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ABSTRACT

Retinal blood vessel detection is a crucial step in automatic retinal
image analysis. Recently, deep neural networks have significantly
advanced the state of the art for retinal blood vessel detection in
color fundus (CF) images. Thus far, similar gains have not been seen
in fluorescein angiography (FA) because the FA modality is entirely
different from CF and annotated training data has not been available
for FA imagery. We address retinal vessel detection in wide-field
FA images with generative adversarial networks (GAN) via a novel
approach for generating training data. Using a publicly available
dataset that contains concurrently acquired pairs of CF and fundus
FA images, vessel maps are detected in CF images via a pre-trained
neural network and registered with fundus FA images via parametric
chamfer matching to a preliminary FA vessel detection map. The co-
aligned pairs of vessel maps (detected from CF images) and fundus
FA images are used as ground truth labeled data for de novo train-
ing of a deep neural network for FA vessel detection. Specifically,
we utilize adversarial learning to train a GAN where the generator
learns to map FA images to binary vessel maps and the discriminator
attempts to distinguish generated vs. ground-truth vessel maps. We
highlight several important considerations for the proposed data gen-
eration methodology. The proposed method is validated on VAM-
PIRE dataset that contains high-resolution wide-field FA images and
manual annotation of vessel segments. Experimental results demon-
strate that the proposed method achieves an estimated ROC AUC of
0.9758.

Index Terms— Fluorescein angiography, vessel detection, gen-
erative adversarial networks, deep learning, retinal image analysis

1. INTRODUCTION

Fluorescein angiography (FA) is an established method to visualize,
assess, and understand the impact of retinal disorders. It involves an
intravenous injection of fluorescein dye and images are recorded as
the dye courses through the vasculature. The image acquisition uti-
lizes either a scanning laser ophthalmoscope, which produces wide-
field FA images, or a digital fundus camera for capturing fundus FA
images. The latter is also commonly used for capturing color fun-
dus (CF) images. Compared to fundus FA images or CF images,
the wide-field FA images have distinct advantage that they provide a
wide field of view (FOV). Typically, CF images capture only a 30°
to 60° FOV whereas wide-field FA allows a 200° FOV that cov-
ers about 82% surface of retina. The wide FOV allows imaging of
retinal periphery, which makes it possible to measure the relative
changes in peripheral retinal vessels.

In current clinical settings, wide-field FA images are manually
examined by ophthalmologists to assess changes and abnormalities
in retinal vessels. Because of limited time during clinical visits, such
assessments are normally qualitative. Quantitative manual analy-
sis of wide-field FA images, although are highly desirable, are ex-
tremely time-consuming process and are impractical in clinical prac-
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tice. This motivates the computer-assisted retinal image analysis that
provides quantitative assessments to correlate with disease and treat-
ment progression. To this end, accurate vessel detection in wide-field
FA images is a crucial step that makes reliable measurements of vas-
culature changes possible.

Deep learning methodologies have recently led to compelling
improvements in performance for a variety of computer vision
tasks [1-3], including retinal image analysis from CF imagery [4, 5],
which is the predominant form of retinal imagery. Highly accurate
vessel detection in CF images has been demonstrated using Con-
volutional Neural Networks (CNNs) [6-8], enabled by reasonably
sized ground truth labeled datasets [9-12] used in combination with
data augmentation techniques. Specifically, most techniques make
use of the DRIVE [11] and STARE [12] datasets that provide 40
and 20 color fundus images along with corresponding vessels maps,
respectively. The current state of the art is represented by [13]
where an adversarial learning approach is adopted that utilizes an
additional discriminator network to reduce false positive detections.

While trained deep neural networks are very successful in de-
tecting vessels in CF images, these same networks cannot be used
for wide-field FA images because the imaging modalities are vastly
different. The deployment of deep networks for vessel detection for
wide-field FA imagery has been stymied by the absence of labeled
ground truth datasets. Unfortunately, only one dataset is publicly
available for wide-field FA images, i.e., the VAMPIRE dataset [14]
that contains 8 high resolution wide-field images with manual anno-
tation of ground truth vessel maps.

Manually labeling vessels is tedious and expensive. In this pa-
per, we propose a method for vessel detection in FA images with
deep neural network via a novel approach for generating training
data. The training data generation is motivated by the availability
of a dataset that consists of concurrently acquired CF images and
fundus FA images [15]. We apply pre-trained neural networks to
accurately detect blood vessels in CF images, which are further reg-
istered with fundus FA images via parametric chamfer alignment to a
preliminary vessel map obtained with a pre-existing technique. The
co-aligned pairs of fundus FA images and vessel maps are then used
to train a generative adversarial network for vessel detection in wide-
field FA images.

