IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 3, NO. 2, JUNE 2008 153

Insertion, Deletion Codes With Feature-Based
Embedding: A New Paradigm for Watermark
Synchronization With Applications
to Speech Watermarking
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Abstract—A framework is proposed for synchronization in
feature-based data embedding systems that is tolerant of errors
in estimated features. The method combines feature-based em-
bedding with codes capable of simultaneous synchronization and
error correction, thereby allowing recovery from both desyn-
chronization caused by feature estimation discrepancies between
the embedder and receiver; and alterations in estimated symbols
arising from other channel perturbations. A speech watermark is
presented that constitutes a realization of the framework for 1-D
signals. The speech watermark employs pitch modification for
data embedding and Davey and Mackay’s insertion, deletion, and
substitution (IDS) codes for synchronization and error recovery.
Experimental results demonstrate that the system indeed allows
watermark data recovery, despite feature desynchronization.
The performance of the speech watermark is optimized by esti-
mating the channel parameters required for the IDS decoding
at the receiver via the expectation-maximization algorithm. In
addition, acceptable watermark power levels (i.e., the range of
pitch modification that is perceptually tolerable) are determined
from psychophysical tests. The proposed watermark demonstrates
robustness to low-bit-rate speech coding channels (Global System
for Mobile Communications at 13 kb/s and AMR at 5.1 kb/s),
which have posed a serious challenge for prior speech watermarks.
Thus, the watermark presented in this paper not only highlights
the utility of the proposed framework but also represents a sig-
nificant advance in speech watermarking. Issues in extending
the proposed framework to 2-D and 3-D signals and different
application scenarios are identified.

Index Terms—Feature-based watermarking, insertion deletion
codes, pitch watermarking, speech watermarking, watermark syn-
chronization.

1. INTRODUCTION

S IN ANY communication system, multimedia water-
marking methods! require synchronization between the
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IFor our discussion, we consider watermarking systems to broadly include
all digital data-embedding systems.

transmission and the reception sides before data transfer can
occur. In watermarking, however, synchronization poses a more
acute challenge than in traditional communication systems be-
cause the multimedia cover signal (and not the watermark) is, in
fact, the primary signal being conveyed from the source to the
destination. Between watermark embedding and extraction, it is
reasonable in most systems to assume that the perceptual con-
tent and quality of the multimedia signal is largely preserved.
Within this constraint, however, the multimedia signal may be
subject to a variety of linear and nonlinear signal-processing op-
erations. In applications where an original is available at the
receiver, registration of the received signal to the original can
enable synchronization [1], [2]. For the large majority of ap-
plications where an original is not available at the receiver, we
are usually faced with an effective watermark channel for which
synchronization is difficult.

A number of approaches have been explored for synchro-
nization in oblivious watermarking (see [3] and [4] for an
overview/taxonomy). Methods presented in the literature can
be broadly categorized into two main classes: 1) methods that
embed the watermark data in multimedia signal features that
are invariant to the signal-processing operations, or in regions
determined by such features and 2) methods that enable syn-
chronization through the estimation and (approximate) reversal
of the geometric transformations that the multimedia signal has
been subjected to after watermark embedding. Approaches in
the former category include methods that use the Fourier—-Melin
transform space for rotation, translation, scale invariance [5],
methods that embed watermarks in geometric invariants, such
as image moments [6], [7], and methods that use semantically
meaningful signal features, either for embedding [8] or for
partitioning the signal space into regions for embedding [9].
Examples of the latter category are methods using repeated
embedding of the same watermark [10], [11] or the inclusion
of a transform domain pilot watermark [12] explicitly for the
purpose of synchronization.

Among these techniques, the methods based on semantic fea-
tures hold considerable promise since these features are directly
related to the perceptual content of the multimedia signal and,
therefore, conserved in benign and malicious signal-processing
operations. Kutter [13] introduced this class of techniques as
second-generation watermarking methods and identified three
essential properties for the semantic features: 1) invariance to
noise; 2) covariance to geometrical transformations; and 3)
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resilience against local modifications. Despite their conceptual
advantages, second-generation watermarking methods have
proven to be difficult to implement in practical systems [3],
[14]. A primary reason for this difficulty is that robust and
repeatable extraction of semantically meaningful signal fea-
tures continues to be a challenging research problem in itself.
In particular, benign processing or a malicious change may
cause additional feature points to be detected or some existing
feature points to be deleted, leading to desynchronization of the
watermark channel.

In this paper, we propose a new framework for synchroniza-
tion in these second-generation methods based on error-correc-
tion codes for channels with insertions and deletions [15], [16].
We demonstrate the framework using a speech watermarking
system based on pitch modification previously developed within
our group [8] and illustrate how it allows recovery of synchro-
nization despite mismatches in estimated features between em-
bedding and receiving ends. The demonstration also addresses
the challenging problem of speech watermarking over low bit-
rate compression channels [17], which is a useful contribution
in itself.

The rest of this paper is organized as follows. In Section II,
we introduce a general framework for feature-based multimedia
data embedding with coding for simultaneous synchronization
and error correction. Sections III-V describe a speech water-
mark that constitutes a realization of this framework. Section III
describes a data-embedding method for speech that utilizes
pitch modification. In Section IV, we provide a model for
communication channels characterized by insertion, deletion,
and substitution events and introduce Davey and MacKay’s
[15] coding methodology for reliable communication over
such channels. Section V then provides a short overview of
the complete speech-watermarking system and relates it to the
general framework. Section VI describes the implementation of
the speech-watermark and includes results of psychophysical
tests performed in order to determine perceptually tolerable
limits for pitch-based embedding. Experimental results for the
proposed speech watermark with synchronization are presented
in Section VII, where the method is also compared with a
simple spread-spectrum watermark in order to illustrate that
desynchronization is encountered over low-bit-rate coding
channels. Section VIII presents conclusions and discusses
possible extensions and future work. Algorithms used in the
encoding/decoding process for the joint synchronization and
error recovery are summarized in the Appendix that constitutes
the final section of this paper. The performance of the decoding
process is improved by using an expectation maximization
algorithm in order to estimate the channel parameters. The
algorithm utilized for this purpose is also included in the
Appendix.

II. FEATURE-BASED MULTIMEDIA DATA
EMBEDDING WITH SYNCHRONIZATION

Fig. 1 is an overview of the multimedia data embedding
framework that we propose here for the purpose of watermark
synchronization. We describe the method in a general setting
and present specific details for speech embedding in the fol-
lowing sections. The dashed block in the figure represents the
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Fig. 1. Feature-based data embedding with synchronization.

basic data embedding and extraction technique, which at the
transmitting end, embeds data t in the signal through modifica-
tions of semantic features in the multimedia signal and, at the
receiving end, extracts the data t through the estimation of the
semantic features. Since distortions introduced in the channel
(or even in the embedding process itself) may cause extracted
data to differ from that at the transmitter [14], we incorporate
an additional encoding/decoding step shown in the dotted block
in Fig. 1 for synchronization and error recovery.

