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ABSTRACT

We propose a novel framework for accurate 3D georegistration
of wide area motion imagery (WAMI), which is a challenging prob-
lem because parametric transformations are insufficient for aligning
WAMI image frames to a georeferenced coordinate system in urban
areas containing tall buildings and 3D structures. Using structure
from motion (SfM) we estimate a 3D point cloud for the scene. In-
dependently, we also compute a precise alignment between the roads
in the WAMI frames and a georeferenced vector roadmap by detect-
ing locations of moving vehicles and aligning these locations with
the roads in the vector roadmap via parametric chamfer matching.
The aligned vector roadmap then identifies corresponding pixels in
the WAMI frames, which can be triangulated using the SfM camera
parameters to obtain a set of sparse but georeferenced points in the
SfM 3D coordinate frame that directly enable georegistration of the
complete 3D scene point cloud via a similarity transform.

The proposed methodology enables 3D georegistration of a se-
quence of WAMI frames using only georeferenced vector roadmaps,
which are readily available, and without requiring independent geo-
referenced lidar scans that have been used in prior work. Our frame-
work is validated on WAMI dataset including high resolution WAMI
frames for the downtown Rochester, NY region. Experimental re-
sults demonstrate that the proposed framework produces an accurate
georeferenced point cloud representation for the scene.

Index Terms— WAMI, georegistration, structure from motion
(StM), expectation maximization (EM).

1. INTRODUCTION

The past decade has seen the development and deployment of a
number of aerial Wide Area Motion Imagery (WAMI) capture sys-
tems, such as the CorvusEye [1], Autonomous Real-time Ground
Ubiquitous Surveillance Imaging System (ARGUS-IS) [2], Constant
Hawk [3], and Hawkeye [4]. These systems capture a sequence
of high resolution temporal image frames at 1-3 frames-per-second
with a field of view that covers an extended geographic area, typi-
cally spanning a few square miles. The rich spatio-temporal infor-
mation captured in WAMI imagery is increasingly being used for a
variety of applications including military operations, surveillance,
disaster monitoring/assessment, law enforcement, border enforce-
ment, and urban planning. For such applications, georegistration, i.e.
localization of each pixel in 3D space relative to the Earth, enhances
the utility of the WAMI data by allowing additional information to
be integrated from existing georeferenced sources such as roadmaps,
satellite images, and digital elevation maps.

WAMI georegistration is challenging because parametric trans-
formations are insufficient for aligning WAMI image frames to a
georeferenced coordinate system, particularly in urban areas con-
taining tall buildings and 3D structures. Methods for accurate geo-
registration therefore rely on auxiliary information of the scene 3D
structure, obtained, for example, from lidar scanning or digital el-
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evation map, to register 2D image [5, 6, 7, 8, 9]. Although these
methods are able to register images to georeferenced model, they
have limitations: the acquisition of lidar point cloud or DEM can be
both expensive and time-consuming and these are not always pub-
licly available. As an alternative, researchers have also used Struc-
ture from Motion (SfM) to reconstruct and georegister the 3D point
cloud from the scene images. For instance, [10] and [11] choose on-
board sensors such as GPS/IMU sensors that record geospatial in-
formation. However, the accuracy of the georeferenced point cloud
is limited by the low-fidelity geographic information. To improve
accuracy, others have explored methods to align the point cloud with
2D georeferenced data. In [12], for example, a 2D map is used for
point cloud georegistration that is formulated as aligning 3D planes
in point cloud with 2D lines in map. Similarly, recent work in [13]
proposes an algorithm to georegister a 3D point cloud from oblique-
view video with a cadastral map. The method in [14] leverages three
different types of geographic sources, i.e., the noisy meta-data, the
Google Street View image, and the 3D model exported from Google
Earth. Although this method is able to produce good results, it has
limitations: the method uses the Iterated Closest Point (ICP) algo-
rithm [15] to align point cloud with 3D Google Earth model, which
highly reliant on finding a good initial guess. In situations where a
Google Street View image is not available or where the quality of
Google Earth Model is poor, the accuracy is low because the align-
ment can be trapped in local minima.

