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Abstract—While recent advances in deep learning have sig-
nificantly advanced the state of the art for vessel detection
in color fundus (CF) images, the success for detecting vessels
in fluorescein angiography (FA) has been stymied due to the
lack of labeled ground truth datasets. We propose a novel
pipeline to detect retinal vessels in FA images using deep neural
networks (DNNs) that reduces the effort required for generating
labeled ground truth data by combining two key components:
cross-modality transfer and human-in-the-loop learning. The
cross-modality transfer exploits concurrently captured CF and
fundus FA images. Binary vessels maps are first detected from
CF images with a pre-trained neural network and then are
geometrically registered with and transferred to FA images
via robust parametric chamfer alignment to a preliminary FA
vessel detection obtained with an unsupervised technique. Using
the transferred vessels as initial ground truth labels for deep
learning, the human-in-the-loop approach progressively improves
the quality of the ground truth labeling by iterating between
deep-learning and labeling. The approach significantly reduces
manual labeling effort while increasing engagement. We highlight
several important considerations for the proposed methodology
and validate the performance on three datasets. Experimental
results demonstrate that the proposed pipeline significantly
reduces the annotation effort and the resulting deep learning
methods outperform prior existing FA vessel detection methods
by a significant margin. A new public dataset, RECOVERY-FA19,
is introduced that includes high-resolution ultra-widefield images
and accurately labeled ground truth binary vessel maps.

Index Terms—Fluorescein angiography, generative adversarial
networks, vessel detection, retinal image analysis, deep learning
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Fig. 1: Sample fluorescein angiography (FA) images. left:
fundus FA. Middle: ultra-widefield FA. Right: enlarged view
of the cyan rectangle (top and bottom: the original and the
contrast-enhanced views, respectively). For a larger version of
this figure see Fig. 1H in the Supplementary Material.

I. INTRODUCTION

RECENTLY deep learning based image processing al-
gorithms have shown compelling improvement in the

analysis of color fundus (CF) images [4], [5]. The CF images
are color images of the retina captured under white light illu-
mination using a fundus camera that consists of a specialized
microscope equipped with a camera. The images mimic what
physicians see with ophthalmoscopy and are the predominant
form of retinal images [6]. A DNN can detect retinal vessels
in CF imagery with high accuracy and robustness [7], [8] and
achieve performance close to human experts [9]. Manually
labeled ground truth datasets are a key ingredient in the
success of these techniques. Three commonly used datasets
that provide CF images and corresponding manually labeled
pixel-wise binary vessel maps include DRIVE [10] (forty
584 × 565 pixel images), STARE [11] (twenty 605 × 700
pixel images), and the high resolution HRF [12] (forty-five
3504× 2336 images) datasets. The datasets provide a modest
number of images and are used for training in combination
with data augmentation techniques [13].

The detection of retinal vessels is also of interest for alter-
native imaging modalities that are of independent diagnostic
utility in the clinic. For instance, fluorescein angiography (FA)
and optical coherence tomography angiography (OCT-A) are
used for assessing retinal non-perfusion. FA provides a larger
field of imaging beyond the macula, while commercially avail-
able OCT-A provides more detailed imaging of the macular
micro-vasculature. FA images are captured after intravenous
injection of sodium fluorescein dye. Blue illumination, over
the wavelength range from 465 to 490 nm, causes the dye
to fluoresce and emit photons in the 520-530 nm green-
yellow wavelength band. The spatial pattern of fluorescence
intensity is captured as an FA image, in which, the vessels
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with blood flowing through them appear brighter because of
the fluorescent dye in the blood [14]. Although, conceptually,
one could redeploy the DNN architectures that are successful
in CF imagery to these alternative modalities, the fundamental
differences between the modalities require fresh training and
the lack of ground truth labeled data becomes a key obstacle
to such reuse. Specifically, for FA images, only one dataset is
available: VAMPIRE [15] which provides eight ultra-widefield
FA (UWFFA) images (3072 × 3900 pixels, each) along with
limited accuracy ground truth binary vessel maps. Manually
annotating vessel maps for training a DNN is not a trivial
task. Specifically, UWFFA images have high resolution and
exhibit variations in contrast between the background and the
vasculature, which pose a significant challenge for manual
annotation. Fig. 1 shows sample FA images and highlights the
particular challenge of contrast variations. The patch labeled
in cyan in the middle UWFFA image is shown in an enlarged
view on the right, as captured and with contrast enhanced.
From the contrast enhanced view, one can appreciate that the
region corresponding to the patch contains a large number of
fine vessels that are rather difficult to see without contrast
enhancement. In particular, ophthalmologists normally have
difficulty in identifying fine vessels in the peripheral region
without image enhancement because of the low contrast and
brightness. High-quality annotation requires carefully adjust-
ing image contrast for the entire FA image and labeling both
major and minor vessels, making it a tedious, time-consuming,
and labor-intensive process.

In this paper, we propose a novel pipeline that enables
accurate vessel detection in FA images using DNNs by sig-
nificantly reducing manual annotation effort. The proposed
pipeline integrates the following novel elements:

• an unsupervised method for preliminary retinal vessel
detection that is based on multiple scales and orientations
morphological analysis,

• a cross-modality approach that transfers vessel maps from
CF to FA images using robust chamfer alignment [16] in
an Expectation-Maximization (EM) framework, and

• an efficient and effective human-in-the-loop iterative deep
learning process for detection of retinal vessels in FA im-
agery that significantly reduces the tedium of generating
labeled data.

We demonstrate the utility of the proposed pipeline by devel-
oping the first set of DNNs for detection of retinal vessels
in FA images and evaluating the performance on alternative
network architectures. The best performing method provides
remarkably accurate results (maximum Dice coefficient of
0.854) and offers very significant improvements over the
prior methods. Results demonstrate that the approach adapts
particularly well to the contrast variations that are typical
in FA imagery. To facilitate further development of vessel
detection in FA images, we also release a new dataset of
UWFFA images from the RECOVERY trial [17] along with
ground truth labeled vessels from our pipeline. In addition
to the innovative pipeline for the generation of training data,
demonstration of the first deep learning approaches, evaluation
of alternative architectures, and the new ground truth labeled

datasets are also contributions of the present work.
The proposed pipeline is also significant from a clinical

