
View Synthesis from Wide-Baseline Views Using Occlusion

Aware Estimation of Large Disparities

Ahmed S. Elliethya, Hussein A. Alya and Gaurav Sharmab

aComputer Dept., Military Technical College, Cairo, Egypt;
bECE Dept., University of Rochester, Rochester, NY, USA

ABSTRACT

Accurate disparity estimation is a key ingredient required when generating a high fidelity novel view from a set
of input views. In this paper, a high quality disparity estimation method is proposed for view synthesis from
multiple input images with large disparities and occlusions. The method optimally selects one out of three image
pairs to estimate the disparity map for different regions of the novel view. The novel view is then formed using
this disparity map. We introduce two novel elements: a) an enhanced visibility map that is able to segment
the scene accurately near object boundaries and b) a backward unilateral and bilateral disparity estimation
procedure using the Gabor transform on an expandable search window to tackle large disparities. The quality
of the interpolated virtual views produced by the proposed method is assessed and compared against two of the
prominent previously-reported methods. The proposed method offers a significant improvement both in terms of
visual quality of the interpolated views as well as the peak signal-to-noise ratio (PSNR) and structured similarity
image index (SSIM) metrics.

Keywords: Large disparity estimation, backward projections Gabor transform, variational regularization, view
interpolation

1. INTRODUCTION

In multi-view and 3D imaging, the generation of a virtual view of the scene from any viewpoint that is located at
an intermediate position between the actual camera viewpoints is important in several applications. This view-
interpolation step, for instance, allows viewer navigation within the scene by enabling continuous generation of
a virtual view of the scene based on the position and orientation of the viewer, functionality that is required for
multi-view 3D displays1, 2 and free viewpoint video.3, 4 View-interpolation is also a key component in a number
of multi-view compression schemes.5–8

View interpolation can be performed for multi-depth or single-depth scenes. Single-depth scenes are encoun-
tered either in the distant imaging scenario, or when the scene imaged is inherently flat. In these situations, the
relation among different views of the scene can be represented by a global geometric transformation between the
input images, and there are no occluded or new exposed areas in the synthesized view (since all pixels are visible
in all input images).9–13 On the other hand, view interpolation for multi-depth scenes is much more arduous,
because no single global transformation can relate the pixels of the different input views and there are some areas
that are occluded in one or more views. For instance, in translationally-displaced views of a multi-depth scene,
as is common in stereoscopic and 3DTV applications, between the different views, nearer objects (to the camera)
exhibit larger displacements than further objects. In general, the quality of the synthesized view generated by
view interpolation techniques depends heavily upon: a) the accuracy of estimated disparity map that relates the
input views’ pixels, and b) reasonable assignment of pixel values to the occluded parts in the synthesized view
by the view interpolation algorithm.

In this paper, we consider the disparity estimation problem for general multi-depth scenes under the setting
typical for stereoscopic and 3DTV applications where the captured views and the desired views to be synthesized
all correspond to viewpoints located along a line as shown in Fig. 1. The dense motion field (disparity field)
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Figure 1. Problem definition : Given 4 captured views of 3D scene by 4 cameras C1, C2, C3 and C4 and required to get a
novel view as if it is captured by a virtual camera CJ .

for this scenario is denoted by d(x) = [u(x) v(x)]
T
, where u and v are the displacements in the horizontal

and vertical directions respectively. Unlike applications such as video frame rate up-conversion, where small
displacements are encountered between frames, here we deal with a set of sparse views. The disparity estimation
process therefore has to tackle much larger displacements14 and faces new challenges such as large area occlusions
and significant changes between the input views.

