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Capacity Analysis For Orthogonal Halftone Orientation
Modulation Channels
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Abstract—Halftone dot orientation modulation has recently been pro-
posed as a method for data hiding in printed images. Extraction of data
embedded with halftone orientation modulation is accomplished by com-
puting, from the scanned hardcopy image, detection statistics that uniquely
identify the embedded orientation. From a communications perspective,
this data hiding setup forms an interesting class of channels with dot orien-
tation as input and a vector of statistics as the output. This paper derives
capacity expressions for these channels that allow for numerical evaluation
of the capacity. Results provide significant insight for orientation modula-
tion based print-scan resilient data hiding: the capacity varies significantly
as a function of the image graylevel and experimentally observed error free
data rates closely mirror the variation in capacity.

Index Terms—Capacity, halftone, hardcopy data embedding, orientation
modulation channel.

I. INTRODUCTION

Hardcopy data embedding, i.e., data embedding in images that are
intended to survive the print-scan process, continues to be an area
of significant interest. Applications lie in document authentication,
tamper prevention and detection, tracking/inventory control, and
meta-data embedding. While hardcopy data embedding shares several
generic concerns with robust watermarking, the major distinguishing
factor is the presence of the print-scan distortion channel.

Continuous grayscale images are typically binarized or halftoned be-
fore printing. A large number of binary representations provide a per-
ceptually acceptable representation of a given continuous image. The
flexibility available in choosing among these binary patterns provides
an avenue for data embedding. A significant class of methods [2]–[5]
utilize oriented binary patterns for the purpose of embedding, including
our recent proposal [5] upon which we base our subsequent discussion.
Our method adapts classical clustered dot halftoning [6], which is used
widely in laser printers, for hiding data in hardcopy images via halftone
dot orientation modulation. Our modifications of the halftoning process
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imply that for a constant gray area the binary halftone dot is elliptically
(as opposed to circularly) shaped.1 When combined with a coordinate
transform, this permits dot-orientation control and hence data embed-
ding proceeds by a choice of orientation (or by quantization in orienta-
tion). Dot orientation based embedding is attractive for two major rea-
sons. First, orientation exhibits robustness under printing and scanning
because variations in the printer and scanner graylevel “tone” responses
do not directly impact dot orientation. Second, a change of orienta-
tion alone does not change the area covered by the dot. Thus average
graylevel of local regions is preserved under orientation modulation,
a trait that is advantageous in cases where maintaining faithfulness to
printed image quality is important.

Data extraction is accomplished by identifying the embedded orien-
tation for each of the elliptical halftone dots from a scan of the printed
image. This typically involves the computation of suitable detection
statistics corresponding to each of the dots, based on which the embed-
ding orientation is estimated. Alternatively, if error correction coding
is employed, the detection statistics for the image are collectively uti-
lized for decoding the embedded data. Thus data communication takes
place over a composite effective channel formed by the combination of
the halftoning (with data embedding), printing, scanning, and statistics
extraction stages. We refer to this channel as the orientation modula-
tion channel. Characterization of this orientation modulation channel
is necessary: both in order to adapt the embedding to the characteristics
of the channel and to quantify the fundamental limits so that an appro-
priate error correction code with a suitable code rate can be chosen.
A model for the orientation modulation channel was proposed in [5]
and preliminary results in forms of capacity upper bounds were pro-
vided in [1]. This paper follows up by establishing fundamental limits
of such channels. Specifically, we further the work in [1] by providing
exact numerical evaluations of the capacity. Additionally, we introduce
the notion of “orientation symmetric channels” which provide an accu-
rate approximation for practical orthogonal halftone orientation mod-
ulation embedding schemes. We prove formally that for such channels
the equiprobable input distribution is indeed the one that achieves ca-
pacity.