perspective. FA is a well-established method that provides a
useful imaging modality for visualizing, assessing and under-
standing the impact of diseases on the vascular system. Retinal
vasculature changes assessed via FA imagery play a key role
in the clinical assessment of vasculature changes caused by
multiple common diseases, including diabetes, hypertension,
and atherosclerosis, and also for eye-specific diseases, such
as retinal venous occlusive diseases and retinal vasculitis. In
current clinical practice, ophthalmologists manually review FA
images to access disease conditions in retinal vasculature.
These examinations are typically qualitative and subjective
due to the limited time available during the clinical visits.
Quantitative analysis of FA images, although highly desir-
able, requires inordinate time and patience to be performed
manually and thus is not feasible in clinical settings. The
proposed pipeline for detecting vessels in FA images offers
an automated approach to examine retinal vasculature, which
is a key component of computer-assisted retinal image analysis
and diagnosis systems. Details of fine vessels are of particular
diagnostic significance as changes are often first observed
in the fine vessels [18]–[20]; a key strength of the method
developed is the ability to reliably detect fine vessels, which
are often not seen with non-FA modalities and, even for the FA
modality, require significant iterative contrast manipulations
for visual detection. Using the proposed pipeline, the results
of retinal vessel detection achieve a level of accuracy that
enables reliable computation of “digital biomarkers” from FA
imagery that unlock the potential for improving clinical care,
speeding up clinical trials, defining new endpoints of clinical
relevance, and characterizing inter-individual variations. Pre-
liminary work demonstrating how the analysis presented here
can relate to clinical attributes of interest is being concurrently
submitted in a companion paper [21].

The rest of this paper is organized as follows. Section II
summarizes the existing works on retinal vessel detection.
Section III provides an overview of the proposed pipeline.
In Section IV, we describe the cross-modality transfer for
generating ground truth data. In Section V, we introduce the
human-in-the-loop learning approach for both vessel detection
and manual annotation. We present the experimental results in
Section VI and summarize concluding remarks in Section VII.

II. RELATED WORK

Prior work on detection of vessels in FA imagery is
rather limited and due the paucity of ground truth labeled
data has been primarily focused on unsupervised techniques.
These methods, which are generally rule-based, include hand-
crafted matched-filtering [15], active contour models [22], and
morphological analysis [1], [23]. The unsupervised methods,
however, offer limited accuracy (Dice coefficient of 0.634
compared to 0.854 for the best performing method bench-
marked here).

Detection of retinal vessels in CF imagery has been ex-
tensively studied. For broad context, we refer the readers to
a survey [24] and a recent paper [25] that categorize and
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Fig. 2: Overview of the proposed pipeline for vessel detection in FA images. CFI: color fundus images; FFA: fundus fluorescein
angiography. The cross-modality transfer (left block) generates the FA training data by aligning vessel maps from CF images
with the preliminary vessel maps in FA images. The human-in-the-loop approach (right block) refines the neural network and
significantly reduces manual annotation effort.

compare the existing methods. For our discussion, we focus
on supervised methods based on deep learning which have
significantly advanced the current state of the art for vessel
detection in CF images. Various network architectures have
been exploited, including per-pixel classifiers [7], [26], fully
convolutional networks [9], [27], [28], generative adversarial
networks [29], and graphical convolutional network [30]. In
addition to the network architectures, several works focus
on new loss terms that are particularly attuned to vessel
detection [31]–[33]. The basic idea is to incorporate prior
knowledge of the topology of vasculature into loss functions.

Recent work in [34] proposes a self-supervised domain
adaption work to generate FA images from CF images using
a CNN. While this method aims to alleviate the tedium of
creating labeled data by utilizing both CF and FA images, the
generated pseudo-FA images do not represent actual FA im-
ages and normally contain artifacts. In contrast, the proposed
pipeline uses a cross-modality approach that directly transfers
the vessel map from CF images to FA via robust chamfer
registration in an EM framework, and thus is more robust and
reliable than the synthesis-based approach.

III. OVERVIEW OF THE PROPOSED METHOD

The proposed pipeline, illustrated in Fig. 2, has two key
components: (1) cross-modality transfer for generating an
initial training dataset for FA images from CF images, and (2)
a human-in-the-loop learning approach that iteratively refines
DNNs and expedites the manual annotation process.

The cross-modality transfer exploits the availability of near
concurrently captured CF and FA images in combination with
existing deep learning methods for detection of vessels in CF
imagery, for which, multiple ground truth annotated datasets
are available. Specifically, we use the publicly available DR-
IsfahanCFnFA (Diabetic Retinopathy Isfahan Color Fundus
and Fluorescein Angiography) dataset [35] (“Unlabeled Joint
Dataset” in Fig. 2) that contains pairs of CF and FA images

captured at the same clinical visit but with varying capture
viewpoints. A DNN (green in Fig. 2) is trained on existing
labeled CF images to extract vessel maps from unlabeled CF
images. The detected vessel maps are geometrically aligned
with and transferred to FA images via robust chamfer align-
ment [16] to a preliminary FA vessel map obtained with
morphological analysis [1]. The co-aligned pairs of FA and
transformed vessel map (“FA Training Data” in Fig. 2) are
used as initial labeled data to train a DNN for vessel detection
in FA images.

The human-in-the-loop learning approach is motivated by
the synergistic relationship between deep learning and label-
ing. A well-trained DNN model can accurately detect vessel
maps from FA images. Manually refinement of the predicted
vessel map is much less time-consuming than labeling the
entire image from scratch. The model performance improves
with an enlarged training dataset. Thus, the training and the
labeling make each other more effective. We initialize the
approach with a DNN trained on the (approximate ground
truth) labeled data generated from the cross-modality transfer.
A human annotator then manually refines one or more of the
predicted vessel maps to generate improved vessel map labels,
which, in the next iteration, are incorporated in the training
data to improve the DNN performance. We repeat this human-
in-the-loop iterative process till the network performance im-
proves significantly and the manual labeling introduces few
changes. The end result is a trained DNN (shown in blue in
Fig. 2) and a set of accurately labeled vessel maps.

Both the cross-modality transfer and the iterative learning
approach reduce the burden of manual labeling significantly
and engage the annotators more effectively. Instead of re-
quiring a large number of images to be annotated before
improvements are realized, in the proposed iterative approach,
the annotator sees improvements in the DNN performance
from iteration to iteration as an immediate reward them for
their effort. A by product of this engagement and reduction of
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Fig. 3: Overview of cross-modality ground truth transfer. The
bottom-left shows the vessel detection in unlabeled CF image
with neural networks pre-trained on existing CFI dataset. The
upper-left shows the preliminary vessel detection in FA ob-
tained with unsupervised morphological analysis. The detected
vessels from CF image are transformed to FA via parametric
chamfer alignment with vessel maps detected from FA. The
overlapping area between CFI and FFA is also estimated. The
green block shows the generated training data that includes
FA and co-aligned vessel maps that remains in the overlapping
area.

tedium is that the images are labeled much more accurately
than other studies that annotated the images from scratch (see
Section VI-D).