A method for estimating large disparities from two views is presented in Ref. 14 for stereoscopic rendering.
The method uses the Gabor transform along with regularization and can handle large disparities but cannot
effectively deal with occlusions. Methods capable of handling occlusions using 4-views have been presented in
Ref. 15, 16. These methods are based on minimization of a regularized objective function and guided by the
so-called visibility map or labels. However, these methods are not suitable for estimating large disparities even
when implemented using multi-resolution pyramid. This is due to the fact that at the very coarse scale the
objects becomes blurry and the regularized estimation tends to favor the coherence of the disparity field over
data fidelity. Moreover, these techniques do not accurately estimate the visibility map and some areas in the
new virtual view are interpolated from a non-optimal view as we clarify in Section 3.1.

In this paper, we present a new method for accurately estimating a dense disparity field in the presence of
large displacements between the input views that also effectively handles occlusions. We use this disparity field
to synthesize virtual views and demonstrate the advantages of the proposed method over prior techniques in
this application. The method has two ingredients: an enhanced visibility map and a backward disparity field for
large displacements.

The rest of the paper is organized as follows. In Section 2 we describe the problem formulation and introduce
our notation. Our proposed method is given in Section 3, where we present our main contributions in two
subsections: an enhanced visibility map algorithm and a method for backward large disparity estimation. We
present experimental results and comparisons in Section 4. Finally, we give concluding remarks in Section 5.

2. PROBLEM DEFINITION

The problem setting is shown in Fig. 1. Four acquired images are shown two to the left and two to the right
of the desired view, with the inter-view spacing normalized to unity for the two captured views adjacent to the
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Figure 2. Problem formulation depicted using frames from the flower-garden test sequence using frame number: (a) 1 for
I1, (b) 13 for I2, (c) 25 for I3, and (d) 37 for I4. Using these four views, the view J intermediate between I2 and I3, and
located at a normalized distance of α from I2, is to be synthesized. d12 and d43 denote the forward disparities from I1 to
I2 and from I4 to I3, respectively and d denotes the backward disparity from the coordinate system of J , at each pixel,
pointing to frames from which the pixel is interpolated, categorized in turn by three cases A, B, and C. Specifically, cases
A, B, and C correspond to situations where interpolated values for pixels are obtained from (I1, I2), (I2, I3), and (I4, I3),
respectively. For cases A and C the backward disparities are extrapolated, whereas for case B these are interpolated. The
proposed approach reduces the regions of extrapolation from X+X1 to X and from Y +Y1 to Y , improving the resulting
view interpolation.

desired view. We need to estimate the disparity fields at the virtual view Ĵ that will be used to interpolate a
virtual view Ĵ from the four ordered input images I1, I2, I3, and I4 all having pixels with spacing determined by
a lattice Γ.17 In this paper, all images have spatially limited support as opposed to the mathematically infinite
extent of a lattice. For brevity, however, we will implicitly assume this throughout our description without
mentioning this point repeatedly. As a result of the displacement of the camera between the captured views,
there are regions of the of the 3-D scene that are visible in some views and occluded by objects closer to the
camera in other views. Therefore some pixels in Ĵ are “visible” in I2 but “invisible” in I3 and vice versa. Sample
occlusions are shown in Fig. 2 and labeled as cases A and C, which are explained later. To handle occlusions, we
use information from the remaining views I1 and I4 as in Ref. 15 . In general, we have three options as shown
in Fig. 2: case A: left-sided extrapolation from (I1, I2), case B: bi-sided interpolation from (I2, I3), and case C:
right-sided extrapolation from (I4, I3). Cases A and C are only used in occlusion situations. In this paper, we
use multiple disparity fields and denote these by:

1. dM
nm for the forward disparity field defined on image n and pointing toward image m and estimated using

method M = {G,A}, where G stands for Gabor, and A for the anisotropic regularized estimation method
as in Ref. 15 . In forward projection, the disparity field is defined on the sampling lattice of the known
view and points towards the interpolated virtual view,18 where the end points of the disparity vectors need
not necessarily correspond to the sampling lattice of the interpolated view Ĵ .

