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ABSTRACT

We consider distributed estimation for a geographically
dispersed sensor network, where sensors collect observa-
tions that are linearly pre-processed and transmitted over
dimensionality-constrained channels. A central processor uti-
lizes the received sensor data to obtain a linear estimate ofthe
desired signal. In this scenario, we consider the optimal pre-
processing at the sensors under a mean squared error (MSE)
metric. In the single-sensor case, applying a modification of
Sakrison’s separation principle we show that the optimal pre-
processing can be decomposed into two steps: a LMMSE
estimate followed by a (linear) MSE optimal dimensional-
ity reduction of the estimate. The latter is readily obtained
as the well-known Karhunen-Loéve transform (KLT). Under
the multi-sensor scenario, we extend this result to show that
given the pre-processing at other nodes, each node’s optimal
linear pre-processing again reduces to a side-informed linear
estimation followed by a side-informed version of the KLT.
The separation perspective thus provides a simple and intu-
itive derivation of the optimal linear pre-processing under re-
duced dimensionality channels.

Index Terms— Distributed Estimation, Dimensionality
Reduction, Separation, Distributed Source Coding,Sensor
Networks

1. INTRODUCTION

Wireless sensor networks (WSN) enable a multitude of ap-
plications due to their low deployment and maintenance cost.
We consider an application scenario of distributed estimation
in a WSN where sensors collect and linearly pre-process ob-
servations about a desired signal, a central processor (CP)re-
ceives these observations and utilizes a linear estimator to
estimate the desired signal. We consider specifically sce-
narios where the channel may be represented by a reduced-
dimensionality constraint, a problem that has been previously
formulated and addressed in [1, 2, 3]. An optimal linear mean
squared error estimate (LMMSE) formulation is presented
in [1, 3] where the receiver performs LMMSE estimate of
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the desired signal using pre-processed observations and the
pre-processing is chosen to minimize the resulted MSE. A
canonical correlation analysis (CCA) based approach is pre-
sented in [2]. The result in [2] is shown to be a two-step
estimate-compress (EC) process. Non-ideal links with power
constraints are also consider in [2]. Other related work in-
clude the Generalized KLT [4] and distributed KLT [5], the
former can be mapped to a simplified version of our problem
where only one sensor exists in the network, the latter consid-
ers a data acquisition model slightly different in which each
sensor observes a partial, noiseless fraction of the sourcesig-
nal.

In this paper, we consider the problem of distributed es-
timation using reduced dimensionality sensor observations
from a novel separation perspective inspired by Sakrison’sre-
sult [6]. For a single-sensor scenario, under an MSE distor-
tion criterion, Sakrison’s separation principle [6] (withminor
modification) implies that without any MSE penalty the linear
pre-processing can be decomposed into two steps, a LMMSE
estimation of the desired signal followed by optimal dimen-
sionality reduction. The well-known KLT provides the latter
step of optimal dimensionality reduction. Under a multiple
sensor scenario, by considering the problem at a single node,
we can once again utilize the separation perspective. In this
case, the linearly preprocessed observations from other nodes
may be treated asside information at the CP and an exten-
sion of Sakrison’s principle in the side-informed scenario[7]
applies. By utilizing this separation principle, we can read-
ily show that the optimal linear pre-processing has a similar
two-step decomposition of side-informed estimation followed
by side-informed dimensionality reduction. Our formulation
leads to a more direct and intuitive derivation of results devel-
oped in prior work in [1, 2, 3].

2. PROBLEM FORMULATION

The network we consider is depicted in Fig. 1 whereN geo-
graphically dispersed sensors make observations about a de-
sired signalx, represented as ak × 1 real-valued vector. The
ith sensor observation is denoted as api × 1 vectoryi. Each
sensing node locally pre-processses its observation data by a
linear processing matrix that imposes the dimensionality con-
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Fig. 1. Estimatex from observationsy0,y2, · · · ,yN−1. The CP re-
ceives reduced dimensionality preprocessed versions of sensor observations
and utilizes these in a linear estimator for the desired signal x.

straint. Accordingly, we represent processing at theith sensor
by ari × pi matrix Gi, whereri ≤ pi. We assume that the
channel is otherwise error free so that the pre-processed ob-
servationsGiyi are available at the CP. The CP utilizes these
pre-processed observations in a linear estimator forx, obtain-
ing x̃. This process can be represented as shown in Fig. 1,
where the estimatẽx is obtained by linearly post-processing,
by ak × ri matrix Di, the received data from theith sensor
and summing together the resulting values over all the sen-
sors. For notational simplicity, we assume all signals are zero
mean, non-zero mean values can be handled by a straightfor-
ward extension.

We consider the optimal choice of the pre and post-
processing matricesGi,Di under a MSE distortion metric,
i.e.

