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Abstract
Background: Prior studies suggest that participation in re-
habilitation exercises improves motor function poststroke; 
however, studies on optimal exercise dose and timing have 
been limited by the technical challenge of quantifying exer-
cise activities over multiple days. Objectives: The objectives 
of this study were to assess the feasibility of using body-
worn sensors to track rehabilitation exercises in the inpatient 
setting and investigate which recording parameters and 
data analysis strategies are sufficient for accurately identify-
ing and counting exercise repetitions. Methods: MC10 Bio-
StampRC® sensors were used to measure accelerometer 
and gyroscope data from upper extremities of healthy con-
trols (n = 13) and individuals with upper extremity weakness 
due to recent stroke (n = 13) while the subjects performed 3 
preselected arm exercises. Sensor data were then labeled by 
exercise type and this labeled data set was used to train a 
machine learning classification algorithm for identifying ex-

ercise type. The machine learning algorithm and a peak-find-
ing algorithm were used to count exercise repetitions in 
non-labeled data sets. Results: We achieved a repetition 
counting accuracy of 95.6% overall, and 95.0% in patients 
with upper extremity weakness due to stroke when using 
both accelerometer and gyroscope data. Accuracy was de-
creased when using fewer sensors or using accelerometer 
data alone. Conclusions: Our exploratory study suggests 
that body-worn sensor systems are technically feasible, well 
tolerated in subjects with recent stroke, and may ultimately 
be useful for developing a system to measure total exercise 
“dose” in poststroke patients during clinical rehabilitation or 
clinical trials. © 2021 The Author(s).

Published by S. Karger AG, Basel

Introduction

Nearly 800,000 strokes occur in the USA each year [1], 
and many stroke survivors are unable to fully participate 
in prior activities due to stroke-related disabilities [2]. 
While there has been major progress in acute stroke treat-
ments and stroke survival [1], the field of neurorehabilita-
tion has lagged behind. Few interventions show consis-
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tent effects across multiple trials and less than 10% of the 
American Heart Association adult stroke rehabilitation 
guidelines are based on strong (i.e., Class I or Level A) 
evidence [3]. It is critical that we find ways to advance the 
field of rehabilitation research [3, 4].

One challenge in rehabilitation is the lack of a method 
to quantify the amount of rehabilitation therapy, or reha-
bilitation “dose.” Meta-analyses suggest that more reha-
bilitation therapy correlates with better outcomes [5–8]. 
However, the optimum timing and quantity of motor 
practice to maximize functional outcomes remain un-
clear [9]. Prior studies examining the dose-response rela-
tionship in patients with stroke used time spent in thera-
py to estimate the dose of stroke rehabilitation exposure. 
However, the number of exercise repetitions per therapy 
session is highly variable [10] and may contribute to un-
explained variability in recovery outcomes between pa-
tients.

Counting the number of repetitions for each exercise 
performed has been suggested as a preferable measure-
ment of exercise dose [8]. However, manual repetition 
counting of patient exercises is laborious and error-prone. 
New technologies and sensors may enable automated sys-
tems for exercise repetition counting. Optical motion 
capture technology can track patient arm movements 
[11]; however, this method has classically required mul-
tiple camera angles and rigid body surface markers and is 
therefore predominantly confined to motion analysis lab-
oratories. While newer artificial intelligence-based mo-
tion analysis software systems no longer require markers 
to identify limb movements [12], they require constant 
video monitoring to measure all exercises throughout the 
day. Recently, new sensor technologies and machine 
learning have led to interest in sensor-based systems for 
movement classification. Wearable accelerometers have 
been used to estimate arm movement; however, acceler-
ometer measurements alone may overestimate the 
amount of purposeful limb movements [13]. Applying 
more complex analyses such as machine learning algo-
rithms to data collected by body-worn sensors may pro-
vide a more accurate assessment of movement patterns in 
patients with illness, including patients with neurological 
disease [13–15].

We therefore conducted a pilot study in the inpatient 
setting to assess the feasibility of automatically measuring 
exercise repetition “dose” using body-worn sensors and 
machine learning. We asked healthy controls and sub-
jects with hemiparesis due to recent stroke to perform 3 
arm exercises while wearing superficial sensors (Bio-
StampRC; MC 10 Inc., Lexington, MA, USA). Using ac-

celerometer and gyroscope data collected from the sen-
sors, we compared the effect of sensor placement, sensor 
data, and data analysis strategies on our system’s ability 
to: (1) automatically categorize exercise type, and (2) ac-
curately count the number of repetitions of each specific 
exercise type in new data sets.