2. dM for the backward disparity field defined onto the interpolated image Ĵ . The backward disparity field
is defined on the sampling lattice of the interpolated image Ĵ and points either left to the pair (I2, I1),
bi-directionally to (I2, I3), or right to (I3, I4). Each pixel location in the interpolated virtual view Ĵ

has a disparity vector. We estimate this backward disparity field using the method M = {G, I,A},
where G stands for the backward Gabor transform, I for isotropic regularization, and A for anisotropic
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Figure 3. Block diagram of interpolation aware view interpolation using the proposed method for estimation of large
disparities in a wide-baseline setting.

regularization. The backward disparity field is associated with a visibility map to determine, for each pixel,
a corresponding image pair out of the 3 aforementioned cases.

3. PROPOSED METHOD

Our proposed method uses Gabor transform based estimation of large disparities followed by both isotropic
and anisotropic regularization to obtain a coherent disparity field that in turn allows accurate estimation of the
visibility map for identification of occlusions. The method has two main stages as shown in Fig. 3.

• Stage 1: occlusion estimation at the interpolated view Ĵ ; this is done by estimating disparities dG
12 and

dG
43, then refining these using anisotropic regularization15 to obtain dA

12 and dA
43. Both dA

12 and dA
43 are

used to estimate a visibility map L which is used to guide stages 2 and 3. L is a dictionary that defines
for each pixel in Ĵ a corresponding image pair out of the three cases, as explained in Section 3.1.

• Stage 2: estimate the disparity field dA at the virtual view Ĵ ; first we estimate dG as explained in Section
3.2, then refine it to get dI and use it to obtain a coarse estimate of the interpolated view JC . This coarse
estimate is used to guide the anisotropic regularization to obtain the final disparity field dA.

The minimization of the isotropic and anisotropic energy functionals for disparity estimation15 is obtained by
solving their associated Euler-Lagrange equations. We use the gradient descent method to solve them as in
Ref. 15 . The forward disparity estimation using Gabor transform is obtained by an exhaustive search in a
limited window size in the underlying images as in Ref. 14 . In addition to integrating Gabor transform14 and
occlusion handling method,19 we introduce an enhanced visibility map L for large disparities in Section 3.1, and
a backward projection disparity field by Gabor transform in Section 3.2 as our main contributions. Both are
necessary for dealing with large disparities.

3.1 Enhanced visibility map for large disparities

In Ref. 15, pixel locations in Ĵ which have the number of accumulated visits, of the forward compensated disparity
vectors originating from a far view (d12(x) or d43(x)), less than a predefined threshold are identified as invisible
from that view. Thus newly exposed areas, such as those labeled by X +X1 in Fig. 2, are identified as invisible
from the side of I1 by the forward compensated disparity vectors x + (1 + α)dA

12(x), where x ∈ Γ. Similarly,
areas such as regions labeled Y + Y1 in Fig. 2, are identified as invisible from the side of I4 by the compensated
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disparity vectors x + (2 − α)dA
43(x), where x ∈ Γ. This is directly adopted from Ref. 15 as the initial steps 2

and 3 in our proposed Algorithm 1 for enhanced visibility map estimation. We can interpolate these pixels from
the opposite view, where they are visible. For instance, interpolate the pixels of Ĵ in areas such as ones labeled
X+X1 in the figure from the image pair (I3, I4) and similarly the pixels in areas such as the ones labeled Y +Y1

from (I1, I2).

Since the estimation of L in Ref. 15 is based on small disparities among the input images, its direct reuse
for large disparities (sparse views) can lead to non-optimal decisions. For instance, the area slices labeled X1

and Y1 in the vicinity of the tree in Fig. 2, exhibiting large displacements among the views, can still be viewed
in images I2 and I3, respectively. Hence we have the option to synthesize area X1 from the pair (I4, I3) or
(I2, I3). The method in Ref. 15 uses (I4, I3), accumulating errors due to extrapolation from far views. On the
other hand interpolating from the pair (I2, I3) is bi-sidedly bounded yielding better estimation and results (Step
4 in Algorithm 1) for areas such as X1. Similarly areas like the region labeled Y1, are identified in Step 5 of
Algorithm 1. Areas which are only visible in the image pair (I1, I2) (such as regions labeled X in Fig. 2) can