IV. CROSS-MODALITY GROUND TRUTH TRANSFER

The cross-modality ground truth transfer, illustrated in
Fig. 3, generates a training dataset for FA vessel detection
from CF images. This approach consists of three steps: (1)
vessel detection in CF images using a DNN, (2) preliminary
vessel detection in FA for anchoring, and (3) vessel registration
by parametric chamfer alignment.

A. Vessel Detection in CF Images

To detect vessels in CF images, we adopt an existing DNN
proposed in [29] that exploits adversarial learning. The model
is trained on DRIVE dataset [10] which scores an Area Under
the Receiver Operating Characteristic Curve (AUC ROC) of
0.9803, an Area Under the Precision-Recall curve (AUC PR)
of 0.915, and a Dice coefficient of 0.829. The pre-trained
network is applied to overlapping patches of CF images in
the DRIsfahanCFnFA dataset. The final CF binary vessel map
is obtained by thresholding the probability map obtained from
the generator using Otsu thresholding [36].

B. Preliminary Vessel Detection In FA Images For Anchoring

A preliminary detection of vessels in FA imagery is obtained
using an unsupervised method based on multiple scales and
orientations morphological analysis that is attuned to the vari-
ations in directions and widths of retinal vessel structure [1].
The preliminary detection need not be particularly precise; as
noted in the next section, a low false positive rate is preferable
even at the cost of a higher rate of missed detections. An
overview of the approach is included here and additional
detail, including specific parameter settings used, are provided
in Section S.IV of the Supplementary Material.

The input FA image is decomposed into multiple resolutions
represented by an image pyramid [37]. Images at each scale

are processed independently and the resulting vessel maps
at different scales are then combined together to generate a
binary vessel map. A Gaussian pyramid expansion is used
to resize vessel maps from each scale to the size of input
FA image. Pixels where vessels are detected at any scale
collectively comprise the estimated vessel map.

The key component in the preliminary vessel detection are
morphological operators that extract locally linear patterns
in terms of which the curvilinear network of interconnected
vessels can be approximated. To detect vessel pixels at each
scale, we choose a set of linear structuring elements Sα with
the same length but oriented along different angles α, ranging
from 0◦ to 180◦. We apply the top-hat operator to the FA
images using the structuring elements Sα. The conventional
top-hat operator [38, pp. 557], which is defined as the differ-
ence between original and the corresponding morphological
opening image, is sensitive to noise. Therefore, we adopt a
modified top-hat filtering [39] to improve the robustness of
vessel detection. The modified top-hat operator � is defined
as

X � Sα =X −min ((X • Sα) ◦ Sα,X) , (1)

where X is the input image, and • and ◦ indicate the morpho-
logical operators of image closing and opening, respectively.

Each top hat filtering operation yields a response image in
which pixel locations for vessels with a matching orientation
are invariably high and those for other locations are usually
low. The results of the top-hat filters across different orien-
tations are combined by taking the maximum, resulting in an
overall map where high and low values are likely for vessel and
background pixels, respectively. This soft vessel segmentation
is converted into a binary vasculature map by locally adaptive
thresholding [40]. Typically, binary vessel maps obtained
by this process have a few disconnected components. As a
post-processing step, we therefore perform an area opening
operation to remove all small segments from the vessel map.

C. Vessel Registration By Chamfer Alignment

To precisely transfer the vessel maps in CF images to
the corresponding FA images, we use parametric chamfer
alignment in an EM framework [2]. Let P = {pi}NP

i=1 and
Q = {qj}

NQ

j=1 be two sets of reference and targets points
corresponding to the coordinates of the vessel pixels in FA
and CF images, respectively, where pi = (xi, yi)

ᵀ and
qj = (uj , vj)

ᵀ. Because the geometry of the image capture
and of the retinal surface are unavailable, an elastic registration
transform is more appropriate than a non-elastic one. An
empirical evaluation of alternative geometric transformations
(see Section S.III of the Supplementary Material and also [41])
indicated that a second-order polynomial transformation offers
significant improvements over alternative non-elastic trans-
forms and that higher order transforms offer little additional
improvement. Therefore, we adopt a second-order polynomial
transformation to align the two sets of coordinate vectors
for points corresponding to detected vessels. Specifically, the
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coordinate vector qj for the jth point is mapped to the
coordinate vector

Tβ (qj) =
[
β1
β7

]
+

[
β2 β3
β8 β9

] [
uj
vj

]
+

[
β4 β5 β6
β10 β11 β12

] u2j
ujvj
v2j

 ,

(2)
where β = {βi}12i=1 are the transformation parameters and
Tβ denotes the geometric transformation. The alignment error
dj (β) for the jth point under the geometric transformation
Tβ, is quantified as the minimum squared Euclidean distance
between the transformed location Tβ (qj) and the nearest point
from P , viz.,

dj (β) = min
i
‖pi − Tβ (qj) ‖2. (3)

In the absence of outliers, the parameters β can be esti-
mated by minimizing the average of the errors in (3), which
corresponds to conventional chamfer minimization [16]. The
method is, however, sensitive to outliers, that are inevitable
in the detection process due to stochastic variations and noise
in the imaging processes and due to differences in the FOV
between the modalities. Particularly, vessel pixels in Q that
do not have corresponding points in P inevitably cause the
chamfer minimization to converge to a poor local minima,
resulting in poor registration. To tackle this issue, we adopt
a probabilistic formulation of chamfer alignment in an EM
framework. Specifically, we introduce latent binary variables
Wj ∈ {0, 1} to assess putative correspondence between vessel
pixel qj in CF images and vessel pixels P in FA, where
Wj = 1 indicates that qj has corresponding points in P and
thus is not an outlier point, and Wj = 0 otherwise. The prior
probability of latent variable Wj follows a Bernoulli distribu-
tion with parameter π = p (Wj = 1). Under the assumption
that the points correspond, the transformed inlier vessel pixels
in CF image should be located in close proximity to the vessel
pixels in FA. Therefore, the alignment error is modeled is
modeled as an exponential distribution with parameter λ. For
outlier points, we model the alignment error as an uniform
distribution over the interval [0, Dmax], where Dmax is a free
parameter. Specifically, conditioned on the latent variable and
the parameters θ = {π, λ,β}, the distribution of the random
variable Dj corresponding to the squared distance in (3) is
modeled as

pDj |Wj ,θ(dj |wj ,θ) =


λe−λdj , if wj = 1

1
Dmax

, if wj = 0

(4)