Methods

Participants and Inclusion/Exclusion Criteria
Subjects were recruited through posted flyers, emails, and in-

patient rehabilitation, neurology, and neurosurgery units at a ma-
jor academic medical center. Inclusion criteria (for subjects with 
recent stroke) included having moderate upper extremity weak-
ness (medical research council strength scale score: 3–4) due to 
recent (≤4 weeks) stroke. Patients with both ischemic and hemor-
rhagic strokes were recruited for this study. Exclusion criteria (for 
all subjects) included chronic upper extremity injury, pain, severe 
upper extremity weakness (medical research council strength scale 
score ≤2), aphasia/cognitive impairment affecting ability to make 
health-care decisions, or medical issues precluding participation.

Sensor Placement and Data Acquisition
Three MC10 BioStampRC® wearable sensors were placed on 

the subject’s affected arms to record a combination of triaxial ac-
celerometry, electromyography, or gyroscope data. In this manu-
script, only results using accelerometer and gyroscope data are dis-
cussed. A sensor was placed on the upper arm (volar surface of the 
brachium), forearm (medial volar surface), and hand (dorsal sur-
face) (Fig. 1). The forearm sensor was originally placed on the me-
dial forearm over the bulk of the wrist flexor muscle group (Fig. 1a). 
However, sometimes this sensor location was not feasible due to 
the presence of peripheral intravenous lines. In those cases, the 
wrist extensor muscle group was used (Fig. 1b).

Exercise Protocol
The subjects received verbal instructions and visual demon-

strations on how to perform 3 exercises:
1.	 Exercise 1: flexion/extension of the elbow (Fig. 1c)
2.	 Exercise 2: supination/pronation of the forearm (Fig. 1d)
3.	 Exercise 3: extension/flexion of the wrist (Fig. 1e)

Patients were instructed to perform 3 sets of 20 repetitions of 
each exercise, separated by non-exercise (rest) periods. Study per-
sonnel recorded the start and stop of each exercise on a tablet-
based sensor application, such that the “true” activity was labeled 
at the correct time on the collected data. The entire recording pe-
riod lasted up to 3 h. Patients were asked to refrain from repetitive 
exercise practice but were otherwise allowed to move as they wish 
during the rest period. Subjects did not have rehabilitation therapy 
sessions during the data recording period.

Data Processing
Data were recorded simultaneously from the 3 sensors. Post-

processing was required to synchronize and match sampling fre-
quencies between the different sensors (31.25 Hz for accelerome-
try recording, 62.5 Hz for accelerometry + gyroscope recording). 
MATLAB and Delimit software programs were used for data pro-



Balestra/Sharma/Riek/BuszaDigit Biomark 2021;5:158–166160
DOI: 10.1159/000516619

cessing. First, all sensor sampling frequencies were set to 62.5 Hz 
via linear interpolation of the data (MATLAB interp1 function). 
Then, data were synchronized by the first Unix timestamp value 
for each exercise session. The data were then labeled according to 
Unix timestamp intervals, created by a start/stop timer included in 
the MC10 application. High frequency noise and wandering base-
lines due to gravity signatures, which can vary between subjects 
based on slight differences in sensor orientation, were removed 
using a bandpass filter (0.1–1.5 Hz). The entire data sets (including 
each data point recorded during the session) were then z-score 
normalized (MATLAB “normalize” function) to remove any vari-
ability introduced by the differences between subjects based on 
movement speed.

Classification, Data Extraction, and Repetition Enumeration 
Using Peak Finding
Once all data sets were synchronized, labeled, filtered, and nor-

malized, MATLAB’s classification learner add-on was used to as-
sess the relative efficacies of several possible classification algo-
rithms, using a leave-one-out cross validation method. The MAT-
LAB Fine KNN classification algorithm [16] achieved the highest 
reported classification accuracy (see Results – Table 1) and was 
therefore used for subsequent analyses. The algorithm was trained 
and tested on each row of the movement data variables of entire 
data sets, including the data from resting periods. To calculate the 
number of repetitions performed of each exercise, data corre-
sponding to exercise 1, exercise 2, and exercise 3 were separately 
extracted from each dataset according to the column of algorithm 
predicted discrete labels. The MATLAB findpeaks function was 
then applied to a subset of data variables to count the number of 
repetitions for each activity. For the exercise 1 data, the x-axis ac-
celerometer data from the forearm sensor were used, because clear 
peaks representing exercise 1 repetitions are found in this data 
(Fig. 2). For the same reason, the y-axis and x-axis gyroscope signal 
from the dorsal hand sensor were used to count repetitions of ex-
ercise 2 and 3, respectively.