We note that our analysis is specific to orientation modulation
embedding methods. Print-scan channels have been previously inves-
tigated in other settings [7]–[9]. Because our analysis encapsulates,
within the orientation modulation channel, the entire process from the
point where the input orientation is provided for halftone based embed-
ding to the point where detection statistics are computed, print-scan
distortions do not need to be modeled at the image level. Instead,
by characterizing the orientation modulation channel experimentally,
we automatically comprehend these distortions in our analysis in a
manner that closely approximates practical use scenarios.

Evaluation of the capacity for experimentally characterized orienta-
tion modulation channels reveals that the capacity varies significantly
with graylevel and helps to identify hiding friendly graylevels. We also
compare the predicted capacity against experimentally obtained error
free operational rates obtained with low density parity check codes
(LDPC) and repeat accumulate (RA) codes and demonstrate that prac-
tical performance closely follows estimated capacity.

1In actual practice, the halftone threshold function is modulated and whether
oriented dots are produced or not is also dependent on the image graylevel. We
refer the reader to [5] for details that we omit here in order to quickly focus
attention on our primary problem of interest.

Fig. 1. Orientation modulation channel model.

Fig. 2. Simplified probabilistic model for the orientation modulation channel.

The rest of the paper is organized as follows. Section II sets up ori-
entation modulation channels with dot orientation as the input and a
detection statistics vector as the output. In Section III, capacity expres-
sions are derived for this class of channels. We introduce and focus
our attention specifically on the class of “orientation symmetric chan-
nels” that accurately approximate practical orthogonal halftone orien-
tation modulation channels, and simplify analysis by allowing for exact
quantification of capacity. In Section IV, we demonstrate an applica-
tion of the analysis by evaluating and plotting the channel capacity for
experimentally characterized clustered-dot halftone data hiding chan-
nels utilized in [5]. Section V summarizes concluding remarks.

II. ORIENTATION MODULATION CHANNELS

The orientation modulation channel we consider is shown in Fig. 1.
In this model, as indicated in the introduction, the channel input is the
orientation � of the halftone dot and the output is a vector of detec-
tion statistics ��� obtained from the printed and scanned version of the
dot. These statistics may correspond, for instance, to binary correla-
tions [10], or to image moments estimated from the scans [5]. The de-
tection statistics are computed after synchronization, which we implic-
itly assume for the modeling and analysis in the present paper.2 Fur-
thermore, the coverage area for the halftone dots is constrained by the
desired graylevel, the capacity of the channel is hence analyzed on a
per-graylevel basis.

In practical printing systems, the process of printing inherently in-
troduces a directional asymmetry, which when coupled with arbitrary
orientation modulation may result in an unintended and undesirable
variation in the average graylevel of the printed halftone. Thus in order
to limit perceptible distortion, practical data embedding systems based
on orientation modulation often limit the orientations of the dots to
two orthogonally oriented directions with respect to which the printing
process is symmetric, for example �45� with respect to the direction
of paper feed. This symmetry ensures that the orientation modulation
causes no change in average graylevel of the printed halftone—thus
eliminating (or at least very significantly reducing) potential embed-
ding artifacts. Accordingly for the purpose of estimating capacity, we
assume that the input � is drawn from a binary alphabet.

For the proposed modeling of the halftone channel, the expression
for capacity can be written as [11]

� � ���
����

�������	 � ���
����


�����	� �������	� (1)

2A technique for global and local synchronization is described in [5].
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where ������ denotes the (differential) entropy of the random vector ���
representing the detection statistics, and �������� denotes the condi-
tional differential entropy of ��� given the orientation �. For binary �
we can write �������� � �

��� ������������ � ��� which substituted
in the capacity expression of (1), yields

� � ���
����

�������

�

���

������������ � ��� � (2)

Although the channel model shown in Fig. 1 is valid for orientation
modulation channels with arbitrary detection statistics, in this paper, we
specifically focus on moment based detection [5]. In this case, the de-
tection statistics vector��� comprises of continuous valued moments��

and �� evaluated along the two orthogonal directions corresponding to
the input modulation [5].

