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ABSTRACT the desired signal using pre-processed observations &nd th

We consider distributed estimation for a geographicallyPr&-Processing is chosen to minimize the resulted MSE. A
dispersed sensor network, where sensors collect obsen/g@nonical correlation analysis (CCA) based approach is pre
tions that are linearly pre-processed and transmitted ové€nted in [2]. The resultin [2] is shown to be a two-step
dimensionality-constrained channels. A central procestso ~ €Stimate-compress (EC) process. Non-ideal links with powe

lizes the received sensor data to obtain a linear estimatesof CONStraints are also consider in [2]. Other related work in-
desired signal. In this scenario, we consider the optimed pr ¢lude the Generalized KLT [4] and distributed KLT [3], the

processing at the sensors under a mean squared error (M§92mer can be mapped to a simplified version of our problem
ere only one sensor exists in the network, the latter densi

metric. In the single-sensor case, applying a modification oW o= . A ) ;
Sakrison’s separation principle we show that the optimed pr €rS & data acquisition model slightly different in whichleac
processing can be decomposed into two steps: a LMMSEENsor observes a partial, noiseless fraction of the ssigee
estimate followed by a (linear) MSE optimal dimensional-nal- i ) .

ity reduction of the estimate. The latter is readily obtaine N this paper, we consider the problem of distributed es-
as the well-known Karhunen-Loéve transform (KLT). Undertimation using reduced dimensionality sensor observation
the multi-sensor scenario, we extend this result to show th4f®m & novel separation perspective inspired by Sakrisen's
given the pre-processing at other nodes, each node’s dptim@H!t [6]. For a single-sensor scenario, under an MSE distor-
linear pre-processing again reduces to a side-informeaitin tion critérion, Sakrison’s separation principle [6] (witfinor
estimation followed by a side-informed version of the KLT. modification)implies that without any MSE penalty the linea
The separation perspective thus provides a simple and intlr€-Processing can be decomposed into two steps, a LMMSE

itive derivation of the optimal linear pre-processing uncde estimation of the desired signal followed by optimal dimen-
duced dimensionality channels. sionality reduction. The well-known KLT provides the latte

o o _ ) ~ step of optimal dimensionality reduction. Under a multiple
Index Terms— Distributed Estimation, Dimensionality sensor scenario, by considering the problem at a single, node
Reduction, Separation, Distributed Source Coding,Sensqfe can once again utilize the separation perspective. #n thi
Networks case, the linearly preprocessed observations from ottano
may be treated asde information at the CP and an exten-
1. INTRODUCTION sion of Sakrison’s principle in the side-informed scendirio
applies. By utilizing this separation principle, we candea
Wireless sensor networks (WSN) enable a multitude of apily show that the optimal linear pre-processing has a simila
plications due to their low deployment and maintenance. costwo-step decomposition of side-informed estimation fokaol
We consider an application scenario of distributed estomat py side-informed dimensionality reduction. Our formudati
in a WSN where sensors collect and linearly pre-process olleads to a more direct and intuitive derivation of resultgedie
servations about a desired signal, a central processon€cP) oped in prior work in [1, 2, 3].
ceives these observations and utilizes a linear estimator t
estimate the desired signal. We consider specifically sce- 2 PROBLEM FORMULATION
narios where the channel may be represented by a reduced-
dimensionality constraint, a problem that has been preWyou The network we consider is depicted in Fig. 1 whéfeeo-
formulated and addressedin [1, 2, 3]. An optimal linear meaiyraphically dispersed sensors make observations about a de
squared error estimate (LMMSE) formulation is presentegired signak, represented asfax 1 real-valued vector. The
in [1, 3] where the receiver performs LMMSE estimate of ;th sensor observation is denoted as & 1 vectory;. Each

This work is supported in part by the National Science Fotiodainder s_ensing node !Oca”y pre-processses its Ob_servat_ion (jaia b
grant number ECS-0428157. linear processing matrix that imposes the dimensionatity ¢
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G, D, shown in Fig. 2, wherg is ap x 1 observation vectoiGz is
ar x p pre-processing matrix with < p, andD is ak x r

Yo @ @ post-processing matrix, and other terms are as defineéearli
For this simplified case, the optimization (1) reduces to:

