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ABSTRACT
Wide-field fluorescein angiography (FA) images are commonly used
in ophthalmology to assess longitudinal changes in retinal vascula-
ture, specifically, non-perfusion. Current practice relies on manual
qualitative comparisons between images taken at successive clinic
visits, a few months apart. Objective quantitative assessments, al-
though desirable for evaluating disease progression and treatment,
are impractical to perform manually and challenging for image anal-
ysis because of the changes in the capture viewpoints and temporal
imaging variations seen as the FA dye injection perfuses the retina.
We propose a methodology for quantifying retinal non-perfusion by
automated analysis of the FA images captured during successive
clinical visits. Blood vessels are first detected in the image from
each visit. The vascular networks in FA images are then precisely
registered to obtain a co-aligned pair via parametric chamfer match-
ing under polynomial transformation, a process that explicitly al-
lows for increase or decrease in perfusion. Changes in perfusion are
then quantified by identifying the common and distinct regions in
co-aligned image pairs. The proposed framework is tested on FA
images that are manually annotated by an ophthalmologist to pro-
vide ground truth binary vessel masks and to identify vasculature
changes. Results indicate that the proposed method provides assess-
ments of vasculature changes that are in good agreement with the
ophthalmologist-provided annotations.

Index Terms— wide-field fluorescein angiography, vessel de-
tection, image registration, expectation maximization (EM)

1. INTRODUCTION

Common systemic diseases, such as diabetes, hypertension, and
artherosclerosis affect blood vessels throughout the body [1]. Reti-
nal non-perfusion (RNP), or ischemia, which is a lack of blood flow
to the retina, directly results in the most severe blinding complica-
tions of systemic diseases in the eye, including proliferative diabetic
retinopathy, tractional retinal detachments, vitreous hemorrhage,
and neovascular glaucoma. The impact of RNP on the vascular sys-
tem can be visualized in using wide-field fluorescein angiography
(FA), a process that involves injecting fluorescein dye intravenously
and taking images that capture the fluorescence of the dye pass-
ing through the retinal blood vessels using a fundus camera with
suitable optical filters [2]. Figure 1 shows two samples FA images
taken for one patient over time1. Compared to alternatives such as
color fundus images, FA image has the advantage that they provide
a wide field of view (FOV). Typically, color fundus images capture
only a 30◦ to 60◦ FOV, whereas wide-field FA permits up to 200◦

FOV. The wide FOV allows visualization of the retinal vasculature.
As shown in Fig. 1, peripheral vessels are captured with sufficient

1The grayscale from black to white is inverted in images presented in the paper to
provide a better visualization in common display and print environments.

(a) (b)

Fig. 1. Sample longitudinal wide-field fluorescein angiography (FA)
images for a patient taken at (a) initial visit and (b) 4 months later.

details. The wide FOV allows imaging of the peripheral region of
retina, which makes it possible to measure the relative changes of
peripheral retinal vessels.

The ability to quantify RNP is important to: 1) develop a repro-
ducible method to compare changes in RNP over time in different
diseases, 2) evaluate the impact of systemic or local treatments on
vessel changes over time, and 3) better understand the relationship
between RNP and other ocular changes such as macular edema and
visual acuity. In current clinical practice, ophthalmologists manu-
ally examine retinal images to assess RNP and changes in blood
vessels occurring over time. Quantitative manual assessments in
clinical setting are impractical because the processes are extremely
time-consuming. Automated methods for measuring retinal vascular
changes are highly desirable for providing quantitative assessments
that correlate with disease/treatment progression and assist physi-
cians in diagnosis and treatment.

Curently there are no widely accepted automated techniques for
FA image analyis that quantify blood vessel changes and RNP in
the retina. A preliminary approach was proposed in [?], which at-
tempts to quantify the dark regions corresponding to background
and non-perfused vessels. Given the relatively large regions with-
out blood vessels, the method has limited sensitivity and does not
allow for physician validation because it does not explicitly identify
the non-perfused vessels. Direct quantitative measurement of vessel
changes is challenging for several reasons. First, because the cap-
ture viewpoints differ between different visits, FA images need to
be accurately registered before any comparison can be made. The
registration, however, is not entirely trivial because of the changes in
the vessels (which we are trying to quantify) and variations in time
duration elapsed from the dye injection to the instant when the im-
ages are captured, which results in different vasculature appearances
as the injected dye propagates in the retina.

