of conserving
memory and storage or for minimizing network traffic and
delay. As an example consider that the majority of office
documents today utilize “untagged RGB” content with the
implied assumption that the RGB content should be inter-
preted as SRGB." This assumption was justified in the past by
the fact that a majority of electronic displays were based on
cathode ray tube (CRT) display technologies whose prima-
ries were close to the sRGB primaries. The emergence of
newer display technologies that are not based on CRTs has
rendered these assumptions obsolete. A proposed solution is
to include profiles that describe the color context, which,
however, poses the challenge that the profile metadata in-
creases the size of documents. In particular, for documents
containing CMYK image data, the inclusion of a source pro-
file along with an image can often exceed the size of the
image itself. In such scenarios, the methods proposed here
could be applied to the compression of the CLUTs in ICC
profiles thereby reducing the storage overhead they impose
when embedded in documents.
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Figure 1. Block diagram of compression-reconstruction process.

In this article, we address methods for improving loss-
less compression performance on CLUT data. Toward this
end, we develop predictive coding and data rearrangement
preprocessing methods that improve compression perfor-
mance when utilized with standard lossless compression al-
gorithms. Specific contributions of this research are:

(1) hierarchical differential encoding, a multidimen-
sional extension of differential encoding with recur-
sive and nonrecursive versions;”

(2) cellular interpolative predictor, a coarse to fine
predictive modeling of CLUT data;

(3) data reordering methods for improving compres-
sion performance. Space filling curves are utilized
with hierarchical differential encoding and a coarse
to fine ordering conforming to the prediction order
is utilized with the cellular interpolative predictor.

In the following section we provide a brief overview of
the preprocessing framework which motivates the develop-
ment of the methods for improving lossless CLUT compres-
sion. These methods are discussed in detail in the next two
sections. The implementation parameters and the summa-
rized results for the methods developed are then presented
followed by concluding remarks.

PREPROCESSING FRAMEWORK FOR IMPROVING
LOSSLESS CLUT COMPRESSION

Compressing data involves an encoding algorithm that takes
a message and generates a “compressed” representation.
Subsequent decompression requires a decoding algorithm
that reconstructs the original message (or some approxima-
tion of it) from the compressed representation. Figure 1
shows the block diagram of a compression-decompression
process. All compression algorithms assume that some in-
puts are more likely than the others. For example, in English
text, following the letter g, the letter u is more likely than the
letter z. Most compression algorithms are based on an as-
sumption that the data exhibits structure of this form as
opposed to being random.

Although there are no references for CLUT compression
in prior literature, compression methods have been exten-
sively studied for a number of other applications.” Compres-
sion methods can be categorized as lossless or lossy. The
former class of methods is used extensively, where it is re-
quired that the recovered data from the compressed repre-
sentation must match the original data exactly, i.e., the de-
compressed data must be mathematically equal to the
original data. Lossy compression methods on the other hand
are commonly used in applications where the requirement of
mathematical equality between the compressed and decom-
pressed forms of data can be relaxed and distortions that are
perceptually negligible (or small) can be tolerated. Speech,
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Figure 2. Overview of the system

audio, image, and video communication are common ex-
amples of such applications. In this article, we will focus our
attention on the lossless data compression of CLUTs.

Techniques for lossless data compression lie in one of
two main categories: The first class of methods attempts to
build an (adaptive) dictionary of “patterns” observed in the
data and represents specific data values encountered as
pointers to the dictionary location in which the values can
be found. The LZW"’ compression method and its variants,
including those used for zip files,” are common examples of
this first class of methods. These methods perform extremely
well when the data contain frequent and long repeats since
the dictionary representation becomes extremely efficient
under these circumstances. A second class of methods oper-
ates by modeling the probability distribution of observed
data values. In order to achieve compression, frequently oc-
curring symbol values are assigned shorter binary represen-
tations and longer representations are used for infrequent
symbol values (while maintaining distinctness that allows
reconstruction of the original values from these representa-
tions). Huffman coding and arithmetic coding”®” are rep-
resentative of this class of techniques.