The EM algorithm seeks to obtain a maximum likelihood
estimate of the parameters θ via an iterative procedure com-
prising two steps: an expectation (E) step and a maximization
(M) step. At the (l + 1)th iteration, the E-step computes the
expectation Q

(
θ, θ̂(l)

)
of the complete-data log-likelihood

Lc (θ) =

NQ∑
j=1

log p (dj , wj |θ) , (5)

given the current estimate θ̂(l) of the parameters. In the
M-step, the updated parameters θ̂(l+1) are determined by

maximizing Q
(
θ, θ̂(l)

)
. For our specific setting, the E-step

reduces to a computation of the posterior probabilities p(l)j =

p
(
Wj = 1|dj ,θ(l)

)
, which are obtained as

p
(l)
j =

π(l)λ(l)e−λ
(l)dj

π(l)λ(l)e−λ
(l)dj +

(
1− π(l)

)
1

Dmax

, (6)

The updates in the M-step become

π̂(l+1) =

∑NQ

j=1 p
(l)
j

NQ
, λ̂(l+1) =

∑NQ

j=1 p
(l)
j∑NQ

j=1 p
(l)
j dj

, (7)

with the updated transformation parameter β(l+1) given by

β̂(l+1) = argmin
β

1

NQ

NQ∑
j=1

p
(l)
j dj (β) . (8)

By examining (8), we see that the optimal parameters are
obtained by minimizing the weighted average chamfer distance
where the weighting for each datapoint equals the posterior
probability that it is not an outlier. This makes intuitive
sense, with the EM framework, the weighting concentrates
on non-outliers and discounts the impact of outliers, making
the parameter estimates much more robust than direct (non-
probabilistic) chamfer minimization.

The optimization problem in (8) can be solved using the
iterative Levenberg-Marquardt (LM) non-linear least squares
algorithm [42] in combination with the distance transform
methodology [43] that significantly simplifies the computation
of the objective function and required gradients with respect
to the parameters β. Detailed derivations of the parameter
update equations listed above are provided in Section S.II in
the Supplementary Material.

The LM algorithm based transformation parameter updates
in (8) can get trapped in poor local minima. This is because
the LM algorithm strongly depends on the initial parameter
β̂(0). Thus, a good initialization is important to obtain a good
solution. Instead of estimating all 12 parameters from scratch,
the optimization in (8) is further performed in progressive steps
that use Euclidean, similarity, affine, projective (homography),
and second-order polynomial transformations, in sequence.
The EM iterations are terminated when the changes in the
updates become smaller than a tolerance threshold and the
final estimates β̂ for the transformation parameters are set to
the values from the last iteration.

The binary vessel maps in CF images are registered to the
corresponding FA images by applying the transformation Tβ̂.
To select common region where retina surface is captured in
both CF and FA images, we first generate a binary mask
for original CF, which is then transformed using the same
transformation used for the binary vessel map. The mask for
the overlapping area can be readily obtained as the intersection
of the transformed mask and the original one. Only pixels
remaining in the common area are selected as the inferred
training data for initiating the next stage of the pipeline.

Parametric chamfer alignment is an ideal tool for registering
images from different modalities. First, given the asymmetry
of the chamfer distance, the preliminary vessel detector can be
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(a) (b) (c) (d)

Fig. 4: Sample results of generated training data for FA
imagery in DRIsfahanCFnFA dataset. (a) and (c) show two
FA images, and (b) and (d) are the corresponding vessel
maps. Notice that the generated vessel maps are robust under
different contrast conditions.For a larger version of this figure
see Fig. 4H in the Supplementary Material.

chosen to have a high specificity but a relatively low sensitiv-
ity. This means that the results of preliminary vessel detection
have a low false positive rate, even though the corresponding
true positive rate is low as well. In addition, the formulation
uses a global matching of the detected vessels rather than
relying on a set of key points with feature descriptors, which
is beneficial for the polynomial parametric mapping. Finally,
the incorporation of EM framework for parameter estimation
significantly enhances the robustness of the registration by
mitigating the effects of outlier vessel points.

As a method for generating training data for FA vessel
detection, the proposed cross-modality transfer has the ben-
efit of contrast invariance because the inferred vessels are
transformed from those detected in CF images. Figures 4(a)
and 4(b) show two FA images in DRIsfahanCFnFA dataset
with significant variation in contrast. The corresponding vessel
maps, which are shown in Figs. 4(b) and 4(d), respectively,
provide consistent detection, regardless of image contrast, and
capture both major and minor vessels.

V. HUMAN-IN-THE-LOOP ITERATIVE
LEARNING/LABELING

Although the cross-modality transfer allows generation of
a reasonable labeled dataset for training DNNs for detecting
vessels in FA images, the accuracy of the labeling is limited
by the differences between the modalities and the performance
limitations of the CF vessel detection. The network perfor-
mance can be significantly improved by providing additional
better labeled ground truth data.

As indicated in Section I, manually annotating a high-
resolution UWFFA image is particularly tedious and time-
consuming. In this section, we present the human-in-the-
loop learning approach that aims to further refine the DNN
by incorporating more training data and to facilitate and
expedite the manual annotation process. Figure 5 contrasts the
conventional approach to annotation of training data against
the proposed human-in-the-loop approach. For conventional
approach, the annotation and the training are carried out in
separate sequential phases, meaning that all images in the
dataset are first annotated and then used for the training
stage. The human-in-the-loop approach, however, is an iter-
ative process that exploits the synergistic relationship between
deep learning and labeling. The process is initialized with a
trained DNN trained to detect vessels in FA images using the

Image Batch
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Predicted 
Vessel Maps

New Labeled 
Images

Unlabeled
Dataset

All Labeled
Images

Annotation Training

Neural Netwrok

All Images

Labeled Images
Unlabeled
Dataset

Training Concatenate with 
previous iteration data

Fig. 5: Annotation and training pipelines. Top: conventional
approach starts with manual annotation that generates ground
truth for all images and then trains neural network with the
ground truth data. Bottom: the proposed human-in-the-loop
approach iterates between training neural network and man-
ually correcting annotations generated for a batch of images
using a trained network from the previous iteration.

training data obtained by the cross-modality transfer approach
of Section IV. Estimated binary vessel maps that indicate the
pixels corresponding to vessels are obtained for a small subset
of images from an unlabeled (FA-only) dataset and used as the
as the starting point for manual annotation. Specifically, the
human annotator corrects the estimated binary vessel map by
removing false positive detections and adding in false negative
detections. The new labeled images are incorporated into the
training dataset to refine the DNN in the next iteration. This
process is repeated until all images are labeled.