G, D,

e~} =) 3 o5

* K\ . - 2
{G*",D*} = argrcr;1711131E||x Xy || 2

wherex, = DGy denotes the estimate affrom received

mus mus data. In order to obtain the optimal pre and post-processing
¢GN_1 ¢DN_1 matricesG*, D*, respectively in (2), we will utilize a mi-
nor variant of Sakrison’s separation principle [6]. Sinhe t
YNT1 @ @ demonstration of this principle is rather straightforware

replicate it here for clarity. We begin by introducigg the

Fig. 1. Estimatex from observationsyo,y2, -+ ,yn—1. The CP re- LMMSE estimate of fromy, i.e. [8]
ceives reduced dimensionality preprocessed versionsngbs@bservations

and utilizes these in a linear estimator for the desiredasign fcy _ nyR}le (3)

_ T ; i -
straint. Accordingly, we represent processing atithsensor whereR,;, = Elab”] denotes the C;OSS covariance of ran
dom vectorsa and b, R, = FElaa’] denotes the auto-

by ar; x p; matrix G;, wherer; < p;. We assume that the ) 4 .
channel is otherwise error free so that the pre-processed ofovariance ok and the presence of inevitable sensor noise
ssumes invertibility oiR;l. Now observe that objective

servationds;y; are available at the CP. The CP utilizes these?SSUMES .
pre-processed observations in a linear estimatax fobtain- function in (2) can be rewritten as:
ing x. This process can be represented as shown in Fig. 1, E|lx — %y ||
where the estimat® is obtained by linearly post-processing, Y
by ak x r; matrix D;, the received data from th&"* sensor

and summing together the resulting values over all the sen- + 2E<x—Xy,Xy —Xy > (5)
sors. For notational simplicity, we assume all signals are z

= EHx_fiy‘i‘&y_)~(yH2 4)

= Elx—%y|* + Ellxy — %y|*

; here< a,b >= a”b denotes the inner product of two vec-
mean, non-zero mean values can be handled by a stra htfdl- ’ )
z vai y 9 torsa andb. From the orthogonality property of the LMMSE

ward extension. timators. th dicti ) is orth It
We consider the optimal choice of the pre and post-es imators, the prediction errx — %) is orthogonal to any

processing matrice€;, D; under a MSE distortion metric, linear function of the predictor inpuis[8]. Noting that both

Xy andx, are linear functions of, we obtain:

ie.
{{Gj}7{\;617{D*}i\;F)l}: E<X*)A{y,)A(y7)~(y >=0 (6)
Nl Substituting (6) into (5), we obtain:
arg min E|x — Z D;G,yi||> (1) 9(0) ®)

(G5 Pr! i=0 E||X_)~<y||2 = E”X_f(ynz‘f‘E”Xy _inQ (1)
WhereE'der']otes the expegtatiqq operator-_We begin by fifsfgquation (7) represents the adaption of Sakrison’s seéparat
considering in Section 3 a simplified scenario where only on rinciple [6] for the linear estimation and encoding scémar

sensor exists in the network. In Section 4, we consider thgyiie we do not require it here, we note that this separation
problemin the general multi-sensor case. did not explicitly utilize the dimensionality reductionatac-
terization of our channel and applies in general provided th
3. OPTIMAL LINEAR PROCESSING - SINGLE encoding is linear. Note that the first term on the right hand
SENSOR CASE sideE||x—%y||? represents the mean squared estimation error
of the LMMSE estimator fox fromy. This term is indepen-
dent of the pre and post-processing matrig€s D }.

G D Now consider the reduced dimensionality encoding prob-

¢ ¢ lem shown in Fig. 3, where the estimakg is pre-processed
- by ther x k pre-processing matri&’ and a corresponding

y— ®® > Xy k x r post-processing matri)’ recovers an estimate of
from the received dat&’x, at the receiver. The optimal pre
Fig. 2. Single sensor version of the network in Fig. 1 and post-processing matrices for this problem are given by

. s < 12
The single sensor realization of the network in Fig. 1 is {G", D"} = arg &'D Elxy —%y|I"- (®)
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G/ D/ G/* D/*

¢ ¢ LMMSE | Xy -
~ ~ y—> . & i )| & X
Xy—>® channel @—» Xy Estimate Y

Fig. 4. The decomposed structure for optimal estimatios:oAn LMMSE
estimate followed by transmission ®f,

Fig. 3. Optimal reduced dimensionality encoding of the estinsate

From the preceding observations, the optimization in (Z}J\ndD* — D

reduces to: Remark 1: The solution in (12) and (13) is not unique. Given
(G, D"} = arg min E|%, — inQ anyr x r invertible matrixP, PG’*, D’*P~! is another so-
G'.D’ lution for (9).