In order to improve lossless compression performance
over CLUTs, we introduce a preprocessing step as shown in
Figure 2. The preprocessing combines predictive coding and
data rearrangement. The predictive coding is used to reduce
the variance of the CLUT data. The data rearrangement
technique is used to reorder the multidimensional CLUT
data into a one-dimensional (1D) stream that is better suited
for the lossless compressor than the default order. Both these
techniques utilize the knowledge that the CLUT data repre-
sent a smooth and continuous transformation between dif-
ferent spaces.

In applications where the data being compressed loss-
lessly represents a (quantized version of a) continuous val-
ued signal, often the compression performance can be im-
proved by preprocessing the data by employing predictive
coding. This concept is illustrated in the diagrams of
Figure 3. We assume that the data to be encoded are repre-
sented in the form of a 1D sequence U(n), n=0,1,... At the
encoder, using past values of the data, a predictor obtains an

estimate U(n) for the current data value. The prediction

residual e(n) = U(n) - U(n) is computed and forms the input
to the lossless compressor. For an appropriately chosen pre-
dictor, the prediction residual has a lower variance than the
original data and hence requires a lower data rate after com-
pression than what is required for the original data.

One of the simplest predictive codes is obtained by us-
ing the previous sample value as the prediction, ie.,
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U(n)z U(n—1) in Fig. 3. This is referred to as differential
encoding and has been widely adopted in data compression.
Mathematically differential coding can be specified by the
encoding relation

e(n)=U(n)—Um—-1) and e(0)=U(0), (1)

where U(n) and e(n) denote, respectively, the input and out-
put of the differential encoder at “time” #n. The correspond-
ing decoding relation is readily obtained as

Un)=Un—-1)+e(n) and U(0)=1e(0). (2)

If adjacent values are highly correlated the differential en-
coding provides significant improvement in compression.

The preceding presentation of differential coding as-
sumed a one-dimensional data sequence. In order to accom-
modate multidimensional CLUTs we develop a hierarchical
extension that we describe next.

Data Prediction
Residuals
U(n) : e(n)

Prediction

Data
Residuals 4»@ >
U(n)

e(n)

Figure 3. Predictive coding block diagram.

Hierarchical Differential Encoding

As the CLUT represents a smooth, continuous transforma-
tion between two different color spaces, the application of
differential encoding hierarchically (as stated in the previous
section) helps reduce the variance of the data by exploiting
the spatial correlation of the CLUT data. The hierarchical
extension can be performed either recursively or nonrecur-
sively on the CLUT data. The former is called recursive hi-
erarchical differential encoding (RHD) and the latter
nonrecursive hierarchical differential encoding (NRHD).

Recursive Hierarchical Differential Encoding

Recursive hierarchical differential encoding (RHD) may be
interpreted as encoding a differentiable function in terms of
its partial derivatives. In order to see this, consider the case
of a three-dimensional CLUT as shown in Figure 4, where
the three CMY axes represent the input dimensions of the
CLUT. For our description, we assume that the output value
of the CLUT is R denoting the red channel (the same de-
scription will apply to other output channels as well as to
CLUTs with different input and output color spaces). The
CLUT size is assumed to be g X g X q. The processing steps
in RHD may then be interpreted as follows:

Step 1. First the values along each of the adjacent nodes
along lines M=m,Y=y are encoded as differences, where m
and y are chosen from the indices 1, ...,q. This corresponds
to replacing all nodes (except C=1, M=1, Y=1 node) with
a difference that approximates SR/ SC. In actuality the dif-
ference will represent SR/ 6C times the inter-sample distance
along the C axis. We will ignore these factors corresponding
to the LUT sampling distance in our description.

Step 2. The values from each of the adjacent lines
M=2,...q are then encoded as differences with respect to
the preceding line, corresponding to replacing all the lines
(except M=1 line) with a difference that approximates
&R/ COM.