In this paper, we propose a novel framework to accurately geo-
register a point cloud from WAMI frames by integrating 3D scene
structure estimated from SfM with chamfer alignment of vehicle de-
tections with readily available vector roadmaps. Our framework has
several advantages. We do not require either (a) prior knowledge
from the scene (e.g., known geographic coordinate of landmarks) or
human intervention during the processing, or (b) 3D georeferenced
models from other sources such as Google Earth, where the qual-
ity of information can vary significantly across cities. Instead, we
utilize a vector roadmap to provide georeferencing through chamfer
alignment with detected vehicle locations in the WAMI frame. An
expectation-maximization (EM) formulation of the chamfer align-
ment makes our method robust to the noisy GPS meta-data and spu-
rious vehicle detections.

The paper is organized as follows. Section 2 sketches out of the
proposed framework. We present the experimental results on a real
WAMI dataset in Section 3, and conclude the paper in Section 4.

2. GEOREFERENCED POINT CLOUD ESTIMATION

The proposed framework addresses the problem of accurate 3D geo-
registration of WAMI frames using the pipeline depicted in Fig. 1.
Specifically, the 3D point cloud of the scene is reconstructed from
WAMI frames using an SfM algorithm. Independently, we register
the WAMI frames to the georeferenced vector roadmap by chamfer
alignment of detected moving vehicles in the WAMI frames to the
roads in the vector roadmap, resulting in a set of georeferenced pixel

ICIP 2017



WAMI Frames Point Cloud
N
{Iﬂ } n=1 \if,lvl_l

Geographical Coordinates

Similarity
Transform

Chamfer Align
With Vector
Road Map

I
Vehicle Iy
Detections
P P

T 7 Vec. Road Map

L

Chamfer Align
With Vector
Road Map

I Detected Vehicles

Geo—Ref. Pixels

Geo—Ref. Pixels Detected Vehicles

Fig. 1. Proposed methodology 3D georegistration of WAMI using structure from motion (SfM) and chamfer alignment of vehicle detections.

locations on the road network in the WAMI frame. The identified
pixel locations can be triangulated to obtain 3D georeferenced points
in the SfM coordinate system that directly enable georegistration of
the complete 3D scene point cloud via a similarity transform.

2.1. 3D Reconstruction Using SfM

The first stage takes a set of WAMI frames I = {I,, (u™,v™)}1_; as
input, where NN is the number of images. We perform SfM to simul-
taneous reconstruct 3D scene points M; = {M;}<, and estimate
projective camera parameters P,, for each WAMI frame, where K is
the number of points and M; is the 3D coordinate of the point . The
projective camera parameters describe how a 3D point is mapped
onto 2D image plane. Among several proposed SfM strategies, in-
cremental SfM [16] has been widely used. The basic idea is that
keypoints are detected in each frame and matched between all pairs
of frames. Then an iterative procedure is performed to recover cam-
era parameters as well as 3D point locations. In each iteration, only
one camera is added for optimization. The reconstructed point cloud
is shown as the red dots in the point cloud M, in Fig. 1.

2.2. Registration of WAMI With Vector Roadmap

The SfM algorithm only estimates a point cloud in a relative coor-
dinate system rather than in an absolute geographic coordinate sys-
tem. Therefore it is necessary to obtain geospatial information for
the point cloud. Instead of using known geographic coordinates of
landmarks, we apply an EM framework [17] to precisely register
two WAMI frames to the georeferenced vector roadmap R, by us-
ing locations of moving vehicles detected in the WAMI frames and
aligning these locations with vector roadmap. More concretely, we
first extract corresponding feature points in two successive frames I;
and I and estimate a homography H2: to transform features in I
to the corresponding ones in I

spm' = Horm?, (1)

where 7! and 772 are the homogeneous coordinates of feature points
in I; and I, respectively, and sy, is an arbitrary factor. The frame
I 1 is estimated based on Hz; that can be view as an image captured
at viewpoint of I; but at the time when I is captured. The vehicles
are the detected by the compensated frame difference [18]: a pixel

location 1y, = [ug,, v, 1] " where the absolute difference of pixel

value between /; and I i is greater than a threshold is considered part
of a vehicle.