{{G∗
i }

N−1
i=0 , {D∗}N−1

i=0 } =

arg min
{Gi}

N−1

i=0
,{D}N−1

i=0

E‖x −
N−1∑

i=0

DiGiyi‖
2 (1)

WhereE denotes the expectation operator. We begin by first
considering in Section 3 a simplified scenario where only one
sensor exists in the network. In Section 4, we consider the
problem in the general multi-sensor case.

3. OPTIMAL LINEAR PROCESSING - SINGLE
SENSOR CASE

DG

channel x̃yy

Fig. 2. Single sensor version of the network in Fig. 1

The single sensor realization of the network in Fig. 1 is

shown in Fig. 2, wherey is ap × 1 observation vector,G is
a r × p pre-processing matrix withr ≤ p, andD is ak × r

post-processing matrix, and other terms are as defined earlier.
For this simplified case, the optimization (1) reduces to:

{G∗,D∗} = arg min
G,D

E‖x− x̃y‖
2 (2)

wherex̃y = DGy denotes the estimate ofx from received
data. In order to obtain the optimal pre and post-processing
matricesG∗,D∗, respectively in (2), we will utilize a mi-
nor variant of Sakrison’s separation principle [6]. Since the
demonstration of this principle is rather straightforwardwe
replicate it here for clarity. We begin by introducinĝx, the
LMMSE estimate ofx from y, i.e. [8]

x̂y = RxyR
−1
y y (3)

whereRab = E[abT ] denotes the cross-covariance of ran-
dom vectorsa and b, Ra = E[aaT ] denotes the auto-
covariance ofa and the presence of inevitable sensor noise
assumes invertibility ofR−1

y . Now observe that objective
function in (2) can be rewritten as:

E‖x− x̃y‖
2 = E‖x− x̂y + x̂y − x̃y‖

2 (4)

= E‖x− x̂y‖
2 + E‖x̂y − x̃y‖

2

+ 2E < x − x̂y, x̂y − x̃y > (5)

where< a,b >= aT b denotes the inner product of two vec-
torsa andb. From the orthogonality property of the LMMSE
estimators, the prediction error(x− x̂y) is orthogonal to any
linear function of the predictor inputsy [8]. Noting that both
x̂y andx̃y are linear functions ofy, we obtain:

E < x− x̂y, x̂y − x̃y >= 0 (6)

Substituting (6) into (5), we obtain:

E‖x− x̃y‖
2 = E‖x− x̂y‖

2 + E‖x̂y − x̃y‖
2 (7)

Equation (7) represents the adaption of Sakrison’s separation
principle [6] for the linear estimation and encoding scenario.
While we do not require it here, we note that this separation
did not explicitly utilize the dimensionality reduction charac-
terization of our channel and applies in general provided the
encoding is linear. Note that the first term on the right hand
sideE‖x−x̂y‖

2 represents the mean squared estimation error
of the LMMSE estimator forx from y. This term is indepen-
dent of the pre and post-processing matrices{G,D}.

Now consider the reduced dimensionality encoding prob-
lem shown in Fig. 3, where the estimatex̂y is pre-processed
by ther × k pre-processing matrixG′ and a corresponding
k × r post-processing matrixD′ recovers an estimate ofx
from the received dataG′x̂y at the receiver. The optimal pre
and post-processing matrices for this problem are given by

{G′∗,D′∗} = arg min
G′,D′

E‖x̂y − x̃y‖
2. (8)
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Fig. 3. Optimal reduced dimensionality encoding of the estimatex̂y

From the preceding observations, the optimization in (2)
reduces to:

{G′∗,D′∗} = arg min
G′,D′

E‖x̂y − x̃y‖
2

= arg min
G′,D′

E‖(I − D′G′)x̂y‖
2 (9)

wherex̃y = D′G′x̂y. The objective function in (9) can be
rewritten as:

E‖(I− D′G′)x̂y‖
2 = tr((I − D′G′)R

1

2

x̂y
R

1

2

x̂y
(I − D′G′)T )

= ‖R
1

2

x̂y
− A‖2

F (10)

whereA = D′G′R
1

2

x̂y
, Rx̂y

= RxyR
−1
y Ryx and‖ · ‖F

denotes the Frobenius norm. Note that rank(G′) = r implies
that rank(A) ≤ r. Now the problem

A∗ = arg min
rank(A)≤r

‖R
1

2

x̂y
− A‖2

F (11)

is the well-known low-rank matrix approximation problem
for which the solution is obtained by a truncated SVD [9].
It is readily seen that this matrix approximation provides a
corresponding solution to (9) as:

G′∗ = (Qr
x̂y

)T (12)

D′∗ = Qr
x̂y

(13)

whereQr
a denotes the matrix whoser columns are the eigen-

vectors ofRa corresponding to ther largest eigenvalues1.
Next consider the network shown in Fig. 4, clearly this is

a specific instance of the network of Fig. 2 and therefore the
optimal pre and post-processing matrices for the system of
Fig. 2 must offer MSE performance that is no worse than the
network in Fig. 4. Conversely, from the separation implied
by (7), the optimal pre and post-processing for the network
of Fig. 3 achieve the same performance as the optimal pre
and post-processing for the network of Fig. 2. It immediately
follows thatwithout any MSE distortion penalty, the optimal
pre-processing for the network in Fig. 2 can be decomposed
into two stages as shown in Fig. 4.

