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Abstract—To enrich large scale visual analytics applications
enabled by aerial wide area motion imagery (WAMI), we propose
a novel methodology for accurately registering a geo-referenced
vector roadmap to WAMI by using locations of detected vehicles
and determining a parametric transform that aligns these loca-
tions with the network of roads in the roadmap. Specifically, the
problem is formulated in a probabilistic framework, explicitly
allowing for spurious detections that do not correspond to on-
road vehicles. The registration is estimated via the EM algorithm
as the planar homography that minimizes the sum of weighted
squared distances between the homography-mapped detection
locations and the corresponding closest point on the road net-
work, where the weights are estimated posterior probabilities of
detections being on-road vehicles. The weighted distance mini-
mization is efficiently performed using the distance transform
with the Levenberg Marquardt (LM) nonlinear least-squares
minimization procedure and the fraction of spurious detections
is estimated within the EM framework. The proposed method
effectively sidesteps the challenges of feature correspondence
estimation, applies directly to different imaging modalities, is
robust to spurious detections, and is also more appropriate than
feature matching for a planar homography. Results over three
WAMI datasets captured by both visual and infra-red sensors
indicate the effectiveness of the proposed methodology: both
visual comparison and numerical metrics for the registration
accuracy are significantly better for the proposed method as
compared with existing alternatives.

Index Terms—WAMI, roadmap registration, expectation max-
imization, geo-registration.

I. INTRODUCTION

RECENT technological advances have made available a

number of airborne platforms for capturing imagery [2]–

[4]. One of the specific areas of emerging interest for applica-

tions is Wide Area Motion Imagery (WAMI) where images at

temporal rates of 1–2 frames per-second can be captured for

relatively large areas that span substantial parts of a city while
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maintaining adequate spatial detail to resolve individual vehi-

cles [5]. WAMI platforms are becoming increasingly prevalent

and the imagery they generate are also feeding a corresponding

boom in large scale visual data analytics. The effectiveness of

such analytics can be enhanced by combining the WAMI with

alternative sources of rich geo-spatial information such as road

maps.

In this paper, we propose a novel iterative framework for

registering a vector road network to a WAMI aerial image

frame using vehicle detections. Our method is based on the

intuitive synergy between the problems of registering of a

(vector) roadmap to an image frame and the detection of on-

road vehicles in an image. The detection of on-road vehicles in

an image allows us to register the image to a vector road map

by aligning the detection locations with the roads. Conversely,

a roadmap registered with the WAMI image improves the

detection of on-road vehicles by allowing off-road detections

to be filtered out. To exploit this intuition in an algorithmic

framework, we formulate our problem as the minimization of

a joint probabilistic objective function that combines (a) the

classification of vehicle detections as true on-road vehicles vs.

other detections and (b) a penalty for misalignment between

the putative on-road vehicle detections and the vector roadmap

under a parametric transformation. An explicit algorithm for

registration is then developed in an Expectation Maximiza-

tion (EM) framework that alternates between estimation of

posterior probabilities that individual detections of vehicles

correspond to on-road vehicles and the minimization of the

weighted sum of minimum squared Euclidean distances from

detection locations to the corresponding nearest points on

the network of roads, where the weights are the estimated

posterior probabilities that the detections correspond to on-

road vehicles. Efficient computation of the latter metric is

accomplished by using the associated distance transform [6],

[7]. The parameter that estimates the fraction of detections

that correspond to on-road vehicles is itself estimated in the

EM framework, providing, as we demonstrate in our results,

significant robustness to the quality of the initial detections of

vehicle locations.

The problem of registering a captured image to a roadmap,

or more generally to geo-referenced coordinates, has been

addressed in prior work, although without leveraging vehicular

detections. WAMI frames are usually captured from platforms

equipped with Global Positioning System (GPS) and Inertial

Navigation System (INS) which provide location and ori-

entation information that are usually stored with the aerial
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image as meta-data. This meta-data can be used to align

the image with a road network extracted from an external

Geographic Information System (GIS) source. However, the

accuracy of the meta-data is limited and only provides an

approximate registration. For “pixel-accurate” registration that

can be exploited in computer vision and image analytics tasks,

image-based registration methods are therefore necessary.