= arg min F|(I-D'G)%,|> (9) Remark2: Theresultin (14) is equivalent to the result pre-
GD sented in [2]. According to our analysis, the solution pre-
wherex, = D’G'x,. The objective function in (9) can be sented by CCA can be obtained by a LMMSE estimate fol-
rewritten as: lowed by a KLT compression. In [2], it was also noted that
L the optimal linear pre-processing is equivalent to this-step
E|I-D'G)xy[* = tr(I-D'G)RZ RI (I-D'G")") process. Our use of the separation principle makes it imere
1 in the development.
- ”Rfcy — A% (10) Remark 3. Our separation result in (7) represents a slight
1 modification of Sakrison’s separation principle [6]. Thtda
whereA = D'G'R{ , Rx, = RyyRy'Ryx and | - [»  ytilizes an MMSE estimate as opposed to our LMMSE esti-
denotes the Frobenius norm. Note that f&&k = r implies  mate, which assures orthogonality of the estimate to any-fun

that ranKA) < r. Now the problem tion of the predictor inputs and therefore is applicableg¢n-g
. . 1 ) eral nonlinear encodings. For the Gaussian case, the MMSE
A" = arg iy IRZ — Al (11)  and the LMMSE estimators coincide. Our results, however,

apply in general for linear pre and post-processing and do no
is the well-known low-rank matrix approximation problem require the Gaussian assumption.
for which the solution is obtained by a truncated SVD [9].

Itis readily.seen thfat this matrix approximation provides a 4. OPTIMAL LINEAR PRE-PROCESSING:
corresponding solution to (9) as: MULTI-SENSOR CASE

G" = (Qg)" (12) . . . _ _

e i Unlike the single-sensor scenario considered in the preced
D™ = %y (13) ing section, for the general multi-sensor problem (1), a
closed-form solution is not readily available. We there-
fore proceed as in prior literature on this problem [1, 2, 3]

Next consider the network shown in Fig. 4, clearly this |sand consider the optimal choice ﬂi’,{Di}i]\;Ol by as-
a specific instance of the network of Fig. 2 and therefore thguming the values ofG;,j € (0,...,i - Li + LN —
optimal pre and post-processing matrices for the system &f)} are known. W'thOUt loss of generallty we cogsl,clder
Fig. 2 must offer MSE performance that is no worse than the = 0. Let Gy & dlag(GhG%-- ,Gy-1) andyo =
network in Fig. 4. Conversely, from the separation implied| y7 yI' ... yI' |7 Do dlag(Dl,DQ, ..., Dn_1),
by (7), the optimal pre and post-processing for the networkhen
of Fig. 3 achieve the same performance as the optimal pre _
and post-processing for the network of Fig. 2. It immediatel Z D;Giyi = DoGoyo + DoGoYo,
follows thatwithout any MSE distortion penalty, the optimal /
pre-processing for the network in Fig. 2 can be decomposedVith this notation, we can represent Fig. 1 in equivalentfor
into two stages as shown in Fig. 4. as Fig. 5. The optimakj, D, D§ can then be written as:
From Fig. 4, the optimal linear pre-processing matrix for _
y is a concatenation of the two-step estimate-compress pro- {G, Dg, Dot =

whereQ], denotes the matrix whosecolumns are the eigen-
vectors ofR, corresponding to the largest eigenvalués

cess: arg min_ EHX —DoGoyg — :D()Gr()y()H2 (15)
% r - Go,Dg,D
G" = (Q,) "Ry R, ", (14) 2:Do.Da
1These are the equivalently firstprincipal components for the random NOte that_if the pre-procgssing mff‘triCGS arein fa'Ct the op-
vectora. timal choices, the resulting solutio@;, D combined with
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Go D, Next we note that for any choice dfxy, the opti-
mal D, and D, in (15) can be obtained as (the par-
Yo @ @ titions of) the LMMSE estimation matrix forx from
_ _ - [(Goyo)T, (Goyo)T]T. Atthe optimal solution to (15) there-
‘GO ¢D0 T fore
def S A —
o X ) w = x — DoGoyo — DoGoyo (22)

represents the LMMSE prediction error about from
[(Goyo)™, (Goyo)”]*. From the orthogonality principle,

w L Goyo. Now, the LMMSE estimate ofv from Gy
is

Fig. 5. An equivalent representation of the setup in Fig. 1, wiyeyeepre-
sents all observations other thgp and G, D¢ the corresponding pre and
post processing.