Peak Counting Accuracy Calculation
To determine peak counting accuracy, the system’s estimate of 

the number of repetitions performed by the patient for each exer-
cise (Nautomatic), was compared to the manually counted repetition 
number (Nmanual) with the following formula:

manual automatic

manual

Accuracy 1 100% .
N N

N

æ ö- ÷ç ÷ç= - ´÷ç ÷÷çè ø
  

Results

Participants
Thirteen of the subjects enrolled in this study were 

healthy controls with no upper extremity weakness (aver-
age age: 43 years old, range: 20–79 years old). Twenty sub-
jects with recent stroke consented to the study. Four were 
excluded due to somnolence or inability to engage in 
multiple repetitions of the exercises due to weakness. 
Three subjects were excluded because of incomplete data 
(i.e., accidental sensor removal). Thirteen subjects with 
recent stroke ultimately completed the study. For these 13 
subjects, the mean age was 70 years old (range: 40–90 
years old), mean medical research council strength scale 
score was 3.8 (range: 3–5), and mean time since stroke 
onset was 7.8 days (range: 3–19 days).

Study Protocol Deviations, Technical Issues, and 
Adverse Events
All subjects completed their study sessions and no sub-

jects reported skin irritation or allergic reactions to the 
sensors during the study. However, in 3 recording ses-

Flexor placement Extensor placement

a b

c d e

Fig. 1. Sensor placement and illustration of 
arm exercise protocol. a Original sensor 
placement, with sensors placed on the up-
per arm (volar surface of the brachium), 
forearm (medial volar surface, over the 
bulk of the wrist flexor muscle group), and 
hand (dorsal surface). b Alternate sensor 
placement. Sensor placement was some-
times limited in inpatient subjects because 
of peripheral intravenous lines or large, 
painful bruises. In those cases, we collected 
data from a more lateral forearm position, 
over the wrist extensor muscle group. Pa-
tients were asked to perform multiple sets 
of 3 specific exercises while wearing the 
sensors. c Exercise 1: flexion/extension of 
the elbow. d Exercise 2: supination/prona-
tion of the forearm. e Exercise 3: extension/
flexion of the wrist. Please see text for more 
details on the exercise protocol.
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sions accidental sensor removal occurred due to adhesive 
failure and the session was rerecorded.

Comparison of Classification Accuracy between 
MATLAB Classification Algorithms
The mean classification accuracies were compared be-

tween multiple MATLAB classification algorithms. The 
Fine KNN algorithm achieved the highest classification 
accuracy rates (Table 1).

Comparison of Repetition Counting Accuracy for 
Control and Stroke Patient Data Sets
Repetition count accuracy was compared between 

data obtained from healthy controls and data from stroke 
patients when using data from all sensors. Using only ac-
celerometer data, no significant difference was found be-
tween the mean count accuracy for healthy control sub-
jects (mean [M] = 78.1%, standard deviation [SD] = 

13.3%) and subjects with stroke (M = 68.3%, SD = 19.67%) 
(p = 0.10). Likewise, for the data sets with gyroscope data, 
the count accuracy for healthy control data sets (M = 
96.2%, SD = 1.1%) was not significantly higher than that 
of stroke patient data sets (M = 95.0%, SD = 0.7%) (p = 
0.11).

System Performance with the Addition of Gyroscope 
Data
To determine if recording gyroscope data in addition 

to accelerometer data improved counting accuracy, aver-
age counting accuracy with and without gyroscope data 
from all sensors were compared for each subject who had 
both accelerometer and gyroscope data collected. The 
overall mean counting accuracy without gyroscope data 
for these subjects is 84.3% (SD = 10.2%), while the mean 
counting accuracy for the same subjects with gyroscope 
data included in the analysis is 95.6% (SD = 1.1%), show-

St
an

da
rd

ize
d 

ac
ce

le
ra

tio
n

(Z
-s

co
re

)

8
10

6
4
2

–2
0

–4
–6

Time (ms)

0
5,0

00
10

,00
0

15
,00

0
20

,00
0

25
,00

0
30

,00
0

35
,00

0
40

,00
0

45
,00

0

St
an

da
rd

ize
d 

ac
ce

le
ra

tio
n

(Z
-s

co
re

)