C
A
Y&l Y=2
M=1
M=2
M=q
C=q
°5R/6C
Fon
C=2
C=1
M
SR/SY

\j

Figure 4. Hierarchical differential encoding shown for one output plane R corresponding to three input planes
C, M, and Y. The CLUT is assumed fo be of size gX gxq.
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diff = clut;
for i = q:-1:2
{ diff(i,1:q,1:q) -= diff(i-1,1:q,1:9);}
for i=1:q
{ for j = q:-1:2
{ Qiff (i,j,1:q) -= diff (i,j-1,1:q);}
for j = 1:q
{ for k = q:-1:2

{ Qiff (i,j,k) -= diff (i,j,k-1);}}}

Figure 5. Recursive hierarchical differential encoding algorithm for a
three-dimensional (3D) CLUT with g X g X g nodes.

Step 3. The values along each of the planes Y=2,...q
are then replaced by the difference with respect to the pre-
ceding plane. This corresponds to replacing all the planes
(except Y=1 plane) with an approximation equivalent to
&R/ 6CEMSY.

Note that Step 2 computes the differences of the differ-
ences evaluated in Step 1 and likewise Step 3 computes dif-
ferences of these differences. Hence the “recursive” moniker
is used for this technique. Decoding is accomplished by re-
versing the encoding steps, proceeding in the same order as
the encoding. The resulting algorithm for a three-
dimensional CLUT sized q X g X q is summarized in MATLAB
style vectorized pseudo code as shown in Figures 5 (encod-
ing) and 6 (decoding).

Nonrecursive Hierarchical Differential Encoding
Nonrecursive hierarchical differential encoding (NRHD) is
similar to RHD except that the differences are not computed
recursively. Referring to Fig. 4 the NRHD algorithm can be
interpreted as follows:

Step 1. The first line of the CMY plane is encoded by
taking the differences along adjacent data values along the
line. This is equivalent to replacing the nodes (except C=1,
M=1, Y=1 node) with an approximation of éR/6C.

Step 2. The data in the adjacent lines along the M plane,
numbering from m=2,...q, are encoded as differences of
the original CLUT values along the M direction, approxi-
mating 6R/ oM.

Step 3. The values along the planes Y=2,...q are then
replaced by the differences only along the Y direction which
will result in an approximation equivalent to oR/ Y.

Note that in the NRHD method differences are com-
puted and no “differences of differences” are computed.
Hence all encoded values correspond to the first order par-
tial derivatives. Both the RHD and NRHD methods are ap-
plied independently for each of the output coordinate values
in the CLUT. These methods are computationally simple
and readily generalized to arbitrary number of dimensions.

For typical CLUTs, values at adjacent nodes are highly
correlated since the CLUT represents a relatively fine sam-
pling of a smooth transformation between different color
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lut = construct;
for j = 1:q
{ for k = 1:q
{ for 1 = 2:q
{ 1ut(j,k,1) = lut(j,k,1) + lut(j,k,1-1);}}
for k = 2:q
{ 1ut(j,k,1:q) = lut(j,k,1:q9) + lut(j,k-1,1:q);}}
for j = 2:q
{ 1ut(j,1:q,1:q) = lut(j,1:q,1:q@) + lut(j-1,1:q,1:9);}

Figure 6. Recursive hierarchical differential decoding algorithm for a 3D
CLUT with g X gX g nodes.

spaces. As a result, the output from the differential encoding
process has a significantly lower variance than the input.
This can be seen in Figs. 7(b) and 7(c), where the histograms
of the input and the output of the two different types of
differential encoding are shown, respectively, in parts (a),
(b), and (c). The narrower spread of the histogram in Figs.
7(a) and 7(b) reflects the aforementioned reduction in
variance.