In this paper, we propose a novel method to quantitatively mea-
sure the vasculature changes, specifically, RNP, using wide-field FA
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images captured at successive clinical visits. To overcome the afore-
mentioned challenges, we propose a novel registration and change
detection approach. The images are first independently analyzed
to detect blood vessels. A pair of vessel images are then precisely
registered using parametric chamfer alignment under polynomial
transformation. The conventional chamfer alignment procedure is
adapted to our specific problem setting to allow for changes in blood
vessels between the two images. Specifically, we exploit the inherent
asymmetry in the chamfer metric between the reference and target
images, wherein for each point in the target binary image, the closest
point in the reference binary image is considered for defining the
registration error under the parametric transformation. The process
is further enhanced by using a modified chamfer metric that also
weights the estimated registration error for each vessel pixel in the
target according to the probability that a corresponding pixel exists
in the reference. The probabilities are estimated via an expectation-
maximization (EM) procedure. In combination, the asymmetry and
the EM based probabilistic formulation of the chamfer metric allow
for mismatch between the two images arising due to both changes in
vasculature and missed vessel detections.

The individual ingredients of vessel detectoin and registration
that we use in our methodology have considerable existing related
prior work. Vessel detection has been extensively researched for
color fundus images [?, ?, ?, 3–8, 10–12], although there is relatively
little work for FA imagery [17]. Existing retinal image registra-
tion methods rely on determining correspondences between images.
For instance, in [14], the method for the multimodal fundus images
registration is proposed using the locations of vascular bifurcations.
Edge-based features [15] also have been exploited. [16] proposed a
method to register wide-field FA images based on bifurcations and
elongated elements. These methods are more suited for the problem
of registering the multiple images taken during a single clinic visit
where changes occur as the dye perfuses but are small from image
to image and there is no fundamental change in the vasculature. The
methods face significant challenges in aligning images from differ-
ent clinical visits due to the missing correspondence and bifurcation
points in one image relative to the other.

The paper is organized as follows. We describe the proposed
method in Section 2 and present the experimental results in Sec-
tion 3. Section 4 summarizes the concluding remarks.

2. PROPOSED METHOD

The proposed method addresses the problem of quantitatively and
directly measuring retinal blood vessels to assess the clinically sig-
nificant changes occurring in retinal vasculature over time. The
pipeline of the proposed method is depicted in Fig. 2. It takes as
input a pair of FA images for a patient captured at successive visits.
Blood vessels are first extracted in the image from each visit using
vessel detection method [17], as illustrated by the images labeled
as “detected vessels” in Fig. 2. Using parametric chamfer align-
ment [18, 19], the binary vessel images are precisely registered to
obtained a co-aligned pair. The chamfer alignment is performed us-
ing an EM framework, which is robust to outliers that correspond
to vessels presented only in one temporal instance due to vascula-
ture changes. The co-aligned pair identifies both common and dis-
tinct regions of vasculature and allows quantitative assessment of the
changes in retinal non-perfusion.

V
es

se
l

D
et

ec
ti

o
n

R
eg

is
tr

at
io

n
V

es
se

l

C
h

an
g

e
Q

u
an

ti
fi

ca
ti

o
n

FA Image 2

FA Image 1

D
et

ec
ti

o
n

V
es

se
l

Detected Vessels

Detected Vessels

Co−aligned Images of Vessels

Fig. 2. Proposed methodology for measuring retinal vasculature
changes using FA images.

2.1. Vessel Detection

As shown in Fig. 1, the longitudinal FA images normally differ in the
capture viewpoints and in the time elapsed from the injection of the
dye to the capture of the images, introducing variations in the images
that do not allow for direct quantitative comparison. Therefore, the
first step of the proposed method is to detect vessels from two input
FA images.

The retinal blood vessels inherently exhibit variations in dif-
ferent orientations and changes in scales between major and minor
branches. To take into account these characteristics of vessel struc-
tures, we adopt a vessel detection method [17] that uses a set of ori-
entated modified top-hat morphological filters with multi-scale anal-
ysis. Decomposing the original FA image into multiple scales, the
vessels at each scale are detected independently and then fused to-
gether to achieve the final binary vessel map. Modified morpholog-
ical top-hat operators with linear structuring elements with different
orientations are used to extract bright and rectilinear structures with
matching orientation, which represent the shape of blood vessels in
the image. Figure 3 shows the results of vessel detection for the
images in Fig 1.

(a) (b)

Fig. 3. Sample results of detected vessels for images shown in Fig. 1.

2.2. Retinal Image Registration

We propose to register a pair of binary vessel images obtained from
Sec. 2.1 using parametric chamfer matching [18, 19]. We denote
one binary vessel image as reference Ir and the other as target It.
Let P = {pi}Ni

i=1 and Q = {qj}
Nj

j=1 be two sets of points of
vessel pixels in the reference and the target images, respectively,
where pi = (xi, yi) and qj = (uj , vj). We apply the second-order
polynomial transformation Tβ to map target points to the reference
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points. The transformation of target points, Tβ (qj), is modeled as

Tβ (qj) =
[
β1
β7

]
+

[
β2 β3
β8 β9

] [
uj
vj

]
+

[
β4 β5 β6
β10 β11 β12

] u2
j

ujvj
v2j

 ,

(1)
where {βi}12i=1 are the transformation parameters.