The proposed human-in-the-loop approach radically reduces
the effort required for annotating images (see the discussion in
Section VI-B where the experiments are described). In addition
to reducing the time and tedium for annotation, the approach
also benefits from a psychological advantage that it provides.
The annotators see the improvements in the trained network
from iteration to iteration and feel immediately rewarded for
their effort instead of having to label many images before
seeing any machine generated annotations. This engages anno-
tators much better than de novo labeling approaches, analogous
to how gamification of learning and education generates better
engagement [44], [45]. Our results indicate that the approach
generates significantly better labeled data than the traditional
de novo labeling approach.

A. Network Architecture

We trained and evaluated a number of alternative DNN
architectures for vessel detection in FA images. In this section,
we describe the best performing approach that exploits the
recent concept of generative adversarial network (GAN) [46],
which was also the architecture used for the human-in-the
loop labeling iterations. Detailed architectures for other neural
networks are provided in Section S.IV in the Supplementary
Material. To apply GAN to vessel detection, we formulate the
problem as an image-to-image translation [47]. In this context,
the network consists of a generator G , which is trained to learn
a mapping from the FA image X to the vessel map V and
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Fig. 6: Network architecture for the GAN network used with
the proposed pipeline. The rectangular blocks are feature maps
where heights indicate spatial dimensions. The last two blocks
in the discriminator show the outputs from fully connected
layers. The numbers below the rectangular block show the
number of feature channels (or number of hidden units for
fully connected layers).

a discriminator D , which aims to distinguish between real
pairs (X,V ) and generated pairs (X,G (X)) of FA images
and vessel maps, where G (X) is the vessel probability map
estimated from the generator and V is the binary ground truth
vessel map. The idea is to jointly train G and D to achieve
the min max operating point where the vessel maps generated
by G minimize the maximum error for the discriminator D in
distinguishing between real and generated pairs.

The network architecture is visualized in Fig. 6. For the gen-
erator, we adopt the UNet [48] architecture, which comprises
a downsampling path and an upsampling path. The key com-
ponent in the UNet is the skip-connection that concatenates
each upsampled feature map with the corresponding one in the
downsampling path that has the same spatial resolution. The
skip-connection is designed for detecting fine vessel structures.
The discriminator receives either an image pair (X,V ) (the
blue and green bars) or (X,G (X)) (the blue and yellow bars).

B. Training

The objective function for the GAN is defined as

LGAN =EX,V [logD(X,V )]+EX [log (1−D(X,G (X)))] ,
(9)

where minimization of the first and the second terms encour-
age correct classification by the discriminator D of real pairs
(X,V ) sampled from training set and the pairs (X,G (X))
generated by G , respectively.

Inspired by the idea proposed in [47] that integrates a data
loss (`1 loss) into the objective function, we combine the
objective function in (9) with the binary-cross entropy loss
commonly used for segmentation. Specifically, we use the
segmentation loss

Ls=−EX,V [V logG (X) + (1−V ) log (1−G (X))] , (10)

which penalizes the disagreement between the estimated vessel
probability map G (X) and the binary ground truth vessel map
V .

The training procedure is then a min-max game [46] be-
tween the generator and the discriminator

min
G

max
D
LGAN (G ,D) + λLs (G ) , (11)

where λ is the free parameter to control the relation between
GAN loss and segmentation loss. The trained deep network G
obtained from this procedure is used to detect vessels in FA
images.

VI. EXPERIMENTS

We begin by summarizing the implementation parameters,
listing alternative vessel detection methods that we use as
baselines for comparison, and defining the evaluation metrics
that we use. We then structure our presentation of the results
as follows. First, we highlight the operation and benefit of
the proposed pipeline, illustrating how the cross-modality
transfer and the human-in-the-loop approach reduce the burden
of annotation and yield our accurately labeled RECOVERY-
FA19 dataset. Next, we evaluate the performance of alterna-
tive network architectures on the UWFFA RECOVERY-FA19
dataset. Additionally, we demonstrate the broader utility of
the trained networks for vessel detection in FA images, by
quantifying the performance on the VAMPIRE [15] dataset and
the DRIsfahanCFnFA [35] dataset, the first of which consists
of UWFFA images from a source that is entirely independent
of the RECOVERY-FA19 dataset and the second of fundus FA
images.

A. Implementation, Baselines, and Evaluation Metrics

The preliminary vessel detection and chamfer registration
discussed in Section IV are implemented in MATLABTM.
Using the training data generated with the proposed pipeline,
we assess the performance of several alternative DNN ar-
chitectures for FA vessel detection. Specifically, we use the
UNet [48], NestUNet [49], and GAN [46] architectures, where,
as described in Section V the GAN uses UNet [48] as the
generator. The DNNs are implemented using PyTorch [50]
(Version 0.4.1). Detailed parameter settings and training pro-
tocol are provided in Section S.IV of the Supplementary
Material. As baselines for performance comparisons, we use
the following existing methods for vessel detection in FA
images: SFAT [15], MSMA [1], and VDGAN [3].

For quantitative comparison, we use the Receiver Operating
Characteristic (ROC) curve, the Precision-Recall (PR) curve,
and the CAL metric [51] and its individual C, A, and L
components. The ROC curve is plotted as the true positive
rate (TPR, or recall) against the false positive rate (FPR) as the
estimated vessel probability map from the DNN is binarized
using a threshold τ ranging from 0 and 1, and the PR curve is
similarly a plot of the precision versus the recall obtained by
varying the threshold τ . We also report the area under curve
(AUC) and the maximum Dice coefficient (DC, or F1 score)
as summary measures. These metrics can be computed from
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the numbers of true positive (TP), false positive (FP), true
negative (TN), and false negative (FN) pixels as

Recall =
TP

TP + FN
FPR =

FP

FP + TN

Precision =
TP

TP + FP
DC =

2TP

2TP + FP + FN
.