The framework that is presented is generic and requires fur-
ther exploration of several aspects depending on the type of
signal and the application: determination of appropriate fea-
tures, selection of an embedding domain, and method that offers
desired resilience, selection of suitable codes for the recovery of
synchronization, and error correction. We focus our investiga-
tion on the particular problem of synchronization when feature
estimates between the embedding and receiving ends may differ,
which has stymied feature-based watermarking methods. For
this purpose, we select a speech watermarking application that
affords a significant simplification due to the 1-D nature of the
signal. At the same time, speech watermarking still presents fun-
damental challenges due to the special structure of low-bit-rate
speech coders that are based on linear predictive coding methods
[18]. A unique characteristic of these techniques among mul-
timedia compression standards is that they are based on mod-
eling the signal source (i.e., the vocal tract apparatus, rather
than the human perceptual characteristics at the receiving end
[18]-[22]). The compressor analyzes the speech signal to deter-
mine appropriate model parameters which are communicated
to the receiving end. The decompressor at the receiver utilizes
the parameters received to synthesize an approximation to the
speech signal. This process preserves the relevant signal fea-
tures that constitute the model parameters but does not offer any
guarantees for preservation of the signal waveform or geometry
(i.e., the time axis).

Thus, in the watermarking context, low-bit-rate encoding rep-
resents a nonmalicious geometric distortion channel. Specifi-
cally, for the adaptive multirate (AMR) speech encoder [21],
regions of silence may not necessarily be reconstructed with
the same duration, causing desynchronization in watermarking
methods relying on the signal geometry for synchronization. For
this reason, low-bit-rate speech compression channels present a
particularly difficult challenge for waveform and transform-do-
main-based embedding methods [23]. The nature of these low-
bit-rate coding channels also makes them ideally suited for fea-
ture-based watermarking, where the signal features for the em-
bedding are matched to the encoding and decoding. We develop
our feature-based speech watermark considering low bit-rate en-
coding channels. We also consider additive noise distortions but



COUMOU AND SHARMA: INSERTION, DELETION CODES WITH FEATURE-BASED EMBEDDING 155

(S )( (WAV

0.1

0.05 -

-0.05 -

Normalized Amplitude
o

w2 S

| EB | ! !

0.86 0.88 0.89 0.9

0.91 0.92 0.93 0.96

Time (Seconds)
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do not currently address other factors (i.e., malicious geomet-
rical distortion). Our speech watermark implementation uses
pitch modification for embedding [8] and a concatenated coding
system [15] for synchronization, each of which is described in
the proceeding two sections.

III. DATA EMBEDDING IN SPEECH BY PITCH MODIFICATION

The pitch (i.e., fundamental period) of voiced regions of a
speech signal is utilized as the “semantic” feature for data em-
bedding [8]. This choice is motivated by the structure of most
speech encoders [18]-[22] that ensure pitch information is pre-
served. We illustrate this by using a portion of a speech signal
as shown in Fig. 2. This segment shows a initial silence segment
(S), followed by an aperiodic unvoiced segment (UV), which, in
turn, is followed by a voiced segment (V). The V is identified in
the speech signal as the region having energy above a threshold
and exhibiting periodicity. Within these voiced segments, the
pitch is estimated by analyzing the speech waveform and esti-
mating its local fundamental period over nonoverlapping anal-
ysis windows (AWSs) of L samples each. An embedding block
(EB) comprises several AWs.

The embedding method is schematically illustrated in Fig. 3.
Data are embedded by altering the pitch period of voiced seg-
ments that have at least M contiguous windows. M is experi-
mentally selected to avoid small isolated regions that may erro-
neously be classified as voiced.

Within each selected voice segment, one or more bits are
embedded. A single bit is embedded by the quantization index
modulation (QIM) of the average pitch value. This corresponds
to the method presented in [8]. For multibit embedding, the
voiced segment is partitioned into blocks of .J contiguous anal-
ysis windows (J < M) and a bit is embedded by scalar QIM of
the average pitch of the corresponding block. Specifically, the
average pitch for a block is computed as

1 J
Pave =5 D _Pi ()
=1

where {p; }7_, are the pitch values corresponding to the analysis
windows in the block.
Scalar QIM [24] is applied to the average pitch for the block

plavg = Qb (pan) (2)

where b € {0,1} is the embedded bit and Qu(u) =
Q(u — bA/2; A) + bA /2 denotes the corresponding quantizer,
where Q(e; A) denotes the integer-scalar quantizer with scaling
parameter A.

Modified pitch intervals for the analysis windows in the block
are computed as

p; =pi+ (plavg - pavg>~ 3)

The corresponding pitch modifications are then incorporated
in the speech waveform using the pitch synchronous overlap add
(PSOLA) [25] algorithm. Note that the embedding in average
pitch values over blocks of analysis windows enables embed-
ding even when the pitch period exceeds the duration of a single
window and reduces perceptibility of the changes introduced.
The use of multiple embedding blocks within a voiced segment
(of .J analysis windows) ameliorates data capacity compared to
the single-bit embedding in each voice segment.
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Fig. 5. IDS events in pitch data embedding/extraction.

At the receiver (shown in Fig. 4), the speech waveform is ana-
lyzed to detect voiced segments, and pitch values are estimated
for nonoverlapping analysis windows of L samples each. In a
process mirroring the embedding operation, the average pitch
values are computed over blocks of .J contiguous analysis win-
dows. For each block, an estimated value of the embedded bit
is computed as the index 0/1 of the quantizer {Q,( )};_, that
has a reconstruction value closest to the average pitch. This pro-
vides an estimate of the embedded data.

Since the method embeds data only over voiced segments, it
is immune against processing and shortening/lengthening of the
silence regions, which may occur in low-bit-rate speech coding.
Furthermore, a new embedding block begins at the start of each
embeddable voiced segment. Hence, the start locations of the
voiced segment implicitly synchronize the time windows for the
embedding and extraction of different bits. This is analogous
to carrier synchronization within a communication system [26].
Once this “carrier synchronization” is accomplished, synchro-
nization at the symbol level is the remaining requirement for
data communication. In this respect, one challenge for the data
embedding by pitch modification is that estimates of voiced seg-
ments at the receiver may differ from those at the embedder 2 [8].
Multiple voiced segments at the embedder may coalesce into a
single voiced segment at the receiver, or vice-versa. In addition,
relatively small voiced segments may be detected at one end and
not the other. In general, these types of mismatches result in in-
sertion, deletion, and substitution (IDS) errors in the estimates
of the embedded data. Insertion/deletion events are particularly
insidious since they cause a loss of synchronization and cannot
be corrected using conventional error-correction codes.

An example that illustrates IDS events in the recovery of
pitch-based data embedding is shown in Fig. 5, where a time
window is shown along with the embedded bits (* symbols)
and extracted bits (.0 symbols). From the plot, we can see that
synchronism is not maintained between the embedded and
extracted bits. Time locations with overlapping star and square
symbols correspond to instances where embedded and extracted

2As remarked earlier, these types of errors are encountered in almost all fea-
ture-based data embedding methods.

bits match, locations where both are present but do not match
correspond to substitution events, instances where a square
symbol occurs without a corresponding star symbol represent
locations where a spurious bit is inserted in the received stream,
and stars without corresponding squares represent a deletion
of the corresponding transmitted bit. In Fig. 5, we see one
insertion, one deletion, and one substitution event as indicated.

To address this problem, we next incorporate concatenated
coding techniques [15] that allow us to synchronize and recover
data over IDS channels.