III. CAPACITY FOR ORIENTATION MODULATION CHANNELS

To quantify fundamental limits, a probabilistic model of the channel
in Fig. 1 is required. This is tantamount to modeling the conditional
density function ���������� �����. Analytically describing the multi-di-
mensional density function ���������� �����, however, constitutes a hard
task especially, in the absence of a physically inspired model. In order
to make the problem tractable, in [5] we assume conditional indepen-
dence given by

������������� � �� ���������� �������� (3)

Fig. 2 illustrates the simplified probabilistic model of the orientation
modulation channel. In previous work [5], we validated this assump-
tion of conditional independence.3 (i.e. separability of the probability
density function) by estimating the 2�2 covariance matrices (for var-
ious graylevels) of the detection statistic vector, and demonstrating that
these matrices are substantially diagonal. Under the conditional inde-
pendence assumption, the joint conditional entropy in (2) is then ex-
pressed as �������� � �������	�������. It follows that the capacity
becomes

�����
����

�������

�

���

����� 
���������� 	 ����������� �

(4)
Additionally, the symmetry inherent in the print-scan distortion

channel w.r.t orthogonally chosen dot orientations motivates the
following symmetry constraints on their conditional densities:

�� ���	���� � �� ���	������	 (5)

�� ���	���� � �� ���	������	 (6)
As is shown later in Section IV, the aforementioned conditions in fact

accurately approximate experimentally estimated densities. For ease of
exposition, from now on we refer to the orientation modulation chan-
nels with the symmetry constraints in (5) and (6) as “symmetric orien-
tation channels.”

These constraints then imply 
��������	��������� � 
��������	
���������. That is, the dependence of the second term in (4) on ����
is eliminated. The capacity is then expressed as

� � ���
����

������� 
�������� 	 ���������

� ���
�����

�����
�� 
�������� 	 ��������� (7)

where 
 � ����� and �����
� � ������ �
 ���������� with

������ � ���������
	 ������������ 
�� (8)

3Strictly, conditional uncorrelatedness.

The following proposition identifies the capacity achieving distribution
in (7).

Proposition 1: For symmetric orientation channels, the equiprob-
able distribution for ����, i.e., 
 � ���, achieves the maxima that
defines the capacity.

Proof: The mutual information 
������� is a concave function of
the input distribution ���� for a fixed ������������� [11]. For our sym-
metric orientation channel in (7), this implies that ������ is a concave
function of ����. We next establish that the equiprobable distribution,
i.e. 
 � ��� is a stationary point of ������ and therefore 
�������.

Using conditional independence assumption in (3) and symmetry
constraints in (5) and (6), the joint density function of detection sta-
tistics can be expanded as

��������� � 
�� ����������� ���������

	��� 
��� ����������� ���������� (9)

The joint entropy of image moments can then be obtained from (9)
as

������ ��

�

��

�

��



���������� 	 ��� 
������������

� �
 

���������� 	 ��� 
������������������

(10)

where ��	� � �� ���	���� and ��	� � �� ���	����. The derivative of
������ with respect to ���� can be expressed as

�������

�

��

�

��

�

��


����������� �����������

� �
 

���������� 	 ��� 
�������������������

(11)

By substitution, one can readily verify that 
� � ��� satisfies the
stationary point condition ���������
 � �. Thus the equiprobable
input distribution is a stationary point of ������ and thereby of the mu-
tual information 
�������. It follows that equiprobable input distribu-
tion achieves the maxima that defines the capacity. In the Appendix, we
further show that ������ is a strictly concave function of ���� and thus
the stationary point 
 � ��� corresponds to the unique maximizer.