The chamfer distance, dj (β), between reference points P and
each transformed target points Tβ (qj) is defined as the distance be-
tween Tβ (qj) and its nearest point from P

dj (β) = min
i
‖pi − Tβ (qj) ‖2. (2)

The optimal registration between images Ir and It is achieved by
determining the transformation parameters that minimizes the error
metric

β̂ = argmin
β

1

Nj

Nj∑
j=1

dj (β) , (3)

where Nj is the number of points in the target image It.
Observe that chamfer matching in (3) is asymmetric: because

the error is aggregated only over points in the target image, points in
the reference image with no corresponding points in the target im-
age do not contribute to the error metric. Because the changes we
are interested in are manifested primarily as increases or decreases
in perfusion, we exploit this asymmetry by considering both possible
choices for the reference and target image allocations and choosing
the one with the smaller mean chamfer distance2. While this is ben-
eficial, the formulation in (3) still faces a challenge from differences
that are not unidirectoinal (i.e. in only one image) and outliers. The
chamfer distance of outlier points are relatively large and minimiza-
tion of (3) in the presence of outliers invariably does not converge to
the desired solution. To take into account the outlier points, latent
variables χj are introduced to assess putative correspondence be-
tween point qj and reference points P, where χj = 1 indicates qj
has corresponding points in P and is not outlier. The optimal trans-
formation parameters β̂ is then estimated by minimizing the modi-
fied error metric

β̂ = argmin
β

1

Nj

Nj∑
j=1

pjdj (β) , (4)

with respect to β, where pj is the posterior probability that χj is 1.
The probabilistic chamfer distance in (4) is an ideal metric for

registering a pair of longitudinal FA image. The minimization of
weighted sum of distance between transformed target point Tβ (qj)
and its nearest point from P results in transforming points of vessel
pixels in It to a close proximity of the vessel pixel locations in Ir .
The weights, which are defined as the posterior probability of point
qj being an inlier, improve robustness of registration by reducing
the effects of outlier points.

We use EM algorithm [20] to determine the optimal solution β̂.
EM algorithm iteratively repeats between two steps, namely E-step
and M-step, until convergence. In E-step, the posterior probabili-
ties pj are updated based on current transformation parameters. The
transformed point with large chamfer distance is unlike to be inliers
and thus is assigned with a low value of pj to reduce the impact on
estimating β in M-step, as indicated in (4). Given the updated pj , we
determine the optimal parameters β̂ in M-step. Specifically, we use

2Although other powerful point-based registration techniques exist (see for exam-
ple [?] and the references therein), they typically do not exhibit this asymmetry.

Levenberg-Marquardt (LM) iteration algorithm [21]. Starting with
an initial guess β0, β is adjusted by an updating vector δ to β + δ at
each iteration, where δ is the solution to the equation Nj∑

j=1

JTj Jj + λI

 δ = 2

Nj∑
j=1

pjJjrj , (5)

where rj is the residual vector for point pj that can be efficiently
calculated by using the distance transform [22], I is a 12× 12 iden-
tity matrix, Jj is the Jacobian matrix the Jacobian matrix at each
transformed target point Tβ (qj), which is computed as

∂Tβ (qj)
∂β

=

[
1 uj vj u

2
j ujvj v

2
j 0 0 0 0 0 0

0 0 0 0 0 0 1 uj vj u
2
j ujvj v

2
j

]
. (6)

The optimal parameters β̂ returned from LM algorithm can be
trapped in local minima. A good initialization is of importance to
find desire solution. To do so, we perform a sequential iteration for
LM algorithm. More concretely, we start with an Euclidean trans-
formation parameterized by translation and rotation. A sequence of
similarity, affine, projective (homography), and second-order poly-
nomial transformation is then estimated using initial point that is the
optimal solutions from previous step.

2.3. Change Quantification

Given the estimated parameters β̂, we apply the second-order poly-
nomial transformation to the target image It. Changes in retinal ves-
sels can be quantified and visualized from the co-aligned pair.

Figure 4 shows an example illustrating the process of compar-
ing and quantifying retinal blood vessels differences from the co-
aligned pair. Fig. 4 (a) illustrates the results of alignment, obtained
in Sec. 2.2, by superimposing the images as red (earlier in time) and
green channels (later in time) so that common locations are identified
as yellow. The co-aligned images are further processed to quantify
differences of interest while ignoring minor inaccuracies in regis-
tration and variations in estimated vasculature thickness caused by
other imaging parameters, such as time duration elapsed from the
dye injection to the instant when the images are captured. As shown
in Fig. 4 (b), regions of vasculature shown in red are identified as
common, in blue as those with lost perfusion, and in green as those
with added perfusion.