The vector roadmap is represented by a sequence of locations
of longitude ¢ and latitude 6, which are later mapped to a 2D co-
ordinate system (x, ¢) using azimuthal orthographic map projection
(AOMP) [19]. For each detection ), we compute the minimum

distance dr, (Hg) from its mapped location under the homography
transformation Hpg to the road network

dn (Hg) = min D (55, Hg1iy,) ()

J

where p; = [xj,¢, I}T are the homogeneous coordinates of the
vector roadmap and 3 denotes the homography parameters. The vec-
tor road network alignment is formulated as a homography model
H g that minimizes the objective function

Ny
Q1= pudn (Hp), 3)
1

where N, is the number of de?ections including on-road vehicles and
spurious detections, and p,, is the posterior probability that the n-th
detection is on-road vehicle. The minimization in (3) can be recog-
nized as a probabilistic formulation of chamfer minimization [20].
We apply the EM algorithm [21] to estimate 5. In the E-step, we
update the posterior probability p,, of detection reliability based on
current parameters for alignment. Given the estimated p,, we re-
estimate the parameters /3 in the M-step. This process is repeated
until convergence. A detailed description can be found in [17]. Once
the parameters 3 is determined, we apply Hy !, the inverse of the
transformation, to the vector road network, which establish a set of
correspondences for points 7 € 7 on the road network in both the
WAMI frame pixel coordinates and the georeferenced coordinates.

2.3. Point Cloud Georegistration

The georeferenced pixel locations mjl- provide geospatial informa-
tion for the road network in the scene. We incorporate these pixel
locations with the point cloud from SfM for the purpose of point
cloud georegistration. Using the previous section’s approach, we
first identify the georeferenced points m? in [> that correspond to
m}. Given a set of point correspondences mjl- > m? and the cam-
era parameters P and P of the two frames, we compute the corre-
sponding 3D positions M; by back-projecting rays from the image
points. The 3D points M; and M are in the same coordinate sys-
tem because the same camera parameters are used (the red and green
dots in point cloud M in Fig. 1, respectively). Hereafter we refer to
M = M; U M; as the complete points in SfM coordinate system.

Once the 3D points M; are found, the transformation that maps
M, to geographical coordinate system can be estimated. Adopting a
similarity transformation which is defined by a unitary rotation ma-
trix R3«3, a translation vector t3x 1, and a positive scaling factor s,
a procedure of transformation estimation can be defined by minimiz-
ing the objective function

Q2= [sRaxsM; + tax1 — MY|%, (€
JET
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where MY is the 3D location of points M; on a geographical coordi-
nate system derived from the longitude ¢; and latitude 6; (spherical-
to-Cartesian transformation). The minimization of objective func-
tion Q2 can be solved using method in [22] that provides a close-
form solution for this least-squares problem. The georeferenced
point cloud MY is then computed by applying the similarity trans-
formation to the complete point cloud M.

3. EXPERIMENTAL RESULTS

We validate our framework by mapping the WAMI frames to a geo-
referenced satellite image using the estimated point cloud M¢. The
satellite image I, (x, ¢) can be considered as the image of earth sur-
face captured using an affine camera [23]. The spatial location of
each pixel (x, () is assigned with a location of longitude and lati-
tude (¢, 0). Since the points in MY have georeferenced coordinates,
we establish correspondences between these 3D points and their 2D
counterparts in the georeferenced satellite image. Given 3D-2D cor-
respondence, the affine camera parameter P, can be estimated that
maps the 3D reconstructed scene M onto the satellite image plane,
thereby providing transformation between the WAMI frame and the
satellite image. We do not consider radial distortion since the WAMI
frames and satellite image are corrected to distortion-free images.

We use the CORVUS visible band dataset which was recorded
using the CorvusEye 1500 Wide-Area Airborne System [1] for the
downtown Rochester, NY region. Each WAMI frame is comprised
of a RGB image with resolution 4400 x 6600 and the associated
meta-data that includes the approximate geographical coordinates
for the four corners. The vector roadmap is provided by Open-
StreetMap (OSM) [24]. For the georeferenced satellite image, we
use the Google Static Maps API service [25] to request the map as
a satellite image. The satellite image is then manually cropped to
cover the similar region to the WAMI frame'. The satellite image
has a resolution of 1280 x 1280 and one pixel corresponds to about
0.869m on the ground plane.

3.1. Qualitative and Quantitative Results

In our experiments, we apply the state of the art SfM algorithm [26]
on 50 WAMI frames to reconstruct 3D point cloud, and perform
the dense reconstruction method PMVS/CMVS [27] to generate a
dense point cloud of the scene. We first show the qualitative results
of our framework and compare these with two alternative methods:
“meta-data based alignment (MBA)” and “road network georegis-
tration based alignment (RN)”. The MBA method depends only on
the meta-data in the WAMI frame. Specifically, this method esti-
mates the homography between the WAMI frame and satellite image
from the correspondences of the locations of the four corner points
in the WAMI frame and the map coordinates using DLT. This ho-
mography can be interpreted as the transformation used to ortho-
rectify the WAMI frame. The RN method estimates the homography
between the WAMI frame and the satellite image by aligning the
WAMI frame with the georeferenced vector roadmap, as computed
in Section 2.2. These two alternative methods solve the problem of
aligning WAMI frames with the satellite image by estimating and
applying the 2D homography to all pixels in the WAMI frame.