The proposed method has several advantages. First, the gen-
eration of training data from CF images and fundus FA images is
appealing because it eliminates tedious and time-consuming manual
annotation. Second, wide-field FA images normally exhibit variation
in image contrast, especially in peripheral regions that have low in-
tensity and contrast. Contrast and exposure poses a big challenge for
manual and automated annotation. The proposed cross-modality ap-
proach, however, builds in invariance to contrast and exposure. The
use of parametric chamfer alignment for our registration procedure is
also well-matched and advantageous in the proposed automated ap-
proach for training data generation for two reasons. Firstly, finding

ICIP 2018



CFI Vessel Detection

CFI-to—FFA Vessel Registration

FA Training Data

Pre—trained
CFI CNN

Y

Morph. Preliminary Chamfer
Analysis  Dete Align
000000011 r
000001200

000040000
004100000
110000000

Transform

Fig. 1. Overview of the proposed approach for generating training data. CFI: color fundus images; FFA: fundus fluorescein angiography. In
the first block (blue), the vessel maps in CF images are detected using pre-trained neural networks. In the second block (brown), vascular
networks are registered via chamfer alignment. The overlapping area between CFI and FFA is also estimated. The inferred training data, as
shown in the last block (green), includes FFA and co-aligned vessel maps that remains in the overlapping area. Best viewed in color.

matching feature points is quite challenging for the vastly different
CF and FA modalities and by using parametric chamfer alignment,
we eliminate this challenge. Second, the asymmetric nature of the
chamfer alignment formulation allows us to obtain a precise align-
ment using a preliminary vessel detection with a low false positive
rate, even if the corresponding true positive rate is also low.

While the imaging systems for fundus FA images and wide-
field FA images are different, they both rely on the same underly-
ing modality (fluorescein angiography) and therefore share common
characteristics in the captured imagery. This allows a deep neural
network that is trained on fundus FA images to detect retinal blood
vessels from wide-field FA images.

The paper is organized as follows. Section 2 describes the novel
approach for generating training data, which is used to train a GAN
in Section 3. We present the experimental results in Section 4, and
summarize concluding remarks in Section 5.

2. TRAINING DATA GENERATION FOR FA IMAGERY

In this section, we describe the proposed novel approach to create
a training dataset, which is motivated by the availability of a pub-
licly available database of CF images and corresponding fundus FA
images [15]. Although no name was originally assigned with this
database, we denote it as CFI2FFA for a concise presentation. Both
images are captured at the same clinical visit but vary in capture
viewpoints. For subjects free from pathology, the vessels for the two
modalities should coincide. The key idea is to apply the deep neu-
ral network to extract vessels in CF images and to precisely transfer
the detected vessels to fundus FA images using parametric chamfer
alignment. Figure 1 shows the overview of the proposed approach.

2.1. Vessel Detection In Color Fundus Images

To detect vessels in CF images, we adopt a pre-trained deep neural
network model proposed in [13] that exploits adversarial learning.
The model is trained on DRIVE dataset [11] which achieves Area
Under the Receiver Operating Characteristic Curve (ROC AUC) of
0.9803 and Dice Coefficient of 0.829. The pre-trained network is ap-
plied to overlapping patches of CF images in the CFI2FFA database.
The final CF binary vessel map is obtained by thresholding the prob-
ability map from generator using Otsu method [16].
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2.2. Vessel Registration

Preliminary vessel detection for anchoring: we adopt an unsuper-
vised vessel detection method [17] that relies on multiple scale and
orientation morphological analysis that takes into account variations
in widths and directions of vessel structures. Specifically, the input
FA image is decomposed into different resolutions where vessels at
each scale are processed independently. A modified top-hat opera-
tor [18] with linear structuring elements with different directions is
applied to detect bright and rectilinear regions in FA images. The
final vessel map is achieved by fusing together the detected vessels
at each scale. The vessel maps from morphological analysis are used
for aligning fundus FA images with CF images.

Vessel registration with chamfer alignment: to transfer the
accurate vessel segments in CF images to corresponding fundus FA
images, we apply parametric chamfer alignment [19] to precisely
register the pair of vessel maps. Denote the locations of vessel pixels
in CF images as Q = {q; }jv:Jl and in fundus FA images as P =
{pi}Yi,, where q; = (uj,v;) and p; = (x:,%:). The conventional
chamfer alignment is formulated as minimizing the chamfer distance
Dy () between the target points Q and the reference points P
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For each point q;, the nearest point in P is chosen to define the align-
ment error under the parametric transformation 73, where 3 is a set
of parameters defining the transformation. We adopt a second-order
polynomial transformation to map the target points to the reference
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The formulation in (1) is sensitive to outliers points that only
exist in the target points Q. Because of the differences in capture
viewpoints, the FOV in CF image may not be coincident with that
in fundus FA image. The chamfer distance of outlier points are rel-
atively large, resulting in erroneous transformation parameters. To
tackle this issue, we assign each target point q; a binary latent vari-
able x;, where x; = 1 indicates the target point q; is an inlier point
and x; = 0 otherwise. The conventional chamfer alignment is then
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Fig. 2. Sample results of training data generation for FA imagery.
(a) and (c) show two fundus FA images, and (b) and (d) are the cor-
responding vessel maps. Notice that the generated vessel maps are
robust under different contrast conditions.