Cellular Interpolative Prediction Model

An alternate natural method for predictive coding of CLUTs
is to consider a coarse to fine sampling of the LUT axes and
use an interpolation-based predictor. We illustrate this in
Figure 8 for the two-dimensional (2D) case, where the
CLUT axes are assumed to be C and M. The method begins
with the four outermost node points (0,0), (0,1), (1,0), and
(1,1) in the CM plane, viz. elements of {0,1}.> This collection
of the four points constitutes the coarsest level representa-
tion of the LUT, where there are two samples along each
axes. The LUT output values for these nodes are encoded
directly. At the next finer level of representation of the LUT,
an additional sample is included along each axis. Thus this
level includes the LUT nodes lying in the set which are as
shown in Fig. 8(a). The subset of nodes at this level with
coordinates in the set are available from the previous coarser
representation and nodes for which any one (or more) of the
coordinate values is 0.5 are not. For this latter set of nodes
[shown in Fig. 8(a) as hollow circles], predicted values are
obtained by interpolating over the nodes at the preceding
coarser level [which are shown in Fig. 8(a) as solid dots].
The corresponding prediction residual is then computed and
encoded for this latter set of nodes. This process is contin-
ued recursively.

At the kth (k=0,1,...1og,((q—1)/2)) level representa-
tion (2k+1)? of the LUT nodes are included. (We assume
here that the size g of the LUT is of the form 2/+1 for some
positive integer J. The method is readily generalized to cases
where this does not hold.) The next finer representation at
the (k+1)th level with (2(k+1)+1)? of the LUT nodes is
obtained by retaining these nodes and introducing an addi-
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Figure 7. Histogram of (a) original CLUT data, (b) prediction residual obtained from NRHD coding (c),
prediction residual obtained from NRHD coding, (d) prediction residual obtained from cellular interpolative

predictive coding.

tional sample point between each pair of adjacent sample
points along each of the axes. For the additional nodes in-
troduced at the (k+1)th level, predicted values are obtained
by interpolating over the nodes at the kth level. The corre-
sponding prediction residual is then computed and encoded.
Fig. 8(b) illustrates the nodes added for our two-
dimensional example at level k=1. This recursive process is
continued until all LUT nodes are included. The method can
be readily generalized to arbitrary number of dimensions
and arbitrary LUT sizes. The pseudo code for the two-
dimensional case is listed in Figures 9 and 10.

For the case of the CMYK LUT (and linear interpola-
tion) the cellular interpolative process outlined in the pre-
ceding paragraph corresponds to the cellular Neugebauer
model. At each level, the set of node points from the pre-
ceding level defines the primaries of the cellular Neugebauer
model which is utilized for predicting the new node points
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added. At the coarsest level, the initial 24 nodes correspond
to the 16 Neugebauer primaries. As the levels progress the
node points grow in number from 2% to 3%, to 5%, to 9* until
the full CLUT size is reached. Fig. 7(d) shows the significant
reduction in the variance of the prediction residual of the
cellular interpolative model in comparison with the original
CLUT data.

Data Serialization/Reordering

Both class of lossless compression methods described in the
previous section on the Preprocessing Framework for Im-
proving Lossless CLUT Compression operate on a sequential
“stream” of input data. In order to apply these methods to
multidimensional constructs, such as CLUTS, it is necessary
to arrange the multidimensional data in the form of a one-
dimensional stream, a process that we will refer to as serial-
ization of the CLUT. In general serialization is accomplished
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Figure 8. Two-dimensional illustration of the cellular interpolative predic-
tion model.

by defining the sequence in which the nodes of the multi-
dimensional LUT are traversed, producing the one-
dimensional stream. Typically, the order in which data is
stored (e.g., row-major/column-major) in computer memo-
ry constitutes the natural sequence for obtaining the one-
dimensional data stream. However, from the characteristics
of the compression methods outlined in the previous section
on improving lossless CLUT mentioned above, it is apparent
that improved compression may often be obtained simply by
rearranging the data. This will be the case; if for instance, the
reordering increases repetition within the data. Though it is
feasible to determine a data adaptive reordering,'" it can be
computationally demanding, making it unsuitable for the
target application. In addition, adaptive ordering requires
that the specification of the order in which the data was
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Step.1 Initialize

Level k =0;

axiSsamples = (0,1);

lutfwdeS = aTiSsamples X ATISsamples;
Step.2 Iterate

k =k+1;

azisfamples(l :2:2k+1) = azisfgnlwles;

lu’t:odes = aTiSsamples X ATISsamples;

Interpolate values at LU’ T:;iis to predict values for new nodes

added in LUTF.

odes

Compute residual prediction
Step.3 If done with complete LUT, stop

Otherwise go to Step.2

Figure 9. Cellular interpolative predictive encoding algorithm.