Algorithm 1: Enhanced visibility map

Input: I1, I2, I3, I4
Output: Enhanced Visibility map L for view Ĵ to be determined via interpolation

1 Initialize L(x) = 0 ∀x ∈ Γ to indicate that they are generally visible in the near image pair (I2, I3);
2 Identify the set F12 of samples that are invisible in I1 and partially invisible in I2 (such as regions labeled

X +X1 in Fig. 2) by thresholding the pixel revisit count at Ĵ of the compensated irregular samples
{x+ (1 + α)dA

12(x)} as in Ref. 15;
3 Identify the set F43 of samples that are invisible in (I4) and partially invisible in (I3) (such as regions

labeled Y + Y1 in Fig. 2) by thresholding the pixel revisit count at Ĵ of the compensated irregular samples
{x+ (2− α)dA

43(x)} as in Ref. 15;
4 Identify the set N12 of samples that are invisible in I1 (such as regions labeled X1 in Fig. 2) by

thresholding the pixel revisit count at I2 of the compensated irregular samples {x+ dA
12(x)};

5 Identify the set N43 of samples that are invisible in I4 (such as regions labeled Y1 in Fig. 2) by

thresholding the pixel revisit count at I3 of the compensated irregular samples {x+ dA
43(x)};

6 Identify areas which are only visible from the image pair (I4, I3) (such as regions labeled X in Fig. 2) by
the set difference and labeled by L(F12 −N12) = 1;

7 Identify areas which are only visible from the image pair (I1, I2) (such as regions labeled Y in Fig. 2) by
the set difference and labeled by L(F43 −N43) = −1;

be obtained by the set difference F12 −N12 as shown in step 6 of Algorithm 1, where Fij is a set of samples that
are invisible in Ii and partially visible in Ij and Nij is a set of samples that are invisible in Ii and completely

visible in Ij w.r.t the interpolated frame Ĵ . Similarly in step 6 of Algorithm 1, areas which are only visible in
the image pair (I4, I3) (such as regions labeled Y in Fig. 2) can be obtained as the set difference F43 −N43. We
use three labels to build L as in Ref. 15 : 0 for the pixels visible in (I2, I3), 1 for pixels which are only visible
in (I4, I3), and −1 for pixels which are only visible in (I1, I2). The set differences computed in Steps 3 → 7 of
Algorithm 1, provide our enhanced visibility map estimate that is better-suited for large disparities. For the case
of small disparities, areas such as the regions labeled X1 and Y1 will not occur and the algorithm will operate in
a manner analogous to the method in Ref. 15. It should be noted that the enhanced feature of Algorithm 1 is
not applied to the leftmost and rightmost portion of the virtual view image where only steps 2 and 3 are applied.
In practice, these two portions are selected to correspond to the maximum disparity value in pixels.

3.2 Backward disparity estimation by Gabor transform

Estimating dA using an energy minimization method20 is not capable of correctly estimating the large disparities
seen in a wide baseline setting, even when using coarse to fine resolutions framework. This is due to the fact
that the coarse scale lacks fine details that are important to guide the matching procedure, and the scene may
contain objects that are smaller than their disparity, and these objects will typically be over-smoothed at the
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I2 Ĵ I3 I4

(1
−

α)τ
x

(
1

−
α
)
τ
y

ατ
x

α
τ
y

ατ
x

α
τ
y

(1 +
α)τ

x

(
1

+
α
)
τ
y

α 1− α 1

Figure 4. Search windows for bilateral and unilateral Gabor transform-based backward projection disparity estimation.