The CAL metric [51] is sensitive to anatomical features of
retinal vasculature and provides better agreement with human
visual judgments. CAL consists of three individual factors,
C, A, and L, that quantify the consistency between the
binary ground truth and the binary predicted vessel maps
with regard to connectivity, overlapping area, and the corre-
sponding skeletons (lengths), respectively. The overall CAL
metric is defined as the product of C, A, and L factors,
each of which ranges between 0 and 1, with 1 indicating
complete consistency. The computation of the A and L factors
makes use of morphological filtering operations that provide
robustness against, respectively, (a) variations in the labeling
of “peripheral” pixels that may be inherently uncertain because
these pixels span both vessel and background regions and
(b) minor perturbations in the skeletons that human observers
would discount but direct pixelwise comparisons would not.
The C factor equals one minus the difference between the
number of connected components in the two vessel maps
divided by the number of ground truth vessel pixels, truncated
to zero in the unlikely scenario where the computation yields
a negative value. The CAL metric computation is summa-
rized in Section S.VIII of the Supplementary Material. The
computation of the CAL metric requires a binary vessel map,
which is obtained for the proposed methods by thresholding
the estimated vessel probability map from the DNN with a
threshold τ . We present as “CAL curves” plots of the CAL
metric as a function of the threshold τ and also report the
CAL value for the nominal vessel estimates obtained with a
fixed threshold of τ = 0.5. The computation of the C, A, and
L values, and the overall CAL metric was performed using
the code provided at [52].

B. Annotation of the RECOVERY-FA19 Dataset

Images for the RECOVERY-FA19 dataset were selected
from those gathered for the Intravitreal Aflibercept for Retinal
Non-Perfusion in Proliferative Diabetic Retinopathy trial (RE-
COVERY, ClinicalTrials.gov Identified: NCT02863354) [17].
The dataset comprises eight high resolution (3900 × 3072
pixels) UWFFA images in 8-bit TIFF format acquired using
Optos California and 200Tx cameras with a 200◦ FOV of the
retina [53]. Ground truth binary vessel map annotations were
obtained for the images using the proposed pipeline described
in Sections III–V. In each human-in-the loop iteration, the
network-predicted vessel map was refined by an annotator. The
refinement annotations were performed using the Fiji distribu-
tion of ImageJ [54] with the segmentation editor plugin, which
allows the (current estimate of the) vessel map to be overlaid
on the UWFFA image to facilitate annotation. The brush tool,
polygon selection, and freehand selection tools available in Fiji
were used to add and remove pixels in the vessel map. The
annotator adjusted the brightness and contrast of the UWFFA

images to accurately identify the vessels. The annotations
were validated by consultation with two ophthalmologists who
routinely use UWFFA images for diagnosis in their clinical
practice and research.

To validate that the proposed pipeline can reduce the burden
of annotation, at each iteration, we calculate the number of
pixels changed from the network-predicted vessel map in the
human-annotation process. Table I lists the number of pixels
added and removed during the iterative annotation process for
seven iterations. The traditional de novo labeling approach on
average requires annotation of an estimated 1.1M pixels in
each image. Using the proposed pipeline, in the first iteration,
36.6%(292.4K) pixels were added and 0.87%(6.9K) pixels
were removed from the initial vessel map generated from
the training data obtained using the cross-modality transfer
approach of Section IV, which is very significantly reduced
compared with labeling from scratch. This highlights the
benefit of the cross-modality transfer approach, while also
illustrating the need for improvement beyond what is achieved
with that approach. Specifically, the FOV for the CF modality
is smaller than for UWFFA and therefore the training dataset
generated with the cross-modality transfer approach lacks fine
vessel structure seen in the peripheral regions for UWFFA. As
a result, in the first iteration the annotator added a significant
number of pixels. As the human-in-the-loop iterations proceed,
and newly labeled images are incorporated into the training
dataset, the performance of DNN progressively improves
requiring fewer and fewer annotation changes. In the last
(7th) iteration, only 2%(19.3K) pixels are added and only
1.4%(14.1K) pixels are removed. In addition to the number
of changed pixels, we also estimated the time needed for
annotation. Previous work [55] stated that approximately 18
hours are required to label one UWF fundus photograph,
which is lower resolution and has a narrower field of view
than the UWWFA images that are our primary focus. Our
empirical estimation based on de novo annotation of two
square 512 × 512 patches indicates that approximately 150
hours would be needed to annotate an entire UWFFA image
from scratch. Using the proposed human-in-the-loop approach,
the required time is decreased, very significantly, to about
25 hours per image, where most of the time is spent in
validating the labeling. As noted in Section V, the progressive
improvements in the network performance also have a positive
psychological impact as the annotator realizes that the tedium
of labeling is progressively decreasing.

Iteration # images # pixels added # pixel removed
0∗ - 1.1M (100%) 0.0
1 1 292.4K (36.6 %) 6.9K (0.87 %)
2 2 79.1K (13.0 %) 13.0K (0.99 %)
3 1 42.1K (3.8 %) 7.8K (0.7 %)
4 1 32.7K (2.9%) 14.1K (1.3%)
5 1 21.4K (1.7%) 9.1K (0.7%)
6 1 20.4K (1.5%) 26.2K (1.9%)
7 1 19.3K (2.0%) 14.1K (1.4%)

TABLE I: Number of pixels changed in each iteration in
the proposed human-in-the-loop process. ∗The row labeled
iteration 0 lists the estimated number of pixels that would
need to be added to a vessel map, starting from scratch.
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Fig. 7: Example of labeled ground truth vessel map from the RECOVERY-FA19 dataset. Enlarged views of cyan rectangles
are shown on the right (top: original view; middle: contrast-enhanced view; bottom: labeled ground truth). The corresponding
UWFFA image is shown in Fig. 1.

The annotated vessel maps obtained by the human-in-the-
loop iterations along with the corresponding eight UWFFA
images constitute a new labeled dataset for vessel detection
in FA images, which we refer to as the RECOVERY-FA19
dataset [56]. The RECOVERY-FA19 dataset contains fine
vessel branches, leakage, neo-vasculation, and retinal non-
perfusion, which make the vessel detection more challenging.
These attributes are of particular diagnostic significance [57]
but are barely seen in the prior VAMPIRE dataset [15].
Figure 7 shows an example of labeled ground truth vessel map
for the UWFFA image in Fig. 1. The ground truth annotations
for RECOVERY-FA19 are also significantly better than for
VAMPIRE, which we attribute primarily to the pipeline pro-
posed in this paper, which significantly reduces the tedium of
labeling and improves annotator engagement considerably.