We next consider characterization of conditional densities
�� �������� and �� �������� in order to evaluate the conditional
entropy ��������, �������� in the capacity expression of (7). As in
our prior experimental work [5], we use the exponential power density
family for modeling the conditional densities. Specifically, we assume
that for each � � �, 2, �� ��������� is an exponential power family
probability density function with mean �� , scale parameter �� ,
and shape parameter �� and �� ��������� is an exponential power
family probability density function with mean �� , scale parameter
�� , and shape parameter �� . The channel is then characterized by the
parameters ��� � �� � �� � �� � �� � �� ������ and expressions for the
conditional densities can be readily obtained from the corresponding
expressions for the exponential power density family [12]. For in-
stance,

�� ��������� �
��

��� � ����� �
��� �

�� � ��

��

�

� (12)
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Fig. 3. Experimentally estimated parameters for the conditional density functions. (a) Mean of channel conditional density functions over graylevels. (b) Standard
deviation of channel conditional density functions over graylevels.

Substituting the differential entropy of exponential power density
family for the conditional entropy terms in (7), the capacity becomes

� � ���������� �

��
� ��

��
��� � ����� �

	
�

��
� ��

��
��� � ����� �

� (13)

The capacity can be evaluated by using the above expression with a
numerical computation of the ��������� term.

The exponential power density family of distributions includes a
number of exponential densities commonly used for modeling pur-
poses. In particular, the normal and Laplacian distributions are mem-
bers of the the exponential power density family. For �� � � the den-
sity in (12) corresponds to the Laplacian distribution and for �� � � it
becomes the Gaussian distribution with variance ��� ��. The situation
when all conditional densities are modeled as Gaussians will be of par-
ticular interest in our subsequent experimental validation, and we note
that in this case, the capacity expression reduces to

� � ���������� �� ��
�
��	 	 �� ��

�
��	 (14)

where the channel conditional densities are 
� ��������� �
� �
� � ��� �, 
� ��������� � � �
� � ��� �, where 
� is the
mean and �� the standard deviation of 
� ���������, and other terms
are defined similarly. The expression in (14) can also be directly
obtained using the well-known [11] expression ����

�
��	� for the

differential entropy for a Gaussian random variable with standard
deviation �.

IV. CAPACITY EVALUATION FOR EXPERIMENTALLY CHARACTERIZED

CHANNELS

We demonstrate the variation in capacity with graylevel by using
an example experimental set up for which we characterize the channel
transition probabilities 
� �������� and 
� �������� in (5) and (6) and
then utilize these to numerically estimate the channel capacity in (14).

Our experimental set up and settings were identical to those in [5]. In
order for this description to be largely self-contained we repeat some
of the key parameter settings here. Halftone images with clustered el-
liptical dots with a halftone frequency of 75 lines per inch (lpi) were
generated for each graylevel 0, 1, 
 
 
, 255 for an 8 bit image repre-
sentation, where the elliptical dots were oriented along ���� direc-
tions depending on the embedded data. The halftone images were then
printed on a 2400 dots per inch (dpi) xerographic printer and the re-
sulting printed image is scanned on a flatbed scanner with a 1200 dpi
resolution.

To obtain the channel model parameters, we use scans of the
printed images corresponding to a graylevel, compute moments
along the �45� directions and calculate (conditional) histograms of
these moments for each of the orientations. We then determine the
channel parameters �
� � �� � �� � 
� � �� � �� ������ required for
the model of Section III as the values of these parameters for which
the modeled conditional densities provide the best least squares fit
to the corresponding conditional histograms. We find that the esti-
mated channel conditional densities closely follow the experimentally
observed conditional histograms. Also, for most of the graylevels,
the shape parameters ��� � �� ������ are found to vary in a narrow
interval around 2 indicating that the modeled densities are close to the
Gaussian distribution. Based on this observation, for the remainder of
the experimental results, we use the Gaussian model for the channel
conditional densities, which: a) reduces the parameters to four vari-
ables �
� � �� ������, allowing easy visualization and b) also enables
parameter estimation via expectation maximization [13] during actual
decoding, where orientations are unknown a priori. Fig. 3 shows
the variation of parameters of channel conditional density functions