8
10

6
4
2

–2
0

–4
–6

Time (ms)

0
5,0

00
10

,00
0

15
,00

0
20

,00
0

25
,00

0
30

,00
0

35
,00

0
40

,00
0

Ac
ce

le
ra

tio
n,

 g

2.5
2.0
1.5
1.0
0.5

0
–0.5
–1.0
–1.5

Time (unix timestamp, ms)
1.5

59
67

4e
 + 12

1.5
59

67
5e

 + 12

1.5
59

67
6e

 + 12

1.5
59

67
7e

 + 12

1.5
59

67
8e

 + 12

1.5
59

67
9e

 + 12

St
an

da
rd

ize
d 

ac
ce

le
ra

tio
n

(Z
-s

co
re

)

40
30
20
10
0

–10
–20
–30

Time (unix timestamp, ms)
1.5

59
67

4e
 + 12

1.5
59

67
5e

 + 12

1.5
59

67
6e

 + 12

1.5
59

67
7e

 + 12

1.5
59

67
8e

 + 12

1.5
59

67
9e

 + 12

a b

c d

Fig. 2. Example of data preprocessing, extraction based on label, and peak finding. a Raw accelerometer data in 
1 plane from 1 sensor. b The data after filtering and z-score normalization. Data is then extracted according to 
algorithm label (c) and accelerometer data peaks (d) are identified to count the number of repetitions the subject 
performed of the exercise.
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ing a significant increase in average counting accuracy 
when gyroscope data are also utilized (p = 0.007). On all 
subjects from whom gyroscope data were recorded, an 
overall repetition counting accuracy of at least 94.3% was 
achieved, even for patients with a medical research coun-
cil strength scale score of 3/5 (Table 2).

To determine if the beneficial effect of adding gyro-
scope data applied to each of the 3 exercises, the mean 
count accuracies for each exercise were compared. Count-
ing accuracy was significantly increased by adding gyro-
scope data in exercise 1 (M = 88.9%, SD = 12.0% with only 
accelerometer, M = 96.9%, SD = 1.9% with both acceler-
ometer and gyroscope data, p = 0.03) and exercise 3 (M = 
71.1%, SD = 23.2% with only accelerometer, M = 93.6%, 
SD = 1.7% with both, p = 0.01) but not exercise 2 (M = 
92.9%, SD = 8.8% with only accelerometer, M = 96.3%, 
SD = 2.2% with both, p = 0.15).

Figure 3 shows the effect of adding gyroscope data on 
counting accuracy. For healthy controls, the mean count-
ing accuracy is significantly increased by including gyro-
scope data (M = 96.2%, SD = 1.1%) versus using only ac-
celerometer data (M = 92.4%, SD = 2.6%) (p = 0.04). In 
stroke patient data sets, incorporating gyroscope data had 
an even greater increase in count accuracy (M = 95.0%, 
SD = 0.7%) compared to accelerometer data alone (M = 

76.3%, SD = 7.9%) (p = 0.0099). The average percent in-
creases in counting accuracy achieved from incorporat-
ing gyroscope data for healthy controls (M = 3.9%, SD = 
3.1%) and subjects with stroke (M = 18.7%, SD = 8.2%), 
were compared, and the latter was found to be signifi-
cantly larger than the former (p = 0.01).

Effect of Number of Sensors
To evaluate the relevance of the different variables, a 

parallel coordinates plot was used. We found that the gy-
roscope and accelerometer data from the hand sensor and 
the accelerometer data from the forearm sensor are the 
most important variables for activity classification. These 
findings suggest a relative sensor importance of dorsal 
hand > forearm > upper arm sensor. We then created data 
sets with only 2 sensors (dorsal hand and forearm) or only 
1 sensor (dorsal hand) for subjects with accelerometry 
and gyroscopy data to investigate the effect of decreasing 
number of sensors on counting accuracy (Fig.  4). The 
mean count accuracy is highest when using 3 sensors  
(M = 95.6%, SD = 1.1%), significantly lower with only 2 
sensors (M = 92.3%, SD = 3.1%) (p = 0.01), and signifi-
cantly lower still when decreasing from 2 to 1 sensor  
(M = 85.1%, SD = 4.6%) (p = 0.003).