IV. SYNCHRONIZATION OVER IDS CHANNELS

To recover from insertion/deletion events, we adopt a con-
catenated coding scheme developed by Davey and MacKay [15]
that utilizes an outer g-ary low density parity check (LDPC)
code and an inner sparse code combined with a synchroniza-
tion marker vector. We first present an intuitive overview of the
method and then present details of our implementation.

Fig. 6 illustrates the method schematically. We begin by con-
sidering the synchronization marker vector w, which is a fixed
(preferably pseudorandom) binary vector of length Nn that is
independent of the message data m, and known to the trans-
mitter and receiver. It forms the data embedded at the trans-
mitter when no (watermark) message is to be communicated.
In the absence of any substitutions, knowledge of this marker
vector allows the receiver to estimate insertion/deletion events
and, thus, regain synchronization (with some uncertainty).

Message data to be communicated is “piggy-backed” onto the
marker vector. This is accomplished by mapping the message
to a unique sparse binary vector via a codebook, where a sparse
vector is a vector that has a small number of 1’s in relation to its
length. The sparse vector is then incorporated in the synchro-
nization marker prior to embedding as intentional (sparse) bit
inversions at the locations of 1’s in the sparse vector. Concep-
tually,3 once the receiver synchronizes, since the synchroniza-
tion marker vector is known to the receiver, bit inversions in
the marker vector can be determined. If the channel does not
introduce any substitution errors, these bit inversions indicate
the locations of the 1’s from the sparse vector and, therefore,
allow recovery of the sparse vector and thereby the message.
In the presence of additional channel-induced substitutions, the
estimates of the sparse vector are uncertain. This uncertainty
is resolved by the outer g-ary LDPC code. The g-ary codes
offer a couple of benefits over binary codes. First, suitably de-
signed g-ary codes with ¢ > 4 offer performance improvements
over binary codes [27]-[29] even for channels without inser-
tions/deletions. Second, specifically for the case of IDS chan-
nels, the g-ary codes allow improved rates [15], [29] (as de-
scribed at the end of this section).

A. Encoder (Inner and Outer)

For simplicity, in the following discussion, we consider the
transmission of a single message block in the setup of Fig. 6. The

3This description is not strictly correct since the estimated synchronization
has some ambiguities (as can be readily argued to be the case for any marker
vector-based synchronization method). However, provided that the IDS events
are reasonably infrequent, the outer LDPC code is able to compensate for the
ambiguities in synchronization and the errors introduced by the channel.
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watermark message data m is a block of K g-ary symbols (with
q = 2% for some k). The message m is encoded (in systematic
form) using a rate K /N g-ary LDPC code to obtain codeword d,
which is a block of Ng-ary symbols. The LDPC code is spec-
ified by a sparse (N — K) x N parity check matrix H with
entries selected from GF(q) (i.e., the Galois field with ¢ = 2*
elements). The rate k/n sparsifier maps each g-ary symbol into
an n-bit sparse vector using a lookup table (LUT) containing
q = 2" entries of sparse n-bit vectors. Thus, corresponding to
the codeword d, there are (Nn) bits that form the sparse mes-
sage vector s that is added to the marker vector w (of the same
length). The overall rate of the concatenated system is (Kk)/(Nn)
message bits per bit communicated over the IDS channel (i.e.,
per embedded bit).

B. IDS Channel Model

The IDS channel is assumed to follow a hidden Markov
model (HMM), as shown in Fig. 7 [15], [16]. The states
...,t—1,2,24+1,... represent the (hidden) states of the model,
where state ¢ represents the situation where we are done with*
the (¢ — 1)th bit #(;_1 at the transmitter and poised to transmit
the ¢th bit ¢;. Consider the channel in state 7. One of three
events may occur starting from this state: 1) with probability
Pr, a random bit is inserted in the received stream and the
channel returns to state ¢; 2) with probability Pr, the th bit ¢;
is transmitted over the channel and the channel moves to state
(7 4+ 1); and 3) with probability Pp the ith bit ¢; is deleted and
the channel moves to state (¢ + 1). When transmission occurs,
the corresponding bit is communicated to the receiver over a
binary symmetric channel with crossover probability Ps. A

4This is either through a transmission (which may be correct or in error) or
through a deletion event.

substitution (error) occurs when a bit is transmitted but received
in error. The probabilities Pr, Py, Pp, and Pg constitute the
parameters for the HMM, which we will collectively denote as
h'. Note that we use two versions of the model corresponding to
the blocks labeled IDS channel and IDS channel’ in Fig. 6. For
the latter, the substitution probability is increased suitably to
account for the additional substitutions caused by the message
insertion.

C. Inner Decoder

The soft inner decoder uses the HMM for the channel, to
efficiently compute symbol-by-symbol likelihood probabilities
Pj(a) = P(t|d; = a,h) for1 < j < N, where h = (1, w)
represents the known information at the receiver. Note that since
the symbols comprising d are, in fact, g-ary, P;(a) is a prob-
ability mass function (pmf) over all the ¢ possible values of
a. These pmfs form the (soft) inputs to the outer LDPC iter-
ative decoder. The computations in the inner decoder are per-
formed using a forward-backward procedure [30] for HMM
corresponding to the IDS channel’ followed by a combination
step for the HMM for IDS channel [15] (see Fig. 6). Details of
these may be found in [15] and a brief summary of the equations
is included in the Appendix.

Note that as an alternative to this process, a Viterbi algorithm
could be utilized to determine a maximum-likelihood sequence
of transitions corresponding to the received vector. However,
the process is suboptimal and superior performance is obtained
from the forward—backward algorithm for HMM state estima-
tion [15].

D. Outer Decoder

The symbol-by-symbol probability-mass-function vectors
{Pj(a)}acar(q);j = 1,...N obtained from the (soft) inner
decoder are the inputs for the outer g-ary LDPC decoder. The
LDPC decoder is a probabilistic iterative decoder that uses
the sum-product algorithm [31] to estimate marginal posterior
probabilities P(d;|t, H) for the codeword symbols {d;}0,.
Each iteration uses message passing on a graph for the code
(determined by H) to update estimates of these probabilities.
Upon completion of an iteration, tentative values for these
symbols are computed by picking the g-ary value x; for which
the marginal probability estimate P(dj|f, H) is maximum. If
the vector of estimated symbols x = [z1, ...z ] satisfies the
LDPC parity check condition Hx = 0, the decoding terminates
and the message m is determined as the last K symbols of x. If
the maximum number of iterations are exceeded without a valid
parity check, a decoder failure occurs. The equations associated
with the outer decoder are summarized in the Appendix.

E. Observations/Comments

One can note that there are a couple of benefits from the
use of g-ary codes for our application as opposed to binary
codes. First, insertion/deletion events introduce uncertainty
around the locations where they occur. Using groupings of
k binary symbols into a g-ary symbol allow the grouping of
these uncertain regions into g-ary symbols and reduces the
number of symbols over which the uncertainty is distributed,
thereby offering improved performance. This advantage of
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Fig. 8. Pitch-based speech watermark with synchronization.

g-ary codes is similar to the advantage that they offer in cor-
recting burst errors, commonly exploited in Reed—Solomon
codes [32]. Second, increasing the value of n to the point in
which the entropy per bit does not increase [15] is desirable in
order to design a more effective sparsifier and to obtain better
estimates of the symbol-by-symbol likelihood probabilities
P;(a). However, increasing n reduces the overall information
rate (Kk)/(Nn). Using the g-ary code allows us to compensate
for this by increasing k in comparison to a binary code (for

which k& = 1).