enhanced by weighting the chamfer distance for each target point
in terms of the probability that a corresponding point exists in the
reference. The modified objective function is

N
1 < . 2
D) =5, ;pj min [[p; — 75 (a;) | 3)
where p; is the posterior probability of x; = 1. The minimiza-

tion in (3) can be viewed as a probabilistic chamfer alignment [20]
and can be estimated using the expectation-maximization (EM) al-
gorithm [21]. A detailed description can be found in [20]. Once the
transformation parameters are estimated, we map the vessel maps in
CF images to the corresponding fundus FA images using the esti-
mated second-order polynomial transformation.

Parametric chamfer alignment is an advantageous tool for regis-
tration. The asymmetry of the chamfer distance allows preliminary
FA vessel detector to be chosen to have high specificity despite a
low sensitivity. Also, the formulation uses a global matching of the
vessels instead of relying on a sparse set of feature points, which is
beneficial for the polynomial parametric mapping.

To select the common region between a co-aligned image pair,
we first create binary mask for original CF, which is then trans-
formed using the estimated 3. The mask for the overlapping area
can be easily obtained by multiplying the transformed mask with the
original one. Only pixels in the overlapping region are considered as
the inferred training data.

The proposed cross-modality approach has the benefit of invari-
ance of contrast because the inferred vessel maps are transferred
from those detected in CF images. Figures 2a and 2c show two
fundus FA images that have high and low contrasts, respectively.
The corresponding inferred vessel maps, which are shown in Fig. 2b
and 2d, provide consistent detections that capture both major and
minor vessels regardless of image contrast.

3. GAN TRAINING FOR FA VESSEL DETECTION

Objective function. We exploit the recent concept of generative
adversarial networks (GAN) [22] and formulate the task of vessel
detection as an image-to-image translation [3]. In this context, the
network includes a generator G, which is trained to learn a mapping
from the FA image f to the vessel map v, and a discriminator D,
which aims to distinguish between real pairs and generated pairs of
fundus FA images and vessel maps. The idea is to jointly train G and
D in the way that G is able to generate realistic vessel maps from
f that can deceive D and that D becomes accurate at distinguishing
images. The objective function for GAN is defined as

Leoan = Ejo[log D (f,0)] +Ef [log (1 = D (f,G(f)], 4

where the first and the second terms can be viewed as the capability
that D correctly classifies the real pair (f, v) sampled from training
set and the fake pair (f, G (f)) generated by G, respectively.
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Inspired by the idea proposed in [3] that integrates a data loss
(L1 loss) into the objective function, we combine the objective func-
tion in (4) with a conventional loss used for segmentation that penal-
izes the disagreement with the ground truth vessel map. The seg-
mentation loss L is given by:

Lo=—Epu[ologG(f)+ (1-v)log(1— G (). ()

The training procedure is then a min-max game between the gen-
erator and the discriminator

mén max Laan (G,D) + \Ls (G),

where ) is the free parameter.

Network architecture. The network architecture is visualized in
Fig. 3. For generator, we adopt the general idea of the U-Net [23] for
the generator, which comprises a downsampling path and an upsam-
pling path. The key component in the U-Net is the skip-connection
that concatenates each upsampled feature map with the correspond-
ing one in the downsampling path that has the same spatial resolu-
tion. The skip-connection is designed for detecting fine vessel struc-
tures. Each convolutional layer uses 3 x 3 kernels except for the
final convolutional layer which has 1 x 1 kernel. The discrimina-
tor receives either an image pair { f, v} (the blue and green bars) or
{f, G (f)} (the blue and brown bars).

(6)

Discriminator
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Fig. 3. Network architecture. The rectangular blocks are feature
maps where heights indicate spatial dimensions. The last two blocks
in the discriminator show the outputs from fully connected layers.
The numbers below the rectangular block show the number of fea-
ture channels (or number of hidden units for fully connected layers).
Best viewed in color.