C. Evaluations on the RECOVERY-FA19 Dataset

In the course of the human-in-the-loop iterations, labeled
ground truth data is combined with prior iteration training data
to generate training data for the next iteration. A limitation
of this setting is that only the added ground truth data at
each iteration is the “test” data independent of the training
data. Therefore, we evaluate the performance of alternative
network architectures on the RECOVERY-FA19 dataset by
two alternative approaches. First, we use leave-one-out cross
validation [58], where the model is trained on seven of the
eight UWFFA images and the corresponding ground truth
vessel map labels and tested on the remaining image. The
performance of the model is then reported in terms of statistics
of the eight evaluation metrics1. Second, we also evaluate the
approach using image patches that are labeled de novo and
therefore completely independent of the training process.

1The estimated vessel maps and code for computing the reported statistics
is provided as a Code Ocean capsule [59].

For the leave-one-out cross validation, Fig. 8 shows the
ROC, the PR, and the CAL curves for different methods and
Table II summarizes the AUC for the ROC and the PR curves,
the maximum DC, and the CAL. The best performing network
(Prop. + GAN) achieves an AUC ROC of 0.987, an AUC
PR of 0.930, the maximum DC of 0.854, and a CAL of
0.760. Using the proposed pipeline, all DNNs show signif-
icant improvement over traditional methods SFAT [15] and
MSMA [1]. The performance is also significantly better than
that obtained with the precursor to the present work [3], where
only the cross-modality transfer was used. This highlights the
benefit of the human-in-the loop iterations in the proposed
pipeline. In Figure 9, we show qualitative results of different
methods. Notice that the proposed pipeline is robust to contrast
variations. Fine vessels are detected in the periphery that has
extremely low contrast and brightness. Although these details
in vasculature can be seen manually by repeatedly adjusting
contrast and viewing different regions, the burden and the time
requirement for doing this are prohibitive in typical clinical
settings. The proposed pipeline also handles capillary leakage,
neo-vasculation, and retinal non-perfusion, as shown in the
enlarged views in Fig. 9.

Methods AUC ROC AUC PR Max DC CAL (C, A, L)
SFAT [15] - - 0.606 0.335 (0.999, 0.606, 0.550)
MSMA [1] - - 0.634 0.362 (0.999, 0.622, 0.579)

VDGAN [3] 0.981 0.883 0.800 0.687 (0.995, 0.844, 0.817)
Prop. + UNet 0.987 0.923 0.842 0.753 (0.996, 0.887, 0.853)

Prop. + NestUNet 0.955 0.900 0.817 0.698 (0.995, 0.858, 0.816)
Prop. + GAN 0.987 0.930 0.854 0.760 (0.999, 0.889, 0.856)

TABLE II: Quantitative results obtained from different meth-
ods on the RECOVERY-FA19 dataset. The best result is
shown in bold. The individual C, A, and L values are listed
parenthetically.

The classification into vessel and background categories is
inherently uncertain for the edge pixels that span both vessel
and background regions. For such pixels, the human-in-the-
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Fig. 8: (a) ROC, (b) PR, and (c) CAL curves for different methods on the RECOVERY-FA19 dataset. The gray curves in
(b) represent the isolines of Dice coefficients. The small circular dots on the curves in (a) and (b) identify the corresponding
values of the threshold τ .
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Fig. 9: Qualitative comparison of results obtained with different algorithms for images from the RECOVERY-FA19 dataset. For
each full image, two contrast-enhanced enlarged views of the selected regions (shown by cyan rectangles) are also included.

loop labeling process is potentially subject to confirmation
bias, wherein labels for these pixels are simply validated by
the human observer instead of being critically re-evaluated.
The CAL metrics are designed to be robust against such
uncertainty. Therefore, the improvements in the CAL metrics
for the proposed methods over prior alternatives shown in
Fig. 8 and Table II represent actual improvements that are not
impacted by the potential confirmation bias. On the other hand,
the pixel-wise metrics (TPR (Recall)/FPR/Precision/Dice coef-
ficient) may be impacted by the afore-mentioned confirmation
bias. To address this potential concern, we also performed a
second evaluation using a de novo labeled dataset. Because
the time requirements for labeling entire images from scratch
are prohibitive, the evaluation on de novo labeled data relied
only on two square image patches of 512× 512 pixels. Each

patch required about 10 hours for the de novo labeling, which
translates to approximately 150 hours for labeling a full high
resolution UWFFA image. The selected patches cover both
central and peripheral retina and represent both major and
minor vessel branches. Table III reports quantitative results for
the evaluation performed using the de novo labeled data. The
results, while slightly worse than those reported for the cross-
validation based evaluation, reinforce the overall findings: the
proposed approaches outperform the alternatives by relatively
large margins. Importantly, the C, A, and L factors of the
CAL metrics, that are designed to be robust against alternative
classifications of the uncertain pixels, are comparable for the
de novo and the cross-validation evaluations. As additional
validation, we also assessed the consistency between the
labelings for the same image patches obtained de novo and
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using the human-in-the-loop approach. The results, presented
in Section S.V of the Supplementary Material, illustrate that
the level of consistency is comparable to that obtained between
different human annotators.

Methods AUC ROC AUC PR Max DC CAL (C, A, L)
SFAT [15] - - 0.559 0.328 (0.999, 0.664, 0.495)
MSMA [1] - - 0.644 0.409 (0.999, 0.713, 0.574)

VDGAN [3] 0.954 0.849 0.747 0.710 (0.981, 0.871, 0.832)
Prop. + UNet 0.958 0.852 0.756 0.726 (0.986, 0.881, 0.836)

Prop. + NestUNet 0.955 0.855 0.761 0.687 (0.983, 0.846, 0.825)
Prop. + GAN 0.951 0.861 0.768 0.732 (0.995, 0.879, 0.837)

TABLE III: Quantitative results obtained from the different
methods on the de novo labeled dataset. The best result is
shown in bold. The individual C, A, and L values are listed
parenthetically.

D. Evaluations on the VAMPIRE and DRIsfahanCFnFA
Datasets

The FA imaging modality shares common physical char-
acteristics across alternative imaging options and therefore
the proposed methodology is useful for both UWFFA and
funuds FA images. To demonstrate the broader utility of the
networks (only) trained on RECOVERY-FA19 dataset, we test
the vessel detection performance on two additional datasets:
VAMPIRE [15] and DRIsfahanCFnFA [35] datasets.