V. PITCH DATA EMBEDDING IN SPEECH
WITH SYNCHRONIZATION

The block diagram in Fig. 8 depicts the complete system
showing both the speech data embedding and the concatenated
coding system for recovering from IDS errors. Except for the
channel, the individual elements of the system have been pre-
viously described. For our system, we consider a nonmalicious
operating environment in which the channel can consist of low-
bit-rate voice coders. Since these codecs are based on source
models for speech, the pitch based-embedding is particularly
appropriate—this was the original motivation for the selection
of pitch as a parameter for embedding [8].

VI. IMPLEMENTATION

We implemented the proposed system using the PRAAT
toolbox [33] for the pitch manipulation operations for analysis
and embedding and MATLAB for the inner and outer encoding
and decoding processes. The channel operations corresponding
to various compressors were performed using separately avail-
able speech codecs.

A. Perceptually Tolerable Limits for Pitch-Based Embedding

A psychophysical test was performed with 32 listeners in
order to evaluate the discriminability of watermark embedding
and an acceptable range of QIM step sizes for embedding. In a
paired comparison experiment, a segment of the original speech
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Fig. 9. Watermark discriminability (fraction of listeners correctly identifying
watermarked version) as a function of QIM step size.

signal and the watermarked version of the segment were pre-
sented to a listener who was then asked to determine which of
the two versions, if any, could be identified as modified. The
experiment was repeated for QIM step sizes ranging from 10 to
30 Hz. The presentation of the original and watermarked version
was randomized for each trial and for each observer, the order
in which the different watermarked versions were presented was
randomly permuted. As a function of the QIM step size, the frac-
tion of observers who were able to correctly identify the water-
marked version is shown in Fig. 9. From the figure, one can see
that less than 50% of the listeners were able to correctly identify
the watermarked version for QIM step sizes under 15 Hz. QIM
step sizes of less than 15 Hz were therefore deemed acceptable
for the embedding.

B. IDS Coding

A ¢ = 16-ary LDPC code with rate 1/4 was utilized as the
outer code. The code was obtained by generating an irregular
g-ary parity check matrix H based on Davey and Mackay’s con-
structions [29], [37]. The parity check matrix was designed for
a column weight of 2.4 (empirically shown by Davey to be near
optimum for ¢ = 16 [29]) and rows of the matrix were assigned
g-ary symbol values from the heuristically optimized sets made
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available by Mackay [37]. A generator matrix for systematic en-
coding was obtained using Gaussian elimination.

For the sparse LUT, we generated ¢ = 2¥ vectors of length n
with the lowest possible density of 1’s and ordered them sequen-
tially to represent the ¢ = 2% possible values for a codeword
symbol. The marker vector w was generated using a pseudo-
random number generator whose seed served as a shared key be-
tween the transmitter and receiver. The mean density of sparse
vectors was obtained from the sparse LUT and made available
to the inner decoder for the forward—backward passes. The inner
decoder used the forward—backward procedure for HMMs to es-
timate the posterior probabilities and the outer LDPC decoder
used iterative probabilistic decoding. A brief summary of these
steps is provided in the Appendix.

C. Channel Parameter Estimation

The HMM parameters for the effective IDS channel were
estimated using the Baum-Welch re-estimation procedure
[30]. The re-estimation equations are also summarized in
the Appendix. The method was initialized using parameter
values obtained by a sample run of the pitch-based embedding
and extraction process that was manually aligned to provide
synchronization, thereby allowing empirical estimation of the
probabilistic parameters. The corresponding initial param-
eter values were Pr = 0.04, Pp = 0.04, and Ps = 0.07.
The overall system performance was found to be not unduly
sensitive to the channel parameter values. In particular, we
demonstrate in the following section that the use of these initial
values, without the Baum—Welch re-estimation, causes only a
minor degradation in performance.

VII. EXPERIMENTAL RESULTS

In order to evaluate the performance of our proposed speech
watermark, we used sample speech files from audio books and
various Internet sources [34], [35] and from a database provided
by the NSA for the testing of speech compression algorithms
[20], [21]. The sample speech files consist of continuous sen-
tences read by male/female speakers and sampled at 16 kHz
with 16 b/sample, which corresponds to a data rate of 256 kb/s.

In order to test the system, random message vectors of ¢ =
16-ary message symbols were generated. These were arranged
in blocks of K = 25 and encoded as LDPC code vectors of
length N = 100. The length of the sparse vectors was chosen
as n = 10; resulting in an overall coding rate of 0.10. The bi-
nary data obtained from the sparsifier was embedded into the
speech signal by QIM of the average pitch over J = 5 windows
of 10 ms each using a quantization step A that ranged between
6-15 Hz (the impact of the embedding was perceptually toler-
able over this range of step-sizes as indicated by the results of
the psychophysical tests in the preceding section).

The communication channel was variously chosen as follows.

1) None (i.e., the speech waveform was unchanged between
embedding and extraction).

2) Global System for Mobile Communications coder, version
06.10 (GSM-06.10) at 13 kb/s. This codec is commonly
used in today’s second-generation (2G) cellular networks
that comply with GSM standard [20].

Bit Errors

O “HHHHHHHH-HHH-HH-— -
0 20 40 60 80 100 120 140 160 180 200

Sequence Index

Fig. 10. Differences between inserted and extracted bits in the absence of syn-
chronization.

3) Adaptive multirate coder (AMR) at 5.1 kb/s. This codec
has been standardized for third-generation cellular net-
works (3GPP standard) [21].

A. Sample Run Results

We first present results for a sample run of one block through
the system. The purpose of these results is to illustrate the ability
of the method to regain synchronization despite synchronization
loss for the underlying pitch-based embedding. Monte Carlo re-
sults that illustrate the statistical behavior of the technique for
different parameter values are deferred to the next section. A
QIM step size of A = 15 Hz is used throughout this subsection.

Fig. 10 illustrates the differences between inserted bits t in
the speech waveform and extracted bits t where the status of
the first 200 of 1000 embedded bits are indicated as “+” sym-
bols at 0 along the y axis and indicate locations where the em-
bedded and extracted bits match and those at 1 indicate locations
where they differ. As can be seen in the initial segment, there is
reasonable agreement between the symbols but beyond that, the
agreement between the bits is no better than random. This is pri-
marily due to a loss of synchronization between the embedded
and extracted bitstreams. Once synchronization is lost, indepen-
dent bits embedded at different locations are, in fact, being com-
pared, which match with probability half.