Implementation. Compared with the network proposed in [13],
which is trained on CF image dataset for vessel detection, our model
differs in several ways to account for the differences between fun-
dus FA images and wide-field FA images. To adapt to variance in
image appearance, we feed the generator 256 x 256 patches rather
than the entire image. This is motivated by the observation that the
two image modalities share a similar structure locally. This strategy
offers another advantage that the local contrast remains uniform over
each patch. As shown in Fig. 2, the inferred training data covers a
large range of contrast. With image augmentation, GAN is able to
extract vessels under different contrast conditions. Because of the
peripheral regions imaged, the wide-field FA images are sometimes
corrupted by eyelid and eyelash shadows. To tackle this problem, we
create an elliptical region of interest (ROI), which is a proper shape
to cover the region of the presence of vessels because an ellipsoid
mirror is used to produce the wide-field FA image. To estimate the
ROI, the wide-field FA image is binarized followed by ellipse shape
fitting to the largest connected component in the binary image.
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Fig. 4. ROC curve for the proposed method and the comparison with
existing methods.

4. EXPERIMENTAL VALIDATION

We evaluate the proposed framework on VAMPIRE dataset [14] that
consists of 8 wide-field FA images. There are two sequences in this
dataset representing a healthy retina (GER) and a diseased retina
(AMD). Each sequence is a time course of exposures captured pro-
gressively as the dye perfused into the vessels. The images are
3900 x 3072 pixels. The dataset provides ground truth binary ves-
sel maps annotated by ophthalmologists. We compare the proposed
method with several alternative approaches: SFAT [14] that is the
method originally published with VAMPIRE dataset, IPAC_HRI [24]
that combines infinite perimeter active contour and hybrid region in-
formation for vessel segmentation, and MSMA [17], a method based
on multi-scale morphological analysis.

At the training stage, we first augment the training data by flip-
ping and rotating the fundus FA images. Training patches are ex-
tracted from the augmented dataset. Each training patch is further
augmented by randomly adjusting image brightness and contrast and
by adding Gaussian noise. We use Adam optimizer [25] and stochas-
tic gradient descent (SGD) to update G and D, respectively. The
slope for LeakyReLU is 0.1. Initial learning rate is 2 x 10~* for
both G and D, which is fixed for G and is decayed with a factor of
107° for D. The free parameter ) is set to 10.

4.1. Quantitative And Qualitative Results

To quantitatively compare the performance of vessel detection, we
use Receiver Operating Curve for each test image. Figure 4 plots
the results of ROC curve over the 8 test images. The cross markers
in Fig. 4 show results from alternative methods. The results indi-
cate that the proposed method outperforms the existing methods on
the VAMPIRE dataset. It achieves a ROC AUC of 0.9758. Figure 5
shows qualitative results for image “AMD?2” in the dataset. The soft-
map vessel image detected by GAN is binarized using Otsu thresh-
old [16] to visualize true positive (green), false positive (red), false
negative (blue), and true negative (black).

It is worth pointing out that the ground truth vessel maps in the
VAMPIRE dataset have the issue that ophthalmologists did not la-
bel several vessel branches in low contrast regions. As mention in
Section 1, contrast and exposure usually poses a big challenge for
manual labeling. We illustrate this issue in Fig. 5 (see four rectangu-
lar regions highlighted in the second row). After closely examining
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Fig. 5. Sample results of vessel detection. The first row: wide-field
FA and detected vessels. Green, red, and blue indicates true positive,
false positive, and false negative, respectively. The second and the
third rows show the close-ups of four rectangular regions marked
on the wide-filed FA images and corresponding results, respectively.
The “false positive” detections are actually true vessels that are not
labeled by ophthalmologists. In the last row, we show the images
after contrast enhancement for a better visualization.

the vessel detection results, we observe that the “false positive” de-
tections, which are represented by red pixels in the third row, are
indeed true vessels that are not noticed by ophthalmologists. For
a better visualization, we show the same regions with contrast en-
hancement in the last row where the missing vessels can be identify
clearly. As we can see, the proposed method is much more robust to
contrast variations than manual labeling.

5. CONCLUSION

In this paper, we proposed a novel approach for generating labeled
ground truth data for retinal vessel detection in wide-field FA images
and demonstrated the utility of the approach by training a deep gen-
erative adversarial network for the vessel detection task. Experimen-
tal validation on VAMPIRE dataset demonstrates that, both quanti-
tatively and qualitatively, the proposed method outperforms existing
methods, achieving a ROC AUC of 0.9758.

In future, the the proposed cross-modality approach for generat-
ing a training dataset for FA images is also a particularly attractive
option for automatically generating larger labeled FA datasets be-
cause, in current clinical settings, baseline color fundus images are
routinely captured prior to FA dye injection.
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