From Fig. 4, the optimal linear pre-processing matrix for
y is a concatenation of the two-step estimate-compress pro-
cess:

G∗ = (Qr
x̂y

)T RxyR
−1
y , (14)

1These are the equivalently firstr principal components for the random
vectora.

G′∗ D′∗

x̂y
x̃ychannely

LMMSE

Estimate

Fig. 4. The decomposed structure for optimal estimation ofx: An LMMSE
estimate followed by transmission ofx̂y

andD∗ = D′∗.
Remark 1: The solution in (12) and (13) is not unique. Given
anyr × r invertible matrixP, PG′∗,D′∗P−1 is another so-
lution for (9).
Remark 2: The result in (14) is equivalent to the result pre-
sented in [2]. According to our analysis, the solution pre-
sented by CCA can be obtained by a LMMSE estimate fol-
lowed by a KLT compression. In [2], it was also noted that
the optimal linear pre-processing is equivalent to this two-step
process. Our use of the separation principle makes it inherent
in the development.
Remark 3: Our separation result in (7) represents a slight
modification of Sakrison’s separation principle [6]. The latter
utilizes an MMSE estimate as opposed to our LMMSE esti-
mate, which assures orthogonality of the estimate to any func-
tion of the predictor inputs and therefore is applicable to gen-
eral nonlinear encodings. For the Gaussian case, the MMSE
and the LMMSE estimators coincide. Our results, however,
apply in general for linear pre and post-processing and do not
require the Gaussian assumption.

4. OPTIMAL LINEAR PRE-PROCESSING:
MULTI-SENSOR CASE

Unlike the single-sensor scenario considered in the preced-
ing section, for the general multi-sensor problem (1), a
closed-form solution is not readily available. We there-
fore proceed as in prior literature on this problem [1, 2, 3]
and consider the optimal choice ofGi, {Di}

N−1
i=0 by as-

suming the values of{Gj , j ∈ (0, . . . , i − 1, i + 1, N −
1)} are known. Without loss of generality, we consider

i = 0. Let Ḡ0
def
= diag(G1,G2, . . . ,GN−1) and ȳ0

def
=

[ yT
1 yT

2 . . . yT
n ]T , D̄0

def
= diag(D1,D2, . . . ,DN−1),

then
N−1∑

i=0

DiGiyi = D0G0y0 + D̄0Ḡ0ȳ0,

With this notation, we can represent Fig. 1 in equivalent form
as Fig. 5. The optimalG∗

0,D
∗
0, D̄

∗
0 can then be written as:

{G∗
0,D

∗
0, D̄

∗
0} =

arg min
G0,D0,D̄0

E‖x − D0G0y0 − D̄0Ḡ0ȳ0‖
2 (15)

Note that if the pre-processing matricesḠ0 are in fact the op-
timal choices, the resulting solutionG∗

0,D
∗
0 combined with
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ȳ0

y0

Channel

Channel

∑

Fig. 5. An equivalent representation of the setup in Fig. 1, whereȳ0 repre-
sents all observations other thany0 andḠ0, D̄0 the corresponding pre and
post processing.

Ḡ0 in fact represents the solution to (1). The problem of
seeking optimal choices ofG0, Ḡ0 simultaneously is compu-
tationally intractable [10], an iterative alternating optimiza-
tion [1, 2, 3] can be utilized to obtain a locally optimal solu-
tion. The details are not given here for space consideration.

We demonstrate next that the optimization problem de-
fined as (15) can be reduced into a form identical to (2).
Our development in this case can be motivated by the side-
informed generalization of Sakrison’s separation principle
presented in [7]. Once again, though, we utilize a slight mod-
ification of the side-informed separation principle applicable
to optimal linear pre and post-processing. Letx̂ andŷ0 rep-
resent the LMMSE estimate ofx andy0, respectively, from
Ḡ0ȳ0. Now we can rewrite the objective function in (15) as:

E‖x− D0G0y0 − D̄0Ḡ0ȳ0‖
2 (16)

= E‖x− x̂ + x̂ − D0G0ŷ0 + D0G0ŷ0

−D0G0y0 − D̄0Ḡ0ȳ0‖
2 (17)