Step.1 Initialize

Level k =0;

a%i8samples = (0,1);

lutfwdes = aTiSsamples X ATLSsamples;
Step.2 Iterate

k = k+1;

axisk (1:2:2k+1) = azis® !

samples samples ;

ZUtnodes = AT1Ssamples X ATLSsamples’

Interpolate values at LU T:fo“dis to predict values for new nodes

added in LUT*

nodes

Add the prediction residual to the interpolated value
Step.3 If done with complete LUT, stop

Otherwise go to Step.2
Figure 10. Cellular inferpolative predictive decoding algorithm.

rearranged also be stored in the compressed representation
so that this may be undone during decompression. Instead,
we propose simpler alternatives for data rearrangement that
utilize the knowledge that the data represents a CLUT.

Data Reordering for Hierarchical Differential Encoding

As indicated earlier, the NRHD and RHD encoded versions
of the CLUT data obtained from the hierarchical differential
encoding method approximate the partial derivatives of the
CLUT transforms. Therefore, just like the original CLUTS,
the NRHD, and RHD encoded versions also represent con-
tinuous and smooth multidimensional functions. While the
continuity and smoothness are clearly desirable from a com-
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Figure 11. Scan space filling curves.

pression perspective, these traits hold only in the multidi-
mensional representation of the LUT and the one-
dimensional serialization of the data into a sequence for the
purpose of compression does not necessarily preserve these
traits. Specifically, consider Figure 11 where a 2D LUT is
used for illustration.

Fig. 11(a) depicts the natural “raster-scan” order corre-
sponding to typical ordering of the LUT data in memory. A
serialization of the data in this order results in a discontinu-
ous step in the 2D CLUT coordinates due to the jump from
the end of a line to the start of the next. To eliminate these
discontinuities that are artificially induced by the data seri-
alization, we propose instead to obtain the one-dimensional
data through the traversal of the multidimensional CLUT
along a space filling curve''™ that assures that the data are
traversed in a manner that preserves continuity in the input
space of the multidimensional CLUT. Specifically, in this
work we use the C-scan ordering shown in Fig. 11(b) and
the Hilbert scan shown in Fig. 11(c).

Reordering for Cellular Interpolative Prediction

For the cellular interpolative model, as one moves from a
coarse to fine LUT representation the prediction becomes
more reliable and therefore the prediction residuals become
smaller in magnitude (statistically speaking). The prediction
residuals at the CLUT nodes, however, no longer represent a
smooth and continuous transform and therefore the meth-
ods of the preceding section are inappropriate for the pur-
pose of serializing the data. The coarse to fine progression
also offers a natural order for serialization of the data in
which one expects a successively decreasing variance. Figure
12 illustrates this behavior where the prediction residuals for
a 172 CLUT are shown along with a demarcation of the
different levels.

EXPERIMENTAL RESULTS

The proposed methods were implemented in C++ and
MATLAB, in order to assess their performance. A collection of
CLUTs representative of a typical printer configuration was
utilized for performing the evaluation. The CLUTs used an
8 bit output data representation one of either 17 or 33 sam-
pling nodes along each CLUT dimension. The set of 8 bit 17
node tables included:

(1) Four forward CMYK device tables (mapping to de-
vice independent color space) each of size 174X 3,
totaling 1,002,252 bytes. These correspond to two
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Figure 12. Serialization of the prediction residuals after cellular inferpo-
lative predictive coding.

standard CMYK tables (SWOP and EURO) and
two device response tables (obtained by two differ-
ent methods).