Table I shows a comparison for a typical successful run
across the different “channels” that we enumerated earlier. The
columns in the table list the initial error count, the number of
errors after the decoding, and the computation requirements in
terms of the number of LDPC iterations, as well as the compu-
tation times spent by our (unoptimized) decoder in the inner and
outer coders for the concatenated synchronization code. From
Table I, we can note that in all cases, the loss of synchronization
initially produces a rather high apparent bit-error rate but the
proposed method is able to recover synchronization and correct
errors to correctly recover the embedded data. The decoding
consumes most of the computation time in the experiments.
The computation times for the inner and outer decoder are
listed in Table I. The numbers in the table illustrate the fact
that the inner decoder has a rather high computational burden>
(which is expected given the nonlinearity of the inner code)

50ur MATLAB-based implementation is quite inefficient for the inherently
serial computations required in this process and it is possible that the process
could be considerably improved with an alternate implementation.
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TABLE I
COMPARISON OF ERROR-CORRECTION PERFORMANCE AND DECODER EXECUTION TIMES OVER DIFFERENT “CHANNELS”
Channel Bit Errors w/o Errors after LDPC Decoder  Inner Decoder LDPC Decoder
(Compression) | Synchronization ~ Synchronization Iterations Execution Time Execution Time
None 518 0 5 177.8 s 3.7s
AMR 5.1 kbps 492 0 7 188.5s 39s
GSM 13 kbps 472 0 7 18145 4.6
5 ' ’ ' ‘ ' Fig. 12(b) shows the results obtained when the channel parame-
0] 1 ters are re-estimated using the Baum—Welch algorithm. The re-
25 ‘!"u.‘,\ 4 sults obtained with channel parameter estimation offer a modest
%, —©— No Compression . . .
w20} N ‘=4 - GSM 6.10 13 kbps | improvement over the static parameters for higher QIM step
£ Nz oA Kb sizes and perform slightly worse for the lower QIM step sizes

Iterations

Fig. 11. LDPCiteration count versus the number of errors for the outer decoder.

and that this constitutes the major computational load for the
proposed technique.

We also examined the behavior of the iterative decoding for
the outer LDPC decoder for the experimental runs of Table I.
The results are shown in Fig. 11 where the number of symbol er-
rors as a function of the LDPC iteration count is shown for each
case. From the results, we can see in the absence of compres-
sion the number of errors rapidly falls and correct decoding is
achieved in less than seven iterations in the example presented.

B. Monte Carlo Simulation Results

Next, we present Monte Carlo (MC) simulation results for
more extensive experiments, again, using the three previously
cited speech compression channels and an additive white
Gaussian noise (AWGN) channel. For this purpose, the sample
speech segments (containing female and male speech from
diverse sources) were concatenated to produce a speech signal
of approximately 2 h in length. Four runs were performed over
the resulting signal for each channel with different realizations
of the marker vector w, producing a total 200 simulation runs
for each channel.® The results from these experiments are
summarized by determining, for each choice of experimental
settings, the percentage of simulation runs for which the em-
bedded data was successfully recovered.

Fig. 12 illustrates the impact of varying the QIM quantizer
step-size A for the three compression channels considered. In
general, an increase in the QIM step size also increases the em-
bedding distortion. Though, as discussed in Section VI, the em-
bedding distortion is almost imperceptible for QIM step sizes
less than the 15 Hz maximum that we consider in this investiga-
tion. Results are provided for two channel parameter estimation
scenarios. Fig. 12(a) shows the results obtained using the static
set of initial channel parameters indicated in Section VI and

The time for the simulations with our experimental code and the manual
nature of the interaction with PRAAT and the speech codecs did not readily
allow larger Monte Carlo experiments.

because the channel degradation also degrades the estimates ob-
tained. Apart from these minor differences, the results in both
figures follow common trends: As can be expected, increasing
values of A provide increased robustness and thereby a higher
success percentage. For a quantizer step size of A = 15 Hz,
data were successfully recovered in more than 95% of the simu-
lations for all three channels. Observe that these three channels
present varying degrees of difficulty for watermark recovery.
The only source of errors for the channel corresponding to no
compression are the differences in estimated features between
the embedder and the receiver caused by the change in the signal
from the embedding process itself. These become progressively
infrequent as the QIM step size A is increased and for A =
15 Hz, the data are successfully recovered. Both the GSM and
AMR channels introduce very significant distortions,” causing
additional errors that the watermark system must overcome. The
extremely low-bit-rate AMR channel is the most challenging.

The performance of the watermark over an AWGN channel
is shown in Fig. 13 for QIM step sizes A of 10, 12, and 15 Hz.
The abscissa of the plot indicates the AWGN signal-to-noise
power ratio (SNR) and the ordinate indicates the percentage of
simulation runs for which data were successfully recovered. In
informal experiments, an AWGN SNR below 27 dB produced
a clearly audible distortion and around 20 dB resulted in ob-
jectionable audio quality. Once again, two channel parameter
estimation scenarios are considered. Fig. 13(a) shows the re-
sults obtained using the static set of initial channel parame-
ters indicated in Section VI and Fig. 13(b) shows the results
obtained when the channel parameters are re-estimated using
the Baum—Welch algorithm. In this case, a clear improvement
can be seen with the channel parameter estimation though the
static parameters also offering reasonable performance. From
the graph in Fig. 13(b), one can see that over the range of per-
ceptually acceptable AWGN attacks, the method performs quite
well with only minor degradation in comparison with the noise-
less channel case, which was included in Fig. 12(b).

C. Spread-Spectrum Watermark Comparison

In order to illustrate the challenge posed by speech water-
marking (for low-rate compression), we also evaluated an obliv-
ious spread-spectrum watermarking method that is conceptu-
ally similar to that proposed by Cheng [17]. Our scheme is de-

7GSM and AMR coding resulted in SNR values of approximately 3.9 dB and
2.0 dB, respectively.
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Fig. 12. Monte Carlo simulation results over speech compression channels. (a)
Without channel parameter estimation. (b) With channel parameter estimation.

picted in Fig. 14, where the normalized correlation value forms
the output. A threshold detector converts the value to a posi-
tive/negative detection response. By varying the threshold value
and conducting MC experiments, we can obtain receiver oper-
ating curves (ROCs) that plot the estimated detection and false
alarm probabilities against each other.

For our experiments, we generate 2000 sample pseudo-
random sequences as the spread-spectrum “watermark” vectors
(this roughly matches the number of spread-spectrum wa-
termarks to our uncoded data embedding rate). The random
sequences were scaled by a factor « and added to the speech
in order to embed the watermark, where v was chosen as the
smallest value such that the resulting embedding was barely
audible (0.07% of the signal dynamic range in our case). We
performed 2500 simulations over our concatenated speech
signal in order to obtain the MC results.

In the absence of any compression, the ROC curve is a per-
fect inverted L. The results for the two compression channels are
shown in Fig. 15. We find moderate success for the GSM com-
pression channel but for AMR compression, the ROC curve is
very close to a straight diagonal line, which is the worst possible
performance and matches the performance of a random detector
that does not use the input signal at all.

VIII. CONCLUSION AND DISCUSSION

This paper introduced a new paradigm for synchroniza-
tion in multimedia watermarking that combines feature-based
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Fig. 13. Results from Monte Carlo simulations over an AWGN channel. (a)
Without channel parameter estimation. (b) With channel parameter estimation.
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Fig. 14. Alternative spread-spectrum speech watermark.
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Fig. 15. ROC for a spread-spectrum speech watermark over GSM and AMR
channels.

embedding with error-correction codes capable of correcting in-
sertion, deletion, and substitution errors. We presented a speech
watermark as an instantiation of the paradigm. Low-bit-rate
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encoding methods motivated the feature-based embedding in
this application and the 1-D nature of the signal offered suit-
able simplification for realization of a practical watermarking
scheme. The experimental results for our speech watermark
illustrate that the framework allows recovery of embedded
data under common scenarios where some mismatches in the
features detected at the transmitting and receiving ends are in-
evitable. The speech watermark is robust to low-bit-rate speech
coders that are commonly used in speech communication
applications. Since these encoders have been debilitating for
common watermarking methods that presume synchronization,
the work presented here represents an advance in speech wa-
termarking in addition to illustrating the utility of the proposed
framework.