Comparison of Effect of Number of Sensors versus 
Addition of Gyroscope Data
In order to evaluate the relative importance of sensor 

number and gyroscope data on repetition counting accu-
racy, we compared the effects of removing sensors versus 

Table 1. Comparison of classification accuracy on all subject data 
using various classification algorithms

Algorithm True positive rates 
(%, averaged across 
classes)

False discovery 
rate (%, averaged 
across classes)

Fine KNN 98.5 0.7
Medium KNN 94.1 2.7
Coarse KNN 84.5 5.0
Cosine KNN 92.5 7.5
Cubic KNN 94.1 3.1
Weighted KNN 95.7 1.0
Subspace KNN 92.9 0.5
Fine Tree 79.2 11.8
Linear SVM 25.0 1.9
Quadratic SVM 82.9 5.4
Cubic SVM 87.9 3.9
Fine Gaussian SVM 74.5 2.3

Multiple types of MATLAB classification algorithms were 
trained and tested using a leave-one-out cross validation method, 
and the mean classification accuracy rates for each classification 
algorithm were compared. The Fine KNN algorithm provided the 
highest true positive rates and lowest false discovery rate, and was 
therefore chosen for subsequent analyses.

Table 2. Exercise repetition counting accuracy in individual 
subjects

Subject Medical research council 
strength scale score

Counting 
accuracy, %

1 3 95.2
2 3 94.5
3 3 94.3
4 4 95.9
5 5/Healthy control 96.2
6 5/Healthy control 95.1
7 5/Healthy control 95.8
8 5/Healthy control 97.8

In subjects that had both accelerometry and gyroscopy data 
collected, the repetition count accuracy was similar in healthy 
controls and patients with mild/moderate (medical research 
council strength score of 3/5 or 4/5 in the biceps and wrist 
extensors/flexors).
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removing gyroscope data on our results. Results attained 
with gyroscope and accelerometer data from all 3 sensors 
were compared with results obtained from using acceler-
ometer and gyroscope data from only 1 sensor (the dorsal 
hand sensor). The mean repetition count accuracy when 
using only 1 sensor was 10.5% (SD = 4.6%) lower than 
when using all 3 sensors. Similarly, when only accelerom-
eter data from all 3 sensors were used, the mean count 
accuracy was 11.3% (SD = 9.8%) lower than when using 
both gyroscope and accelerometer data from all 3 sensors. 
No significant difference between these accuracy reduc-
tions was detected (p = 0.84).

Effect of Forearm Sensor Placement
To evaluate the effect of forearm sensor placement on 

accuracy, the count accuracies for all subjects with flexor 

and extensor sensor placements were compared. The 
mean count accuracy for subjects with the forearm sensor 
in the flexor position (M = 75.2%, SD = 11.7%) versus ex-
tensor position (M = 72.0%, SD = 22.1%) was not found 
to be significantly different (p = 0.60), indicating that ei-
ther forearm sensor position is viable for the system.

Discussion

This study demonstrates the feasibility of using body-
worn sensors to identify specific exercises and automati-
cally count exercise repetitions in the inpatient stroke and 
acute rehabilitation setting. It also explores the effect of 
using different recording parameters on repetition count 
accuracy. While our study focused on 3 common arm ex-

Subject (1–4 = subjects with stroke; 5–8 = healthy controls)

Overall repetition counting accuracy using only accelerometer vs.
gyroscope + accelerometer 
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Fig. 3. Overall repetition counting accura-
cy in individual subjects using only acceler-
ometer data (light grey bars) versus data 
with both gyroscope and accelerometer 
data (black bars). The addition of gyro-
scope data improved repetition counting 
accuracy for each subject. Error bars repre-
sent 95% confidence intervals.

Fig. 4. Effect of number of sensors on count 
accuracy. Repetition accuracy counting 
was compared when using 1, 2, and 3 sen-
sors from individual subjects. For all sub-
jects, accuracy was highest when incorpo-
rating data from 3 sensors and decreased 
with fewer sensors. Error bars represent 
95% confidence intervals.
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ercises, the conclusions on feasibility, data analysis ap-
proaches, and recording parameters provide insight for 
the design of future systems for exercise dose tracking.

Sensors were well tolerated and no subjects reported 
skin irritation or other side effects. However, there were 
several instances of skin adherence failures when the ad-
hesive sticker failed to keep the sensor on the subject’s 
arm for the entire duration of the study. Possible future 
solutions to this issue include using stronger adhesives, 
although this may increase discomfort during sensor re-
moval. We have also found cohesive bandages helpful 
when used in addition to the sensor adhesives.