coarse scale.20 Hence, we introduce a new Gabor transform-based disparity estimation dG as an initial step
to obtaining a backward disparity dA defined on the sampling grid of Ĵ that accommodates potentially large
disparities. For each pixel in Ĵ , we selectively search an image pair for a disparity vector that minimizes the sum
of squared difference of the magnitudes of the Gabor filtered image pairs. This is done based on the visibility
map L by using the terms δ(L+ 1), δ(L) and δ(L− 1) in our proposed objective function :

dG(x) = argmin
d̂(x)

∑

i

δ(L+ 1)
∣

∣

∣
Gi

1(x− (1 + α)d̂(x)) −Gi
2(x − αd̂(x))
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∣
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∣

∣
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∣

∣
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∣

∣
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∣

∣

∣

2

, (1)

where δ is the unit sample function and G
j
i is the filtered image Ii by the jth Gabor filter. We use 12 Gabor

filters ∗ as in Ref. 14 . Based on the assumption that the maximum displacement between (I1, I2), (I2, I3), and
(I4, I3) is constrained by a value of τx in horizontal and τy in vertical directions, we propose to use two different
types of search windows to solve (1). Referring to Fig. 4 these two search windows correspond to:

• bilateral search: in which Ĵ is enclosed between (I2, I3). The disparity vector is assumed to be a line
passing through a pixel in Ĵ , which at one end searches in a window of size ((1 − α)τx × (1 − α)τy) in I2
and at the other end searches in a window of size (ατx × ατy) in I3.

• unilateral search in which Ĵ is on one side of either (I1, I2) or (I3, I4) image pairs. The disparity vector
originates at a pixel in Ĵ and searches in a window of size (ατx × ατy) at the near image ((I2 or I3)), and
searches in a window of larger size ((1 + α)τx × (1 + α)τy) in the further image ((I1 or I4)).

The size of the search windows in both cases are dependent on the value of τx and τy, in addition to the value
of α.

4. EXPERIMENTAL RESULTS

We tested our proposed method on images of several natural scenes captured with translational camera displace-
ment. Here we present results for 3 datasets: the Flower-Garden and the Lab21 video sequences captured with

∗The Gabor transform is implemented using a set of modulated limited-band Gaussian filters at different tuning
frequencies {π/16, π/8, π/4} and orientations {0◦, 45◦, 90◦, 135◦} as in Ref. 14 .
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Figure 5. Sample view interpolation result obtained using the proposed method: (a), (e), and (g) shows a ground truth
image J from each of the 3 sequences (Flower-Garden, Lab, and Ballroom), respectively. (b), (f), (h) is the result obtained
with the proposed method , and (c)-(d) are close-ups from (a)-(b), respectively.

translational camera motion, and multi-view Ballroom22 video. To test the effectiveness of the proposed method,
we simulated the sparse views by using one frame out of every twelve frames from the Flower-Garden sequence
to produce I1, I2, I3 and I4. An example of these four images is depicted in Fig. 2. The maximum horizontal
disparity among the images is approximately 72 pixels and the maximum vertical disparity is approximately 16
pixels. Therefore, we set τx = 72 and τy = 16. Fig. 5 (a) shows the ground truth image J , (b) is the proposed

method result Ĵ , and (c)-(d) are closeups from (a)-(b) respectively. The figure shows that the proposed method
reconstructs Ĵ with high quality, and this high quality is maintained for the challenging regions around the tree
that are occluded in one of the adjacent views. Table 1 lists the improvements in peak-signal-to-noise ratio ∆
PSNR (in dB) and in the structured similarity index ∆ SSIM23 for the proposed method compared with the
results obtained with: a) interpolation using the Gabor filter without occlusion awareness, which is similar to the
method in Ref. 14, and b) the method in Ref. 15. The table lists the improvement across a range of disparities.
For input images having disparities under 24 pixels, the gain over the method in Ref. 15 is insignificant but for
larger disparities the gain is quite significant. This is due to the fact that the method in Ref. 15 behaves well in
the presence of small disparities between the input images, but as the disparities get larger, the proposed method
performs much better.