To visualize the results for each algorithm, we superimpose the
transformed WAMI frame and satellite image to compare the differ-
ence between these two images. The results of georegistration of

!Code for downloading from Google Maps is provided by Zohar Bar-
Yehuda: https://www.mathworks.com/matlabcentral/fileexchange/27627-zoharby-plot-
google-map

Fig. 2. Sample results of road network alignment. The red line seg-
ments represent vector roadmap that are superimposed on the trans-
formed WAMI frame.

one WAMI frame for the MBA, the RN and the proposed method
are shown in Fig 4. The satellite image is shown as green while the
transformed WAMI frame is represented in magenta. The results of
georegistration using MBA method have significant error due to the
limited accuracy of on-board WAMI sensor for recording locations.
For example, we can readily identify misalignment both for the road
network and buildings, as shown in the first row of Fig 4. The RN
method is able to enhance the accuracy of georegistration for the
road network region, which can be modeled as a planar structure.
We show the estimated alignment of the vector roadmap in Fig 2
by superimposing the estimated road locations as highlighted tracks
overlaid on the WAMI frame. This method, however, is not able to
significantly improve the accuracy in the region where the buildings
are located. The proposed method, which employs both 3D struc-
ture as well as the georeferenced vector roadmap, offers a significant
improvement over the MBA and the RN methods. The buildings in
the WAMI frame, for example, which are not properly aligned by the
MBA and the RN methods, can be precisely aligned with the satellite
image, as shown in the last row of Fig. 4.
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Fig. 3. Box plot of reprojection error between ground truth points
and the mapped points estimated from the MBA, the RN, and the
proposed method. Note the logarithmic scale for the y-axis
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Fig. 4. Sample results of visual comparison of WAMI georegistration using different methods. Rows from top to bottom: the MBA method,
the RN method, and the proposed method. The transformed WAMI frame, which appears in magenta, is superimposed with the georeferenced
satellite image shown in green. The first column is the full satellite images, while the second to the last columns shows the close-ups that

marked on the corresponding full satellite images by the same colors.

To provide quantitative comparison, we carefully select several
3D points obtained from SfM and manually identify their counter-
parts in the 2D satellite image to obtain the ground truth camera
(GTC) parameters. From SfM, we also have the parameters of each
individual scene cameras (SCs) that captured the WAMI frames.
Combining the parameters of SC and GTC, we built a 2D-3D-2D
ground truth correspondence among pixels in WAMI frame, points
in 3D point cloud, and pixels in satellite image. Before discussing
how the proposed method performs, it is worth emphasizing that here
we assume the parameters of each scene camera are accurate. This
assumption holds because we found the average reprojection error is
relatively small, e.g., one pixel in the WAMI frame.

For each reconstructed pixel in the WAMI frame, we apply
the MBA, the RN method, and the proposed method to determine
its pixel location in satellite image. Figure 3 shows the displace-
ment error, in pixel units, between the ground truth points and the
transformed points in the satellite image, for each aforementioned
method. Several observations can be made: (1) The MBA method
has noticeable error due to limited accuracy of on-board sensors.
The error ranges from 6.4242 to 266.1876 pixels, with the mean of
31.6572 pixels which equals a distance of 27.51m. and (2) the RN
method can improve the accuracy of georegistration (the minimum

error is 0.63 pixels), but still has a large mean and maximum error
(28.613 and 302.4708 pixels, respectively). This is not surprising,
however, because the homography model used in the MBA and the
RN method is valid only for the planar structure. The proposed
method, which employs both 3D structure and georeferenced vector
roadmap, offers a significant enhancement over other two methods.
For instance, the error ranges from 0.0341 to 10.8202 pixels, with
the mean of 2.7021 pixels. The results of quantitative comparison
are in accordance with that of visual examination.

4. CONCLUSION
The proposed framework provides an accurate methodology for 3D
georegistration of WAMI frames by integrating SfM and chamfer
alignment of detected vehicles with vector roadmaps. Our approach
relies only on georeferenced vector roadmaps, which are readily
available. Both qualitative and quantitative results indicate that the
method achieves high accuracy of 3D WAMI georegistration.
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