Registering an aerial image directly with a geo-referenced

vector road map is a challenging task because of the dif-

ferences in the nature of the data in the two formats: in

one case the data consists of image pixel values whereas in

the other it is described as lines/curves connecting a series

of points. Because of the inherent differences in the data

formats, one cannot readily define low/mid-level features that

are invariant to the representations that can be used for finding

corresponding points with conventional feature detectors, such

as SIFT (Scale-Invariant Feature Transform) [8]. For static

imagery, methods for aligning vector road maps to aerial

imagery have been extensively investigated in the context

of conflation, which refers to a process that fuses spatial

representation from multiple data sources to obtain a new su-

perior representation. In [9]–[11], road vector data are aligned

with an aerial image by matching the road intersection points

in both representations. The crucial element in these prior

works is the detection of road intersections from the aerial

image. With the availability of hyper-spectral aerial imagery,

spectral properties and contextual analysis are used in [9] to

detect these road intersections in the aerial scene. However,

road segmentation is not robust, specially when roads in

natural scenes are obscured by shadows from trees and nearby

buildings. In [10], a Bayes classifier used to classify pixels as

on-road or off-road, then a localized template matching used

to detect the road intersections. To get a reasonable accuracy

with the Bayes classifier, a large number of manually labeled

training pixels is required for each dataset. In [11], corner

detection is used to detect the road intersections, which is not

reliable specially in high resolution aerial images that contain

enough wide roads where the simple corner detection fails.

Work on registration of (non-static) WAMI frames to geo-

referenced vector road maps has received comparatively less

attention, even though the capability for performing such

registration in a computationally efficient manner is crucial

for a number of real/near real-time analysis applications for

WAMI, such as large scale vehicle tracking [12]. Some of the

prior work on this problem overcomes the problem posed by

fundamentally different modalities of the WAMI and vector

datasets by using an auxiliary geo-referenced image that is

already aligned with the vector road map. The aerial image

frames are then aligned to the auxiliary geo-referenced image

by using conventional image feature matching methods. For

example, in [13], for the purpose of vehicular tracking, the

aerial frame is geo-registered with a geo-reference image and

then a GIS database is used for road network extraction. This

road network is used to regularize the matching of the current

vehicle detections to the previous existing vehicular tracks.

In an alternative approach that relies on 3D geometry [14],

SIFT is used to detect correspondences between the ground

features from a small footprint aerial video frame and geo-

referenced image. This geo-registration helps to estimate the

camera pose and depth map for each frame, and the depth

map is used to segment the scene into building, foliage,

and roads using a multi-cue segmentation framework. The

process is computationally intensive and the use of the aux-

iliary geo-referenced image is still plagued by problems with

identification of corresponding feature points because of the

illumination changes, different capturing times, severe view

point change in aerial imagery, and occlusion. State of the

art feature point detectors and descriptors such as SIFT [8],

and SURF (Speeded Up Robust Features) [15], often find

many spurious matches that cause robust estimators such as

RANSAC [16] to fail when estimating a homography. Also,

these methods cannot work directly if the aerial video frames

have a different modality (night-time infra-red for example)

than the geo-referenced image. Last, but not least, a single

homography represents the relation between two images when

the scene is close to planar [17]. In WAMI, aerial video frames

usually taken from oblique camera array to cover large ground

area from moderate height and the scene usually contains non

ground objects such as building, trees, and foliage. Thus the

planar assumption does not necessarily hold across the entire

imagery, although it is not unreasonable for the road network.