This paper is a first step offering a promising new approach
for jointly addressing synchronization and error correction
in feature-based multimedia data embedding. The framework
proposed here was demonstrated in a speech-watermark suit-
able for operation over low-bit-rate encoding channels, which,
although nonmalicious, pose very significant desynchroniza-
tion challenges. The positive results obtained in this difficult
scenario are rather encouraging but several issues must be
addressed in order to apply the methodology in broader fea-
ture-based watermarking scenarios. Specifically, fundamental
advances in the error-correction coding methodology are re-
quired to provide meaningful extensions for 2-D and 3-D data
(e.g., images and video).

Irrespective of signal dimensionality, some further explo-
rations are also of interest, particularly for addressing robust
embedding scenarios as opposed to the semifragile application
considered in our work. In this regard, our embedding method
based on pitch modification is not robust against time-axis
scaling attacks (that are the equivalent to valumetric scaling
attacks for QIM methods) and alternate (local) methods of
embedding would therefore be of interest. Additional work
is also required on the security of the scheme. A potential
security weakness of feature-based embedding methods is that
an adversary may also attempt to detect and alter significant
features in an attempt to defeat the watermark [41]. An addi-
tional security weakness arises in our implementation due to
the fact that the QIM embedding presented does not employ
any dithering (synchronization would be a prerequisite in order
to use dithering). A malicious attacker may attempt to estimate
quantizer levels and deliberately disrupt the embedded signal.
We note that the marker sequence is partly analogous to a
dither signal. An interesting direction for further investigation
therefore would be to explore whether a “soft marker signal,”
which is not constrained to be binary, could be utilized to serve
the simultaneous purposes of dithering and synchronization.

APPENDIX

The IDS correction code is based on the work of Davey and
MacKay [15], [29] though the specific codes and parameters
were selected in view of our watermarking application. This
Appendix provides a compendium of the elements that were not
described in the main text of our paper: The HMM-based inner
decoder, the Baum—Welch procedure for the re-estimation of the
channel model parameters, and the outer LDPC code.

A. Hidden Markov Model-Based Inner Decoder

The inner decoder computes the symbol-by-symbol
likelihood probability mass functions {P;j(a)}secr(q) for
7 = 1,...N from the extracted data t at the watermark re-
ceiver. In this process, it utilizes the channel model and the
model parameters. We assume that the channel labeled IDS
channel in Fig. 6 has parameters A’ := (Pr, Pr, Pp, Ps) that
correspond, respectively, to insertion, transmission, deletion,
and substitution probabilities. If we consider the channel labeled
IDS channel’ in Fig. 6 with input as the marker vector w and
output as the extracted data t at the receiver, the insertion, trans-
mission, and deletion probabilities for this channel are the same
viz, Pr, Pr, Pp, respectively, whereas due to the additional
substitutions introduced by the message data, the probability of
substitution changes to Py = Ps(1 — f) + f(1 — Ps), where
f denotes the mean density of the sparse LUT. For practical
implementation, we assume that the maximum number of
consecutive insertions allowed in the model of Fig. 7 is limited
to I,,. After I,, consecutive insertions, the channel does not
allow any additional insertions and undergoes a deletion with
probability Pp or transmits the current bit with probability
Pr = (1— Pp). Next, we define the drift +; at position i as the
number of insertions minus the number of deletions encoun-
tered before the channel enters state ¢ and forward probabilities
Fi(k) := P(t1,...,t; 14x,%; = k|h) and the backward
probabilities B; (k) := P(tiyx, ... |[ti = &, i), for emission of
the leading and trailing ends of the received sequence (under
indicated conditionings). These are readily calculated using the
HMM forward-backward recursions

k+1

> FiamTi (ficagm, -
n=k—1In
k4TI,

> Biga )Ty (Figs - Eign)

n=rk—1

) tA’i—l-i-n)

where Tfm(a) denotes the conditional probability, conditioned
on ¢(;_1) = 7, that 1»; = x and the binary sequence o of length
(k —n) + 1 is emitted by the channel from the time the channel
enters state 7 to the time the channel enters state (i + 1). The
conditional probability Tim(o) can be expressed in the form
T:m(a) = Ok + /BWK ;)n(a) where

pr—tip
{12,\777+1D —1S/€_77<Im
0

Uy =
t(k—m) <—L(k—n) 2 In
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Note that o is a binary string of length (k—7+1), so that o,,_, 41
is the last element of o (which would be the transmitted bit, if
indeed a transmission occurs).

Upon completion of the forward—backward pass, the
symbol-by-symbol likelihood probabilities for g-ary symbols
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at the input of the sparsifier can be computed by combining the
results from the bitwise forward—backward pass as8

Pj(a) = P(t|d; = a,h) = > Y F;_(u)P(x",

"7[}]'— = u|¢]’+ =, dj =a, h)Bj+ (’U>
where j_ = jn,j+ = (j + 1)n,u,v represents the (postu-
lated) drift at the start of the jth and (j + 1)th symbols, re-
spectively; r° represents the bits emitted by the channel be-
tween these positions (i.e., r° = [f,,...,,]), and the proba-
bility term P(r",4; = ul);, = v,d; = a,h) is interpreted
readily from the notation. This latter probability can be effi-
ciently computed by defining a forward probability Fl_/ (k) ==
P(fu,...,fu+i_1+ﬁ,1/;j_ = u|y); = K,d; = a,h) and noting
that P(r°,4; = ulp;, = v,d; = a,h) = F,(v), which is
obtained using an additional forward pass
’ rtl ’
Fi(s)= > F_ (T % (ficiqm, - tio14n)
n=rk—1I

where 7,0,/ ( ) is defined as before with Py replaced by P, in the
expressions.

B. Baum—Welch Re-Estimation Equations

The HMM parameters representative of the channel condi-
tions can be estimated using the iterative Baum—Welch re-esti-
mation procedure [30]. In terms of the forward and backward
probabilities, the re-estimation equations are shown at the top
of the next page, where V denotes the estimate for the param-

eter Vand D = )", Zvn Fi(n)Bi(n).

C. Outer Q-Ary LDPC Code

Technical details for LDPC encoding/decoding may be found
in relevant references on the topic [27]-[29], [31], [36], [38],
[39]. A brief summary is provided here for completeness.

The g-ary LDPC code is specified by a (N — K) x N sparse
parity check matrix H with nonzero entries in GF (q), having
rank M := N — K. The outer encoder (Figs. 6 and 8) encodes
blocks of K g-ary symbols into corresponding codewords with
N g-ary symbols each. Codewords are N vectors, satisfying the
parity check constraint Hx = 0,x € GF~(¢). An N x K gen-
erator matrix for the code in systematic form, computed from
H forms the encoder [27], [28], [31], [39]. Codewords are ob-
tained by multiplying message vectors in GF¥ (¢) by the gen-
erator matrix and include the message m as the last & symbols.