Four forward RGB device tables, each of size
17°X 3, totaling 58,956 bytes, corresponding to
different RGB input spaces, and

(3) Nine pairs of inverse printer (correction) tables

()

Jul.-Aug. 2008



Balaiji et al.: Preprocessing methods for improved lossless compression of color look-up tables

(mapping from device independent color space to
printer CMYK), each of size 17° X 4, for a total of
265,302 bytes. The tables correspond to the nine
different media choices for the printer (transpar-
ency, plain paper, coated paper, etc.) and two ele-
ments in each pair differed in their black
generation.

A similar set of printer tables were used for 33-node
representation. The evaluation of compression was per-
formed using the following preprocessing methods:

(1) NRHD, RHD encoding methods along with one
out of C-scan, Hilbert, and raster scan options for
the serialization of CLUT data;

(2) cellular interpolation prediction model.

Five compression methods—LZMA,"” bzip2,'® gzip,
LZW and AAC—were evaluated. In addition to the pro-
posed preprocessing based methods, direct compression of
the tables was also performed using each of these methods
for benchmarking our performance improvement. In the
following, the additional processing steps are outlined and
the results summarized.

Table 1. Average compression ratios for recursive hierarchical differential and
nonrecursive hierarchical differential compression methods. Averages are computed
over four forward C(MYK device tables, where size of each table is 250563 bytes in
uncompressed format

Preprocessing

RHD+ NRHD+
C-scan Hilbert Roster  C-scan Hilbert  Raster

LZMA 2.58 2.58 2.56 3.15 3.07 2.33
bzip2 2.38 231 231 293 2.85 237
Gzip 231 2.30 2.30 2.68 2.64 2.29
AAC 2.63 2.63 2.63 2.40 241 235
LIW 215 2.14 2.09 242 249 245

From the information on the sizes of the different
tables, we see that CMYK tables account for a major part
(72%) of the CLUT data. We therefore begin by comparing
the performance for different methods over these tables. We
first compare the performance across the different variants
of the proposed hierarchical differential encoding methods.
Table I lists the average compression ratios over the CMYK
table data set for the different possible combinations of
NRHD/RHD differential encoding methods with the raster/
C-scan/Hilbert space filling curves for data reordering, and
LZMA/bzip2 for compression. From a comparison of the
numbers in Table I, it is apparent that the NRHD + C-Scan
+LZMA method performs best with NRHD + Hilbertscan
+LZMA as a fairly close second.

Next we compare the best performing hierarchical dif-
ferential encoding method (NRHD+C-Scan+LZMA)
against the cellular interpolative prediction. Table II com-
pares the performance of these two methods against each
other and against direct compression over the four CMYK
tables. From the tabulated values we can see that these two
methods perform uniformly and significantly better than di-
rect compression. From the detailed results, we have seen
that the performance across CLUTs is rather similar and
therefore averaged values over the CLUTs may be used to
draw useful and significant conclusions. Observing the num-
bers in Table II it is apparent that cellular interpolative pre-
diction model performs best (with a 31% saving in memory
requirements over direct compression). The nonrecursive hi-
erarchical encoding with C-scan reordering provides a sav-
ing of 25% over direct compression.

In Table III we compare the performance of the afore-
mentioned two methods against direct compression over the
complete data set of the printer tables. Once again, from the
compression results enumerated in Table I1I, we see that the
proposed methods offer significant gains over direct com-
pression. The best performing method (cellular interpolative
prediction model+LZMA) offers a reduction in memory of
67.10% in comparison with uncompressed binary tables.

As stated in the Introduction, finer sampling of the
CLUT input space increases the sizes of the tables exponen-
tially, causing additional concerns regarding memory re-

Table II. Compression performance of nonrecursive differential encoding and cellular interpolative prediction model on CMYK front end fables (in bytes, savings over direct
compression and compression rafio). Results represent averages over four tables with each table 250563 bytes in uncompressed binary format.