(a) (b)

Fig. 4. Example illustrating automated comparision and quantifica-
tion of blood vasculature differences.

Quantitatively, the percentage increase of blood vessel perfusion
Ki and percentage decrease of perfusion Kd can be calculated as

Ki =
Ng
Nr

Kd =
Nb
Nr

, (7)

where Nr , Ng , and Nb are the number of pixels of common region,
added perfusion, and lost perfusion, respectively.

1072



3. EXPERIMENTAL VALIDATION
We identify two patients who have a large amount of RNP and col-
lect FA images to test the performance of the proposed method. The
images are captured by an Optos California camera [23] at 200◦

FOV. Each image is manually annotated by an ophthalmologist to
provide ground truth binary vessel masks using VAMPIRE annota-
tion tools [10]. Only two images are used in the assessment because
manual annotation is rather time intensive, annotation tools notwith-
standing. For the first patient (P1), regions around fovea are identi-
fied corresponding to changes in vessel perfusion, and for the second
patient (P2), changes occur in peripheral regions. Figure 5 shows the
fovea regions of longitudinal FA images for P1 and corresponding
manually annotated binary vessel maps.

(a) (b) (c) (d)

Fig. 5. Sample ground truth vessel images. (a) and (c) show the
fovea regions in the FA images where vessel changes are identified
by an ophthalmologist. The images in (a) and (c) are captured at
initial visit and 4 months later, respectively. (b) and (d) are manually
labeled vessel maps for (a) and (c), respectively.

3.1. Quantitative And Qualitative Comparison
In our experiments, we apply the proposed method to identify and
measure the changes in RNP over time and compare with ground
truth in terms of the percentage increase of vessel perfusionKi, per-
centage decrease of perfusion Kd, as well as the number of pixels of
common region Nr , increased perfusion Ng , and lost perfusion Ng .

We choose the FA image of the initial visit as reference and the
one of later visit as target. Table 1 lists the quantitative comparison
in terms of the 5 aforementioned metrics for two patients. For the
first patient (P1), the percentage increases Ki and decrease Kd are
close to the ground truth values. The proposed method estimates
10.4% and 35.8% of increased and decreased perfusion in blood
vessels, whereas ophthalmologist-provided estimates are 8.1% and
35.5%, respectively. A visual comparison for the first patient is il-
lustration in Fig. 6 (a) and (b), which show ground truth and results
of the proposed method, respectively. Regions of vasculature shown
in red are identified as common, in blue as those with lost perfusion,
and in green as those with increased perfusion. It can be seen that
most changes are correctly identified, with the exception of some
fine vessels around the fovea.

Ki Kd Nr Ng Nb

P1
Proposed 0.104 0.358 121605 12670 43512

GT 0.081 0.355 130498 10555 46358

P2
Proposed 0.231 0.286 87435 20230 24952

GT 0.158 0.297 93567 14814 27794

Table 1. Quantitative results of vessel changes measurement. GT
stands for ground truth.

For the second patient (P2), peripheral regions are identified as
changes in vessel. Figure 6 (c) and (d) show the ground truth and the

(a) (b)

(c)

(d)

Fig. 6. Visual comparison of vessel change detection. (a) and (c)
show the ground truth for P1 and P2, respectively, and (b) and (d)
show the results of proposed method for corresponding patients. The
vessels in red, green, and blue are identified as common, lost perfu-
sion, and increased perfusion, respectively.

results of proposed method for this patient, respectively. We can see
that both decreased and increased perfusion can be identified: most
decreased perfusion happens in the right side in Fig. 6 (d) whereas
increased perfusion are identified in the bottom left corner in Fig. 6
(d). The results of visual examination are accordance with that of
quantitative comparison.

4. CONCLUSION

We propose a method for direct quantification of longitudinal
changes in retinal vessel from wide-field FA images comprising
three steps: vessel detection, retinal image registration, and change
quantification. The key contribution is a novel second-order polyno-
mial transformation based parametric chamfer alignment procedure.
Specifically, by using a probabilistic formulation and exploiting in-
herent asymmetry, the proposed chamfer alignment approach allows
precise registration of FA images taken from different viewpoints
and several months apart despite changes in the vascular network
and variation in dye perfusion. The precision registration enables
accurate automated assessment of changes. Both qualitative and
quantitative results indicate that the proposed method provides accu-
rate assessments of retinal vasculature changes that are in agreement
with ophthalmologist-provided annotations.
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