The decoder takes, as inputs, symbol-by-symbol like-
lihood probabilities {Pj(a)}eear(g for j = 1,...N
and estimates marginal (pseudo) posterior probabilities
Qf = P(d; = alt,H). The term @ represents the prob-
ability that the jth received symbol is d; € GF(g) conditioned
on the events that at the transmitting end, the data were encoded
using the parity check matrix H and t that is received from
the IDS channel. This is accomplished by the standard soft in,
soft out iterative decoding algorithm for g-ary LDPC codes
summarized in Fig. 16.

8The two-step process utilizing a bitwise forward—backward pass followed
by a forward pass for each symbol represents an approximation that ignores
correlations introduced by the sparsifier except for the specific symbol under
consideration.

1. Initialization:
Q—0; Oy < P(d;),Vd; e GF(q)

2. Horizontal Pass: Vi BHij #0, Vj BHZ.J. #0,
and VY a e GF(q)assign

R; <—Z,1’ij(a,{u, el )HQ;;’

) leL;
where
_ 1 iin/a+zHi1”1:0
Xi (a, {u, le Ll.j})z leL
0 otherwise
and Eij ={: H,#0,l# it
Note that (a,{u, e EU }) selects the values for
symbols other than j that satisfy the parity check

condition specified by the i row of H when the j*
symbol is equal to a. The computations of

a . .
{Rij }aeGF(q) can be performed efficiently in parallel

using a fast Fourier transform (FFT) [36], specifically
for the typical case of g=2" this is a k-dimensional
two-point FFT.

3. Vertical Pass: Vi 3Hij 20, Vj BHU #0, and
Vae GF(q)update
a a
Q; < aiij(a)HRU
leLy
where
Ly={:H,20,12i},
and o is a scaling factor determined to ensure that

ZQ; =1. This computation can be performed
a
using a forward-backward algorithm.

4. Pseudo-posterior probability computation:
V1< j<N,and Vae GF(g) compute
a a
Q0 —a,P ()] [ R;
leL;
where L; ={l tH, # 0} and @/} is a scaling factor
determined to ensure that Z ;=1

a

5.Tentative Decoding: V1< j < N assign

A a
X; —drgamax (Q7)

6.Convergence Check: If HX=0decoding is
complete: assign the last K symbols of X to 1 and
terminate; else increment iteration count Q «— Q+1,
if Q > Q,.. declare decoder failure and terminate,
else go to step 2.

Fig. 16. Outer g-ary LDPC decoding algorithm.
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o 22y Filn)PpBita(n—1)

Pp = D
b >3 20, Fi(m)PrPr(1 = 6(tiny, wi)) + (1 = Pp)8(Eity, wi)] Biya(n)
T D
P 2i 2y Fi(m)PrPs(1 - 8(fi+y, wi))Bit1(n)
! PrD
B, = > >, F(n)(F)Bi(n + 1)
D
ACKNOWLEDGMENT [16] L.R.BahlandF. Jelinek, “Decoding for channels with insertions, dele-

The authors would like to express their gratitude to M. Celik
for help with the pitch-based watermark embedding and to
M. C. Davey for assistance with the insertion—deletion codes.
The authors would also like to thank the anonymous reviewers
for their comments which have helped to significantly improve
the manuscript.

REFERENCES

[1] P. Loo and N. G. Kingsbury, “Motion estimation based registration

of geometrically distorted images for watermark recovery,” in Proc.

SPIE: Security Watermarking of Multimedia Contents III, Jan. 2001,

vol. 4314, pp. 601-617.

G. Caner, A. M. Tekalp, G. Sharma, and W. Heinzelman, “Local image

registration by adaptive filtering,” IEEE Trans. Image Process., vol. 15,

no. 10, pp. 3053-3065, Oct. 2006.

V. Licks and R. Jordan, “Geometric attacks on image watermarking

systems,” IEEE Multimedia, vol. 12, no. 3, pp. 68-78, Jul.—Sep. 2005.

G. Sharma and D. J. Coumou, “Watermark synchronization: Perspec-

tives and a new paradigm,” in Proc. 40th Annu. Conf. Info. Sciences

and Syst., Princeton, NJ, Mar. 22-24, 2006, pp. 1182-1187.

[5] J. K. O.Ruanaidh and T. Pun, “Rotation, scale and translation invariant
spread spectrum digital image watermarking,” Signal Process., vol. 66,
no. 5, pp. 303-317, May 1998.

[6] R. Caldelli, M. Barni, F. Bartolini, and A. Piva, “Geometric-invariant
robust watermarking through constellation matching in the frequency
domain,” presented at the IEEE Int. Conf. Image Proces., Sep. 2000.

[71 M. Alghoniemy and A. Tewfik, “Image watermarking by moment in-
variants,” presented at the IEEE Int. Conf. Image Process., Sep. 2000.

[8] M. Celik, G. Sharma, and A. M. Tekalp, “Pitch and duration modifi-
cation for speech watermarking,” in Proc. IEEE Int. Conf. Acoustics
Speech Sig. Process., Mar. 2005, pp. 17-20.

[9] P. Bas, J.-M. Chassery, and B. Macq, “Geometrically invariant water-
marking using feature points,” IEEE Trans. Image Process., vol. 11, no.
9, pp. 1014-1028, Sep. 2002.

[10] C. W. Honsinger, P. W. Jones, M. Rabbani, and J. C. Stoffel, “Lossless
recovery of an original image containing embedded data,” U.S. Patent
6278 791, Aug. 21, 2001.

[11] F. Hartung and M. Kutter, “Multimedia watermarking techniques,”
Proc. IEEE, vol. 87, no. 7, pp. 1079-1107, Jul. 1999.

[12] G. Csurka, F. Deguillaume, J. J. K. O’Ruanaidh, and T. Pun, “A
Bayesian approach to affine transformation resistant image and video
watermarking,” in Proc. 3rd Int. Information Hiding Workshop, 1999,
pp. 315-330.

[13] M. Kutter, S. K. Bhattacharjee, and T. Ebrahimi, “Towards second gen-
eration watermarking schemes,” in Proc. IEEE ICIP, Oct. 1999, vol. 1,
pp. 320-323.

[14] M. U. Celik, E. Saber, G. Sharma, and A. M. Tekalp, “Analysis of
feature-based geometry invariant watermarking,” Proc. SPIE: Security
and Watermarking of Multimedia Contents III, vol. 4314, pp. 261-268,
Jan. 2001.

[15] M. C. Davey and D. J. C. Mackay, “Reliable communication over
channels with insertions, deletions, and substitutions,” IEEE Trans.
Inf. Theory, vol. 47, no. 2, pp. 687-698, Feb. 2001.

[2

—

3

—

[4

=

tions, and substitutions with applications to speech recognition,” IEEE
Trans. Inf. Theory, vol. IT-21, no. 4, pp. 404411, Jul. 1975.

[17] Q. Cheng and J. Sorensen, “Spread spectrum signaling for speech
watermarking,” in Proc. IEEE Int. Conf. Acoustics Speech and Sig.
Process., May 2001, vol. 3, pp. 1337-1340.