Compared with the existing approaches for registration of

aerial images to a roadmap, our proposed methodology has

several advantages:

• By posing the registration as the problem of aligning

vehicle detections with the vector road network, we

implicitly transfer both the aerial image and the geo-

referenced one to a representation that can be easily

matched in a computationally efficient manner using a

distance transform [6], [7].

• The proposed methodology applies directly for different

modalities of the captured imagery (night-time infra-red

for example), where cross-modality image feature match-

ing poses a particularly difficult challenge for image

feature matching based methods.

• The use of a single homography is more appropriate as

a registration transform in our framework compared with

alternatives based on feature matching. This is because

in WAMI, aerial video frames are usually captured from

an oblique viewpoint to cover large ground area from

moderate height and the scene usually contains non

ground objects such as buildings, trees, and foliage. Thus

a planar assumption that yields the homography as the

relation between image coordinates in two images [17]

does not necessarily hold across the entire imagery1,

although it is not unreasonable for the road network.

• The incorporation of classifications of vehicle detections

as on-road vehicles or others and the EM algorithm for

estimation of the classification parameters renders the

algorithm robust to significant variations in the quality

of the original vehicular detections.

Preliminary results from the research leading to this paper

were presented in [1]. Compared with [1] where an ad

1In particular, feature points located at the base and near the top of multi-
storey buildings egregiously violate the planar assumption.
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hoc algorithm was proposed, the present paper uses a more

powerful EM framework that better accommodates inevitable

“spurious” detections that do not correspond to on-road vehi-

cles and provides significant robustness to the quality of these

individual detections. We note that the framework we propose

assumes that the WAMI scene contains a forked road network

with vehicles, which is reasonable assumption for urban areas,

and also for WAMI that covers a city scale ground area within

each frame.

This paper is organized as follows. Section II presents our

problem formulation and gives an overview of our proposed

algorithm. In Section III, we describe our algorithm in greater

depth. Results on aerial images with different modalities and

a comparison against alternative methods are presented in

Section IV. Section V summarizes our concluding remarks.

II. PROBLEM FORMULATION AND ALGORITHM OVERVIEW

A pictorial representation of our problem is shown in Fig. 1.

We are provided with a vector map Rg that identifies the

network of roads in a geographic area, where each road is

represented as a sequence of spatial locations defined on a 2D

Cartesian coordinate system (χ, ζ) derived from a geographi-

cal coordinate system (longitude and latitude). Specifically, the

kth road rk is represented as a sequence of spatial locations

(rχk
i ,

rζki ), i = 1, 2, . . . in the (χ, ζ) coordinate system. A

WAMI frame I(x, y) is obtained by capturing a portion of the

same geographic area by an aerial WAMI sensor, where (x, y)
are the pixel locations along the native Cartesian coordinates

for the image sensor. Our goal is to estimate the parameter

vector β of a geometric transformation Tβ : (x, y) → (χ, ζ),
that aligns the WAMI frame I with the road network Rg . The

estimated optimal value of the parameters β should maximize

a measure quantifying the similarity between the aligned

WAMI frame and the road network, however, the definition

of an appropriate similarity measure is challenging due to the

differences in the nature of the data formats between the raster

WAMI frame I , and the vector road network Rg .

In this paper, we propose a probabilistic framework that

handle the challenges associated with aligning raster to vector

data formats effectively by detecting the locations of the on-

road vehicles in the WAMI frame I and aligning these detected

locations with the network of roads in the vector road map

Rg . However, accurate detection of the on-road vehicles is

required to estimate an accurate road network alignment, and

at the same time, accurate aligned road network can improve

the accuracy of the detected on-road vehicles based on the

proximity of detections to the aligned road network. As shown

in Fig. 2, our proposed probabilistic framework exploits this

synergy, and iteratively estimates the alignment of the detected

on-road vehicles in the WAMI frame with the vector road

network, where this estimated alignment in turn helps to

estimate the probability of each detection corresponding to

an on-road vehicle. The estimated probabilities are used to

weight each detected vehicle appropriately for the alignment

estimation process in the next iteration.