W =% — DoGoyo — DoGoYo, (23)
G, in fact represents the solution to (1). The problem ofgincew | Goyo, We havew = 0 and thereforeg||w||? =
seeking optimal choices @, G, simultaneously is compu- E|j% — DoGoyo — DoGoyol|? = 0 at the optimal solution of
tationally intractable [10], an iterative alternating iopiza- (15). It follows that
tion [1, 2, 3] can be utilized to obtain a locally optimal solu
tion. The details are not given here for space consideration
We demonstrate next that the optimization problem de-

fined as (15) can be reduced into a form identical to (2)gq. (24) is identical in form to (2). The separation prineifd
Our development in this case can be motivated by the sidgro applicable: in the presence of the side informaGayy
informed generalization of Sakrison’s separation prilecip at the receivers plays the role of from (2) andt the role of
presented in [7]. Once again, though, we utilize a slightmody from (2). Proceeding as we did for obtaining (13)-(14), we

{G}, Dy} = arg min E|t — DoGos|? (24)
Go,Do

ification of the side-informed separation principle apatie
to optimal linear pre and post-processing. keandy, rep-
resent the LMMSE estimate of andy, respectively, from

G¥yo. Now we can rewrite the objective function in (15) as:

E|jx — DoGoyo — DoGoyol* (16)
= Elx—x+x—-DoGoyo +DoGoyo
~DoGoyo — DoGoyol® (17)

E|x — %+ DGoyo — DoGoyoll®

+E|%x — DoGoyo — DoGoyol|* (18)
E|t — DoGos||?

+E|% — DoGoyo — DoGoyoll* (19)

wheres = yy — yo, t = x — x. The deduction from (17) to
(18) relies on two observations resulting from the orthagen
ity principle which assures that the prediction error idh0g-
onal to any linear function of the predictor inputs [8]. Hiys
we observe

(x — % + D¢Goyo — DoGoyo) L DoGoo, (20)

where a L b indicates E(a"b) = 0, this can be
seen from 1)(x — x) L DyGopyo, and 2) (DyGoyo —

DGoyo) L DoGoyo whichis a variant form ofyo —yo) L

GIDIDyGoyo. The second observation enabling the de-

duction from (17) to (18) is
(x=DoGoyo) — (x—DoGoyo)) L (Xx—DoGoyo), (21)
which can be seen by defining def (x — DoGoyo) and

noting that the LMMSE estimate of from Gy, is z =
(X = DoGoYo)-
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have the optimal choice diGg, D }:
Go
Dg

(25)
(26)

(Q:: )TRtsR;1
Q!

Wherng‘: is defined similarly as in (12}, s are defined in
(19), andR;, = R¢sRo'Rg:. Note thatRe RS corre-
sponds to a “side-informed” estimate fergiven Gy, and
Qg“ corresponds to a “side-informed” KLT.
Remark 4: We observe that the estimation process atthe CP in
Fig. 5 can be viewed as a two-stage Kalman filter [8] with the
static state vectat and two observation& v, Goyo in se-
guence. This Kalman filter achieves the LMMSE estinmate
from G¥, in the first step, then updates its estimation based
on the new observatiorGy:

x =X+ Do(Goyo — Go¥o) (27)
Dy is the Kalman gain matrix. The MSE can be written as
E|lt — DoGos||?, wherex, yo,t,s are defined earlier. We
observe thas can be thought of as thanovationin y, given
Go¥o. Similarly, t can be viewed as thesidue of x given
Goyo-

5. CONCLUSIONS

By viewing the problem of distributed estimation with
reduced-dimensionality sensor observations from a negel s
aration perspective motivated by Sakrison’s work [6], sim-
ple and intuitive derivations are obtained for known result
on the optimal dimensionality reduction pre-processingr. F
the single-sensor case, the separation principle impiiat t



without incurring any MSE penalty, the optimal linear pre-
processing can be decomposed into a LMMSE estimate fol-
lowed by a MSE optimal dimensionality reduction, which
is achieved by KLT. An extension to the multi-sensor case
suggests a similar two-step decomposition: a side-infdrme
LMMSE estimation followed by a side-informed version of
KLT at each sensor node.
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