[18] L. R. Rabiner and R. W. Schafer, Digital Processing of Speech Sig-
nals. Englewood Cliffs, NJ: Prentice-Hall, 1978.

[19] Uninett AS, Jan. 14, 2004. [Online]. Available: http://www.uninett.no/
voip/codec.html.

[20] K. Hellwig, Full Rate Speech Transcoding. [Online]. Available: http://
www.3gpp.org/ftp/Specs/archive/06_series/06.10/ 3GPP TS 06.10.

[21] S. Bruhn, AMR Speech Codec General Description. [Online]. Avail-
able: http://www.3gpp.org/ftp/Specs/archive/26_series/26.071 3GPP
TS 26.071.

[22] M. Mouly and M.-B. Pautet, The GSM System for Mobile Communica-
tions. Palaiseau, France: Telecom Publishing, 1992.

[23] C. P. Wu and C.-C. J. Kuo, “Comparison of two speech content au-
thentication approaches,” Proc. SPIE: Security and Watermarking of
Multimedia Contents IV, vol. 4675, pp. 158-169, 2002.

[24] B. Chen and G. W. Wornell, “Quantization index modulation: A class
of provably good methods for digital watermarking and information
embedding,” IEEE Trans. Inf. Theory, vol. 47, no. 4, pp. 1423-1443,
May 2001.

[25] E. Molines and F. Charpentier, “Pitch-synchronous waveform pro-
cessing techniques for text-to-speech synthesis using diaphones,”
Speech Commun., pp. 453-467, 1990.

[26] B. Sklar, Digital Communications: Fundamentals and Applications,
2nd ed. Englewood Cliffs, NJ: Prentice-Hall, 2001.

[27] M. C. Davey and D. J. C. MacKay, “Low density parity check codes
over GF(q),” IEEE Commun. Lett., vol. 2, no. 6, pp. 165-167, Jun.
1998.

[28] M. C. Davey and D. J. C. MacKay, “Low density parity check codes
over GF(q),” in Proc. IEEE Inf. Theory Workshop, Jun. 1998, pp.
70-71.

[29] M. C. Davey, “Error correction using low density parity-check codes,”
Ph.D. dissertation, Inference Group, Cavendish Lab., Univ. Cam-
bridge, Cambridge, U.K., Dec. 1999.

[30] L.R.Rabiner, “A tutorial on hidden Markov models and selected appli-
cations in speech recognition,” Proc. IEEE, vol. 77, no. 2, pp. 257-286,
Feb. 1989.

[31] D.J. C. MacKay, “Good error correcting codes based on very sparse
matrices,” IEEE Trans. Inf. Theory, vol. 45, no. 2, pp. 399-431, Mar.
1999.

[32] S. Lin and D. J. Costello, Error Control Coding: Fundamentals and
Applications. Englewoods Cliffs, NJ: Prentice-Hall, 1983.

[33] P. Boersma and D. Weenik, Praat: Doing phonetics by computer. [On-
line]. Available: http://www.fon.hum.uva.nl/praat.

[34] Ohio State Univ., Speech Corpus. [Online]. Available: http://buck-
eyecorpus.osu.edu.

[35] Open Speech Repository. [Online]. Available: http://www.voiptrou-
bleshooter.com/open_speech.

[36] T. Richardson and R. Urbanke, “The capacity of low-density parity
check codes under message-passing decoding,” IEEE Trans. Inf.
Theory, vol. 47, no. 2, pp. 638-656, Feb. 2001.

[37] D.J. C. MacKay, Optimizing sparse graph codes over GF(q) [Online].
Available: http://www.cs.toronto.edu/~mackay/gfqoptimize.pdf.

[38] R. G. Gallager, Low Density Parity Check Codes. Cambridge, MA:
MIT Press, 1963.



COUMOU AND SHARMA: INSERTION, DELETION CODES WITH FEATURE-BASED EMBEDDING 165

[39] T. K. Moon, Error Correction Coding: Mathematical Methods and Al-
gorithms. Hoboken, NJ: Wiley, Jun. 2005.

[40] D. Coumou and G. Sharma, “Watermark synchronization for feature-
based embedding: Application to speech,” in Proc. IEEE Int. Conf.
Multimedia Expo., Toronto, ON, Canada, Jul. 9-12, 2006, pp. 849-852.

[41] P. Bas and A. L. Guerro, “Several considerations on the security
of a feature-based synchronization scheme for digital image water-
marking,” presented at the First Wavila Challenge, Barcelona, Spain,
May 2005.

David J. Coumou (M’92) received the B.Sc. and
M.Sc. degrees in electrical engineering from the
Rochester Institute of Technology, Rochester, NY,
in 1992 and 2001, respectively, and is currently
pursuing the Ph.D. degree at the University of
Rochester, Rochester, NY.

He is a Technical Manager with the ENI Products
Division of MKS Instruments, Inc., Rochester,
where he is responsible for the development of RF
metrology and control. His research interests include
multirate, adaptive, and statistical signal-processing,
source and channel coding, digital communications, and watermarking. He
holds six issued U.S. Patents and has six additional patent applications that are
under review by the U.S. Patent office.

Mr. Coumou has been a Chapter Officer for the Rochester chapter of the IEEE
Signal Processing Society since 2003 and is currently Treasurer. From 2004
to 2007, he was Co-Chair of the annual Western New York Image Processing
Workshop in Rochester. He is listed in Who’s Who and is a member of SPIE.

Gaurav Sharma (SM’00) received the B.E. degree
in electronics and communication engineering from
the Indian Institute of Technology Roorkee (for-
merly the University of Roorkee), Roorkee, India, in
1990; the M.E. degree in electrical communication
engineering from the Indian Institute of Science,
Bangalore, India, in 1992; and the M.S. degree in
applied mathematics and Ph.D. degree in electrical
and computer engineering from North Carolina State
University (NCSU), Raleigh, in 1995 and 1996,
respectively.

From 1992 through 1996, he was a Research Assistant with the Center for
Advanced Computing and Communications in the Electrical and Computer En-
gineering Department at NCSU. From 1996 through 2003, he was with Xerox
Research and Technology, Webster, NY, initially as a member of the research
staff and subsequently becoming Principal Scientist. Since 2003, he has been an
Associate Professor in the Department of Electrical and Computer Engineering
and in the Department of Biostatistics and Computational Biology at the Univer-
sity of Rochester, Rochester, NY. His research interests include multimedia se-
curity and watermarking, color science and imaging, genomic signal processing,
and image processing for visual sensor networks. He is the editor of the Color
Imaging Handbook (CRC, 2003).

Dr. Sharma is a member of Sigma Xi, Phi Kappa Phi, Pi Mu Epsilon,
IS&T, and the IEEE signal processing and communications societies. He
was the 2007 Chair for the Rochester section of the IEEE and served as
the 2003 Chair for the Rochester chapter of the IEEE Signal Processing
Society. He is Vice-Chair for the IEEE Signal Processing Society’s Image and
multidimensional signal processing (IMDSP) technical committee and is a
member of the IEEE Standing Committee on Industry DSP. He is an Associate
Editor for IEEE TRANSACTIONS ON IMAGE PROCESSING, IEEE TRANSACTIONS
ON INFORMATION FORENSICS AND SECURITY, and the Journal of Electronic
Imaging.