� ���������, 
� ���������, 
� ���������, 
� ��������� over the
graylevels. Correspondingly, Fig. 4(a)–(e) illustrates the channel
conditional densities at several graylevels. In Fig. 3, the parameters of

� ��������� and 
� ���������, and parameters of 
� ��������� and

� ��������� closely follow each other. Similarly, in Fig. 4(a)–(e)
corresponding distributions follow each other. Hence, these figures
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Fig. 4. Estimated conditional probability density functions � �, � �, � �, � � for the orientation modulation
channel at various image graylevels: (a) Graylevel 20; (b) Graylevel 90; (c) Graylevel 130; (d) Graylevel 160; and (e) Graylevel 220.

validate the symmetry constraints on conditional densities in (5) and
(6). Furthermore, in Fig. 4(b) and (d) the two groups of distributions
are well separated from each other whereas, in Fig. 4(a), (c), and (e)
these distributions exhibit substantial overlap. From this observation,
it is expected that in graylevels (graylevel 20 (highlight), graylevel
130 (mid-tone), and, graylevel 220 (shadows)) channel capacity must
be smaller.

Based on the estimated channel parameters, we then evaluate
the capacity expression in (14) over graylevels ranging from white
�������� ���	
 � �
 to black �������� ���	
 � ���
. For this
purpose, we first calculate the joint entropy of detection statistics
��������
 in (14) numerically from experimentally estimated channel
parameters for the channel conditional density distributions. A plot
of the channel capacity as a function of graylevel is shown in
Fig. 6. Below the figure, a ramp function illustrates the halftone-dot

orientation modulation at corresponding graylevels in the figure. As
is evident from the plot, the capacity is negligibly small in the
mid-tones (125–135), highlights (�30) and shadows (�210). The
regions between highlights and mid-tones, and between mid-tones
and shadows offer significantly higher capacity. The “double hump”
shape for the capacity follows intuition as the number of available
halftone configurations is severely restricted in highlights, shadows
and mid-tones. In the extreme case of purely black or white regions,
only a single halftone configuration is possible and hence the capacity
is zero. Likewise, the checkerboard configuration of clustered-dot
halftones at mid-tones does not provide flexibility for dot orientation.
The mismatch in the shape of the two humps is attributed to the
asymmetric dot gain that occurs in the physical printing process and
is more pronounced in darker as opposed to lighter regions. As noted
earlier the print-scan resolutions are automatically accounted for in
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Fig. 5. Capacity for the orientation modulation channel with Gaussian
channel conditional distribution as a function of image graylevel at three
scan resolutions of 1200 dpi, 900 dpi, and 600 dpi. The graylevel range
is from 0 to 255 with 0 corresponding to white and 255 corresponding to
black.

Fig. 6. Capacity for the orientation modulation channel with Gaussian
channel conditional distribution as a function of image graylevel. The
graylevel range is from 0 to 255 with 0 corresponding to white and 255
corresponding to black. The dashed line on the plot indicates the experi-
mentally attainable error free rate as described in the text.

our analysis framework via the estimation of the channel conditional
densities. In order to see the impact of scanner resolution, we also
conducted experiments with scan resolutions of 600 and 900 dpi and
estimated corresponding channel conditional density functions and
evaluated the capacity. The capacity estimates are also included in
Fig. 5 (indicated by the legends in the figure). It can be seen that the
600 dpi resolution causes a significant degradation whereas the 900
dpi scan resolution is only slightly worse than the 1200 dpi, which
is why the latter was chosen for our experimental setting.

The graph in Fig. 6 compares the capacity (for our 1200 dpi chosen
experimental setting) to experimentally determined error free opera-
tional rate as a function of graylevel (shown by the dashed line in the
plot). These rates are obtained by using LDPC/RA codes along with

a simulation of the print-scan process where the channel outputs for a
given binary orientation are obtained by randomly sampling a dot of the
corresponding orientation from a scan of a print of the target graylevel
containing random data embedded via orientation modulation. This
closely approximates actual printing and scanning while eliminating
the need to tediously print and scan pages carrying error correction
coded data for a variety of rates. From the graph, we observe that the
experimentally observed achievable error free rates closely follow the
capacity. Note that the plateau observed for a rate of 0.9 (in the middle
regions of the two humps) corresponds to the maximum rate code uti-
lized in the experiments.