The VAMPIRE dataset [15] provides eight high resolution
(3900 × 3072 pixels) UWFFA images acquired using the
OPTOS P200C camera [53] with a 200◦ FOV of the retina.
There are two sequences of images in the VAMPIRE dataset
representing a healthy retina (GER) and a retina with age-
related macular degeneration (AMD). For each image, a binary
vessel map that is manually annotated by ophthalmologists is
provided as ground truth. We detected vessels in the UWFFA
images from the VAMPIRE dataset using the best performing
(Prop+GAN) network that was trained on the RECOVERY-
FA19 dataset.

Our results reveal an issue with the VAMPIRE dataset: we
notice that the vessel branches are not fully-labeled, especially
in peripheral regions where the images have extremely low
contrast. As mentioned in Section I, contrast and exposure
normally pose a big challenge for manual annotation. To
demonstrate the issue, we visually examine the result for the
image “AMD2” in the VAMPIRE dataset, as shown in Fig. 10.
Using the labeled vessel map provided with the VAMPIRE
dataset as “ground truth”, we visualize true positive (black),
false positive (red), false negative (blue), and true negative
(white), as shown in the middle image in the first row of
Fig. 10. After closely examining the vessel detection results,
we observe that most “false positive” detections are indeed
true vessels but are not annotated in the original labeling.
For example, the second and the third rows of Fig. 10 show
six rectangular regions where the true vessel branches are
missed. This illustrates that quantitative comparisons using the
original labeling for the VAMPIRE dataset are not reliable.
To remedy the situation, we selected two images, “AMD2”
and “GER4”, from the dataset and obtained (refined) ground
truth vessel map annotations for these using the human-in-
the-loop approach. The fourth row of Fig. 10 shows the

Ⅰ Ⅱ

Ⅲ

Ⅳ Ⅴ
Ⅵ

Ⅲ ⅣⅠ Ⅱ Ⅴ Ⅵ

Fig. 10: Sample results of vessel detection on the VAMPIRE
dataset [15]. The first row, from left to right: UWFFA, vessel
map evaluated on the original VAMPIRE ground truth, and
the vessel map evaluated on the refined ground truth. Black,
red, and blue indicates true positive, false positive, and false
negative, respectively. The second to the fourth rows show the
enlarged views of six rectangular regions marked on the wide-
filed FA images and corresponding results, respectively. The
“false positive” detections in the third row are actually true
vessels that are not labeled in the VAMPIRE dataset. In the
last row, we show the images after contrast enhancement for
a better visualization.

same enlarged views as earlier, evaluated on the ground truth
images. Compared with the evaluation using the original
labeling (the third row of Fig. 10), the evaluation using the
ground truth data indicates that the detected vessel map has
much less false positives. On average, 73% of the original false
positive detections becomes true positive if they are evaluated
using the ground truth.

In Section S.VI of the Supplementary Material, we: (a)
report complete quantitative evaluations performed with the
original labeling and contrast these against evaluations over
the two images with refined ground truth, and (b) present
evaluations of the alternative methods over “trusted regions”
where the VAMPIRE annotations were accurate, excluding
“non-trusted” regions where our refined ground truth clearly
identified vessels that were not labeled (correctly). Just like
the experiment with the de novo labeling in Section VI-C, the
latter evaluations address the issue of potential confirmation
bias for edge pixels in the human-in-the-loop labeling process.

The DRIsfahanCFnFA dataset [35] contains 59 pairs of near
concurrently captured CF and FA images. All images have
the same resolution of 576 × 720 pixels. The ground truth
binary vessel maps are obtained using the proposed pipeline
described in Sections III–V. We report the quantitative results
in Table IV. The best performing method achieves an AUC
ROC of 0.974, an AUC PR 0.887, the maximum DC of 0.808,
and a CAL of 0.783, outperforming other baseline methods.
Visual results of detected vessel maps and the ROC and the
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PR curves are shown in Section S.VII of the Supplementary
Material.

Methods AUC ROC AUC PR Max DC Max CAL (C, A, L)
SFAT [15] - - 0.607 0.432 (0.991, 0.655, 0.656)
MSMA [1] - - 0.691 0.504 (0.999, 0.720, 0.688)

VDGAN [3] 0.965 0.851 0.776 0.728 (0.996, 0.868, 0.840)
Prop. + UNet 0.972 0.883 0.802 0.743 (0.997, 0.878, 0.847)

Prop. + NestUNet 0.972 0.882 0.804 0.761 (0.997, 0.889, 0.858)
Prop. + GAN 0.974 0.887 0.808 0.783 (0.997, 0.899, 0.872)

TABLE IV: Quantitative results obtained from different meth-
ods on the DRIsfahanCFnFA dataset. The best result is shown
in bold. The individual C, A, and L values are listed paren-
thetically.

VII. CONCLUSION

We proposed a novel deep learning pipeline for detecting
retinal vessels in FA images. Using a cross-modality approach
and a human-in-the-loop approach, our pipeline significantly
reduces the effort required for generating labeled ground truth
images. Experimental validations on three datasets, including a
new RECOVERY-FA19 UWFFA dataset, demonstrate that the
proposed pipeline significantly outperforms existing methods.
To facilitate further development and evaluation of retinal
vessel detection in FA images, we make publicly available
the RECOVERY-FA19 dataset [56] and a Code Ocean cap-
sule [59] for replicating the results in Table II.

The proposed pipeline provided a particularly useful
methodology for generating labeled ground truth data. While
our focus here was on labeling vessels in FA retinal images,
the key underlying ideas could be applied in other situations.
The registration approach that we describe in Section IV
can also be used to facilitate identification and comparison
of longitudinal vessel changes, preliminary results on which
have been reported in [2]. The idea of cross-modality (label)
transfer by registering observations of the same object captured
with different modalities is potentially useful in speeding up
other ground truth labeling tasks. Used in combination with
the human-in-the-loop approach, such methods can signifi-
cantly reduce tedium and improving engagement, and improve
availability of datasets with accurately labeled ground truth,
which is currently a key bottleneck in deploying deep learning
solutions for a number of problems.
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retinal image understanding,” in Intl. Conf. Med. Image Computing and
Computer-Assisted Intervention, 2016, pp. 140–148.
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