= E‖x− x̂ + D0G0ŷ0 − D0G0y0‖
2

+E‖x̂− D0G0ŷ0 − D̄0Ḡ0ȳ0‖
2 (18)

= E‖t− D0G0s‖
2

+E‖x̂− D0G0ŷ0 − D̄0Ḡ0ȳ0‖
2 (19)

wheres = y0 − ŷ0, t = x − x̂. The deduction from (17) to
(18) relies on two observations resulting from the orthogonal-
ity principle which assures that the prediction error is orthog-
onal to any linear function of the predictor inputs [8]. Firstly
we observe

(x − x̂ + D0G0ŷ0 − D0G0y0) ⊥ D̄0Ḡ0ȳ0, (20)

where a ⊥ b indicates E(aT b) = 0, this can be
seen from 1)(x − x̂) ⊥ D̄0Ḡ0ȳ0, and 2) (D0G0y0 −
D0G0ŷ0) ⊥ D̄0Ḡ0ȳ0 which is a variant form of(y0−ŷ0) ⊥
GT

0 DT
0 D̄0Ḡ0ȳ0. The second observation enabling the de-

duction from (17) to (18) is

((x−D0G0y0)− (x̂−D0G0ŷ0)) ⊥ (x̂−D0G0ŷ0), (21)

which can be seen by definingz
def
= (x − D0G0y0) and

noting that the LMMSE estimate ofz from Ḡ0ȳ0 is ẑ =
(x̂ − D0G0ŷ0).

Next we note that for any choice ofG0, the opti-
mal D0 and D̄0 in (15) can be obtained as (the par-
titions of) the LMMSE estimation matrix forx from
[(G0y0)

T , (Ḡ0ȳ0)
T ]T . At the optimal solution to (15) there-

fore
w

def
= x − D0G0y0 − D̄0Ḡ0ȳ0 (22)

represents the LMMSE prediction error aboutx from
[(G0y0)

T , (Ḡ0ȳ0)
T ]T . From the orthogonality principle,

w ⊥ Ḡ0ȳ0. Now, the LMMSE estimate ofw from Ḡ0ȳ0

is
ŵ = x̂ − D0G0ŷ0 − D̄0Ḡ0ȳ0, (23)

sincew ⊥ Ḡ0ȳ0, we haveŵ = 0 and thereforeE‖ŵ‖2 =
E‖x̂−D0G0ŷ0− D̄0Ḡ0ȳ0‖

2 = 0 at the optimal solution of
(15). It follows that

{G∗
0,D

∗
0} = arg min

G0,D0

E‖t− D0G0s‖
2 (24)

Eq. (24) is identical in form to (2). The separation principle is
now applicable: in the presence of the side informationḠ0ȳ0

at the receiver,s plays the role ofy from (2) andt the role of
x from (2). Proceeding as we did for obtaining (13)-(14), we
have the optimal choice of{G0,D0}:

G∗
0 = (Qr0

t̂s
)T RtsR

−1
s (25)

D∗
0 = Qr0

t̂s
(26)

whereQr0

t̂s
is defined similarly as in (12),t, s are defined in

(19), andRt̂s
= RtsR

−1
s Rst. Note thatRtsR

−1
s corre-

sponds to a “side-informed” estimate forx givenḠ0ȳ0 and
Qr0

t̂s
corresponds to a “side-informed” KLT.

Remark 4: We observe that the estimation process at the CP in
Fig. 5 can be viewed as a two-stage Kalman filter [8] with the
static state vectorx and two observations̄G0ȳ0,G0y0 in se-
quence. This Kalman filter achieves the LMMSE estimatex̂

from Ḡ0ȳ0 in the first step, then updates its estimation based
on the new observationsG0y0:

x̃ = x̂ + D0(G0y0 − G0ŷ0) (27)

D0 is the Kalman gain matrix. The MSE can be written as
E‖t − D0G0s‖

2, wherex̂, ŷ0, t, s are defined earlier. We
observe thats can be thought of as theinnovation in y0 given
Ḡ0ȳ0. Similarly, t can be viewed as theresidue of x given
Ḡ0ȳ0.

5. CONCLUSIONS

By viewing the problem of distributed estimation with
reduced-dimensionality sensor observations from a novel sep-
aration perspective motivated by Sakrison’s work [6], sim-
ple and intuitive derivations are obtained for known results
on the optimal dimensionality reduction pre-processing. For
the single-sensor case, the separation principle implies that,
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without incurring any MSE penalty, the optimal linear pre-
processing can be decomposed into a LMMSE estimate fol-
lowed by a MSE optimal dimensionality reduction, which
is achieved by KLT. An extension to the multi-sensor case
suggests a similar two-step decomposition: a side-informed
LMMSE estimation followed by a side-informed version of
KLT at each sensor node.
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