Note that the relative variation of capacity as a function of graylevel
in Fig. 6 is tied closely to dot-orientation modulation in clustered-dot
halftoning and moment based detection. For other orientation based
schemes, the capacity expression as derived in Section III still holds but
will require corresponding models and estimation of channel parame-
ters for numerical evaluation of capacity. Also, in this paper, we have
focused primarily on the variation in capacity as a function of graylevel
and the plots of Figs. 5 and 6 are therefore based on channel parame-
ters estimated from constant graylevel images. In practice, when using
orientation modulation for data hiding, texture in the cover image may
also cause interference with halftone orientation modulation. The im-
pact of such interference is dependent on the scale of the texture in rela-
tion to the halftone frequency and the trade-off invoked between image
fidelity and robustness of the data recovery during the joint halftoning
and data hiding process; versions prioritizing image quality [5] and ro-
bustness of data extraction [14] have both been employed. The exact
choice will be application and system dependent and a full investiga-
tion of the trade-offs is beyond the scope of this paper. We note, how-
ever, that if the scale of the texture is much larger than the halftone
frequency, or if one gives priority to robustness of the data encoding
over image quality,4 the achievable rates will closely follow the rates
that we present in Fig. 6. If on the other hand, the image textures contain
significant energy at the halftone frequency, the interference caused by
the textures in the halftone modulation process will usually reduce the
achievable rates in comparison to the results shown in Fig. 6.

V. CONCLUSION

We investigate the capacity of orientation modulation channels man-
ifested in schemes for data hiding in printed halftone images, where
control of dot-orientation is exercised for embedding data. Many of
these schemes use two orthogonal orientations, which are desirable
from the viewpoint of minimizing perceived distortion. We argue that
symmetry constraints apply in such cases to channel conditional densi-
ties and use these constraints to establish that an equiprobable input dis-
tribution achieves capacity for such “symmetric orientation channels”.
For data hiding via clustered-halftone dot orientation modulation, we
estimate channel parameters and numerically evaluate capacity for each
graylevel. Results provide crucial insights for orientation-modulation-
based print-scan resilient data hiding. In particular, highlights, shadows
and mid-tones offer small capacity, whereas high capacity is available
in regions from white to mid-tone and mid-tone to black. Experimental
achievable error free rates are shown to closely follow the variation in
capacity.

4When the scale of the textures is smaller than the halftone frequency, the
fidelity of texture reproduction is rather limited even if given priority.
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APPENDIX

In Section III we showed that the equiprobable distribution, i.e.
� � ���, is a stationary point of ������ and therefore ��������. Thus, it
achieves the maxima that defines the capacity. Here, we further show
that when the capacity is non-zero, ������ is a strictly concave function
of � and hence the equiprobable distribution is the unique maximizer
for the mutual information ��������.

The second derivative of ������ can be calculated as:

��������

���
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�

��

�

��

� 	����������� ����������
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� 	����������� � ��� ������������
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(15)

Note that �������������� � � because both 	���������� �

����������

� and 	������������ ���������������
 are non-neg-

ative for all values of � � � � �. Further, �������������� � � can
hold only if ���������� � ����������, ���, ��. This in general
entails that ��
� � ���
� for some constant c. Because ���, ��� are
probability density functions, it follows that � � �. It is easy to see that
this rather trivial case of ��
� � ��
� drives the mutual information
�������� and hence the capacity to zero regardless of what � is chosen.
Therefore, for all other ���, ���, we have �������������� � �. It then
follows that ������ is a strictly concave function of �.
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