We also evaluated the proposed method on the Lab sequence using one out of 16 frames to obtain the four
captured views in our large disparity setting. For the Ballroom sequence, which is used as a test sequence for
multi-view video coding, the available data represents a simultaneous capture of the scene with 8 cameras; we
select a view from each odd numbered camera and evaluate the performance on the even numbered camera
locations that are spanned by a camera on either side. Figure 5 (a), (e), and (g) shows a ground truth image J

from each of the 3 sequences, (b), (f), and (h) are the corresponding estimates (Ĵ) obtained with the proposed
method, and (c)-(d) are close-ups from (a)-(b), respectively. Table 2 summarize the PSNR and the structured
similarity index SSIM23 for the interpolated image Ĵ obtained using the proposed method. The higher PSNR
for the Lab sequence compared to Flower-Garden sequence is due to the high complexity of the latter sequence.
It contains repeated patterns (flowers) and smooth areas (sky). These similar areas would introduce ambiguities
in the disparity estimation and affect the coherence of the disparity field generated by the proposed method.

Figure 6 presents the enhanced visibility map of the proposed method and that of Ince and Konrad15 (even
initialized with Gabor-based disparity estimation of the proposed method). The black color represents L = −1
which means visible in the image pair (I1, I2), the gray color represents L = 0 which means visible in the image
pair (I2, I3), and the white color represents L = 1 which means visible in the image pair (I4, I3). These colors
are overlaid in Fig. 6 on the ground truth image J . Interpolating areas labeled by L = −1 from (I1, I2) in Fig. 6
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Max. Without handling Method

Disparity occlusions as in Ref. 14 in Ref. 15

(pixels) ∆ PSNR (dB) ∆ SSIM ∆ PSNR (dB) ∆ SSIM

Small disparity 24 0.2321 0.0027 0.1 0.001

Large 48 0.3014 0.0246 3.3 0.21

disparity 72 0.5075 0.0310 5.01 0.3

Table 1. ∆ PSNR and ∆ SSIM gain of the proposed method over the methods in Refs. 15 and 14 for the input scene
views (Flower-Garden) from Fig. 2.

Flower-Garden Lab Ballroom
PSNR (dB) 26.8 28.5 27.13

SSIM 0.8532 0.8451 0.8715

Table 2. PSNR and SSIM of the proposed method.

(a) has a major drawback which is that the pixels in this area are extrapolated from far views (I1, I2) which
has much less accuracy than interpolating them from near views (I2, I3) when this is possible. Our proposed
approach largely eliminates this drawback and minimizes the size of such areas as shown in Fig. 6 (b) using
Algorithm 1.

5. CONCLUSION

We proposed a disparity estimation method from multiple views with large disparities. The method has 2 stages:
estimation of an enhanced visibility map to handle occlusions, and estimation of a disparity field from an appro-
priate image pair using the Gabor transform for a coarse estimate that is refined by variational regularization.
The enhanced visibility map guides the interpolation process to correctly select the appropriate image pair for
use in interpolation and our proposed unilateral and bilateral search procedure for Gabor transform based back-
ward disparity estimation tackles both large disparities and occlusions. The results show enhancements, both
visually and quantitatively (PSNR and SSIM), over the method in Ref. 15 that is occlusion aware but does not
accommodate large disparities and over non-occlusion aware Gabor transformation based estimation, which is
similar to the method in Ref. 14.

Future research would involve the case of navigating close or out of the scene. This can be done by applying
our view interpolation technique to get the required view then apply one of the regularized super-resolution
techniques as in Refs. 24 and 25 using the image sequence with the guide of the enhanced visibility map L

to interpolate from a subset of irregular samples from each image rather than interpolating blindly from all
corresponding samples from all images. View interpolation from less structured wide-baseline datasets, where
the cameras are not necessarily displaced along a line, also remains a problem that has received only limited
attention.26
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