Increasing the number of sensors per arm from 1 to 2 
or 3 significantly increased repetition counting accuracy, 
with the average count accuracy increasing from 85.1% 
with data from only the hand sensor to 95.6% when utiliz-
ing the data of all 3 sensors. This supports prior observa-
tions that single wrist-worn sensors may not be sufficient 
for studying arm movements in specific clinical popula-
tions [13].

Adding gyroscope data collection significantly im-
proved counting accuracy — especially in subjects with 
upper extremity weakness due to stroke. In these patients, 
adding gyroscope recording to the dorsal hand sensor im-
proved average repetition count accuracy by over 18% 
(76.3–95.0%). Healthy subjects did not show as large of 
an improvement in accuracy with the addition of gyro-
scope data (92.4–96.2%), which may be due to a ceiling 
effect as healthy subjects had a higher repetition count 
accuracy with accelerometry alone. These findings sug-
gest that gyroscope data may be an important measure-
ment in future methods for measuring upper extremity 
rehabilitation movements.

No significant difference was detected between the re-
ductions in repetition counting accuracy when either 
fewer sensors’ data were used or gyroscope data were not 
used, indicating that these variables are approximately 
equal in importance for the optimal performance of the 
system. These results suggest that automatic repetition 
counting systems will be most effective if they utilize a 
larger quantity of sensors placed on exercise-relevant 
body locations as well as a wider range of movement data 
types.

While the results of this study are promising, there are 
several limitations. First, the system has only been tested 
on 3 basic exercises. Second, gyroscope data were only 
collected from a subset of subjects (4 healthy controls and 
4 subjects with stroke), which limits the statistical power 
of our conclusions. Third, stroke patient data were from 
subjects with at least moderate strength (medical research 

council strength scale score strength scale ≥3). Therefore, 
the system’s ability to classify and quantify a wider range 
of arm exercises, and in more disabled individuals, is un-
certain. More advanced data science techniques may help 
overcome some of the challenges related to variability of 
movements in patients with weakness due to stroke. For 
example, alternative time series analysis approaches tak-
ing into account the temporal progression of movements 
involved in an exercise may help identify movement pat-
terns with a wider range of speeds or movement pauses.

Finally, the current system has time restraints due to 
battery limitations. For example, while the current sen-
sors can record accelerometer data for 21 h, adding gyros-
copy data reduces the battery life to only 3 h (assuming a 
62.5 Hz sampling rate). Longer monitoring periods will 
require longer-lasting sensor batteries or more conserva-
tive recording solutions.

In recent years, multiple studies have been published 
reporting the use of similar sensor systems for automated 
movement tracking, with the majority of these studies fo-
cusing on the classification of whole-body movements, 
such as standing, sitting, walking, ascending/descending 
stairs, playing sports, cycling, and others [17, 18]. Clas-
sification of arm movements has been more limited in 
scope and/or application of the system. Some research 
groups built classification algorithms for arm exercises 
and applied them to stroke patient data, but did not at-
tempt to create a repetition quantifying system to mea-
sure exercise dose [14, 15]. Others created arm exercise 
classification and repetition counting systems but did not 
apply them to data from subjects with stroke [19, 20]. 
More recently, Guerra and colleagues developed a system 
to classify and quantify movement primitives (compo-
nents of arm movements that cannot be broken down 
further). They report lower rates of accuracy (precision of 
approximately 80% in control subjects, 79% in subjects 
with weakness due to stroke) than in our study [21]. 
While the particular arm movements studied (exercises 
vs. movement primitives) may have contributed to this 
observed difference in accuracy, we also used a different 
classification and repetition counting strategy. In our al-
gorithm, activity is first classified and then number of 
repetitions is estimated by counting data peaks from the 
sensor identified to have maximum fluctuations during 
the course of the exercise. Such a strategy is less sensitive 
to classification errors, and thus produces a higher repeti-
tion counting accuracy. Future work will investigate the 
success of both strategies when applied to more types of 
exercises and a wider range of patient data.
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Conclusion

This work suggests that using wearable sensors in the 
inpatient stroke and acute rehabilitation setting is feasible 
and has the potential for creating an automated system to 
quantify individual rehabilitation therapy dose. Future 
work is needed to expand the range of rehabilitation ac-
tivities identified by this system and to improve sensor 
adherence and battery life. Ultimately, such a system may 
contribute to answering key questions about how patient 
exercise “dose” in the acute/subacute poststroke period 
affects final motor outcomes, produce a system for pro-
viding patient feedback on how their efforts compare to 
target doses, and improve patient poststroke function.
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