Blind Compression (-scan+NRHD+ Cellular Interpolative Prediction
(Baseline) Compression Model + Compression
File Size Comp. File Size Savings over Comp. File Size Savings over Comp.
(Bytes) Ratio (Bytes) Baseline Ratio (Bytes) Baseline Ratio
LZMA 423908 2.36 318598 105310 (24.84%) 3.15 291108 132800 (31.33%) 3.45
bzip2 450575 222 344328 106247 (23.58%) 291 344328 106247 (23.58%) 293
Gzip 540373 1.85 374472 165901 (30.70%) 2.68 345584 194789 (36.05%) 291
AAC 842445 1.19 417604 424841 (50.43%) 240 303819 538626 (63.92%) 3.31
Lzw 1041991 0.96 4377 627614 (60.23%) 242 352830 689170 (66.14%) 2.86
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Table 111 Compression ratio (total bytes uncompressed/total bytes compressed) over
the printer data set for direct compression and the best performing compression meth-
ods. The set of tables included four CMYK, four RGB, and nine pairs of back end tables
totaling 1414944 bytes in binary format.

Front End
Tables Back  Complete
End Device
(MYK RGB Tables Tables
Direct Compression LZMA 2.36 1.65 213 2.26
hzip2 222 1.59 1.95 211
Gzip 1.85 1.25 1.65 1.76

LZMA + Cellular Interpolative 345 2,67 272 3.19
Prediction Model

LZMA+NRHD + C Scan

315 2.24 2.93 3.04

Table IV. Compression ratio (total bytes uncompressed / total bytes compressed) over
the printer data set for direct compression and the best performing compression meth-
ods over CLUTs with 33 nodes per input dimension. The set of tables included seven
f(MYK, four RGB, and eight pairs of back end tables totaling 27635553 bytes in binary
ormat.

Front End
Tables Back  Complete
End Device
CMYK RGB Tables Tables
Direct Compression LZMA 4.05 2.65 3.26 3.60
bzip2 3.84 2.74 3.3 349
Gzip 292 2.02 247 2.65

LZMA + Cellular Interpolative 596 4.83 3.98 5.06
Prediction Model

LZMA + NRHD + C Scan 4.94 377 4.14 451

quirements. We also evaluated the algorithms developed in
this work over finer sampled 33 node tables. The results
obtained with the best performing methods are summarized
in Table IV. From the entries in the table, it can be seen that
once again considerable savings can be achieved with the
proposed preprocessing methods in comparison with the di-
rect compression (without preprocessing). The compression
ratios actually improve for the finer sampled case and can
partly alleviate the concern about memory requirements for
finer sampled CLUTs.

To assess the relative contributions of the predictive
coding and the reordering stages, we also evaluated LZMA
compression with hierarchical differential encoding without
reordering over our data set; this provided a compression
ratio of 2.71 for the 17 node tables. Note that, when used
together, predictive coding and reordering with LZMA pro-
vide a compression ratio of 3.04 (refer to Table III). Thus we
see that both the predictive coding and the reordering make
significant  contributions to the improvement in
compression.
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CONCLUSIONS

Preprocessing of CLUT data prior to lossless compression
provides significant improvement in compression perfor-
mance. In experimental evaluation over a representative
printer dataset, the best performing method offered memory
savings of approximately 69% compared with the uncom-
pressed tables. Compared with direct compression of these
tables (without preprocessing) the proposed methods save
approximately 32% in memory requirements. The prepro-
cessing methods proposed here are computationally simple
and can be readily implemented in printer firmware and in
software with little computational overhead.

Among the compression techniques evaluated, LZMA
with cellular interpolative predictive coding, along with a
coarse to fine data reordering, offered the best performance
over a representative set of printer CLUTs. Over a full data
set of 17 node CLUTs representative of current hardware,
this method offered a compression ratio of 3.19. For finer
sampled 33 node CLUTs a compression ratio of 5.06 was
obtained in our evaluation. The next best performing
method, non-recursive hierarchical differential encoding
(NRHD) with C-scan reordering, was also competitive and
yielded a compression ratio of 3.04 for 17 node CLUTs.
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