Formally, consider for a WAMI frame I , we have available

Nv detected vehicles, with the location of the j th detected
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Fig. 1: Problem formulation : Given a vector road map Rg for a

geographical area defined on a 2D Cartesian coordinate system

(χ, ζ), and a WAMI frame I(x, y) captured for the same area.

Our goal is to estimate the geometric transformation parameter

β, that aligns the WAMI frame I with the road network Rg .

vehicle represented in the WAMI frame coordinate system by

(xj , yj). For each detected vehicle, we define dj as the min-

imum squared Euclidean distance (MSED) from its mapped

location under the geometric transform Tβ to the road network

Rg. Specifically,

dj(β) = min
i,k

D
(

(rχk
i ,

rζki ), Tβ(xj , yj)
)

, (1)

where D(a,b) ≡ ‖a−b‖22 is the squared Euclidean distance,

and the minimization on the right hand side finds the point

on the road network that is closest to the alignment transform

mapped detection location. To account for detections that are

spurious, i.e. do not correspond to on-road vehicles, we asso-

ciate with each vehicle detection a latent variable zj ∈ {0, 1}
that indicates whether the detected vehicle correspond to an

on-road vehicle (zj = 1) or not (zj = 0). We model the

distribution of this latent variable as a Bernoulli distribution

parametrized by an unknown parameter γ = p(zj = 1), while

we refer to as the detection reliability parameter. Furthermore,

to account for the fact that on-road detections must be in

close proximity to the (centerline specified in the vector

representation of the) road, the conditional distribution of the

MSED dj , when zj = 1, is modeled as an exponential distribu-

tion [18] with unknown parameter λ = 1/E [dj |zj = 1], where

E[.] denote the expectation. When zj = 0, the conditional

distribution of dj is modeled as uniform over the extent of

the WAMI frame, analogous to the approach adopted in sev-

eral other robust estimation problems [19]–[21]. We estimate

the unknown parameters θ = {β, λ, γ} by maximizing the

likelihood function modeled as

p(d|θ) =
Nv
∏

j=1

p(dj |θ), (2)

where d = [d1, . . . , dNv
]T ∈ R

Nv×1 is the vector of all
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Fig. 2: Schematic of the proposed iterative algorithm showing main steps. The shaded circular dots depict detected vehicle

locations, with shading indicating the estimated posterior probability that the dot corresponds to an on-road vehicle. Darker

shades represent higher probability values.

MSEDs {dj}Nv

j=1, and

p(dj |θ) =
∑

zj∈{0,1}

p(dj , zj|θ)

=p(zj = 1)p(dj |θ, zj = 1)+

p(zj = 0)p(dj |θ, zj = 0)

=γλe−λdj +
(1 − γ)

M2
, (3)

where M =
√
W 2 +H2, with W and H as the width and

height, respectively, of the WAMI frame I in pixels.

Our formulation of the problem in terms of the latent

variables zj, j = 1, 2, . . . , Nv allows us to elegantly obtain

the maximum likelihood estimate of the parameters θ by

employing the Expectation Maximization (EM) algorithm [22],

details of which are outlined next.

The EM algorithm alternates between two steps, which are

the Expectation (E) and Maximization (M) steps. In the (E)

step, we find the posterior distribution of the latent variables

zj evaluated using the current estimate for the parameters θt.

That posterior distribution is used to find the expectation of the

complete-data log likelihood, which is maximized in the (M)

step to compute a new estimate of the parameters θt+1. The

expectation of the complete-data log likelihood is obtained as

shown in Appendix A (up to a constant additive factor) as2

Q(θ, θt) =

Nv
∑

j=1

pj [ln(γ) + ln(λ) − λdj ] +

(1− pj) [ln (1− γ)] , (4)

where pj = p(zj = 1|dj , θt) is the posterior probability that

the j th detection corresponds to an on-road vehicle, and can

be estimated using Bayes rule as

pj =
p(dj |zj = 1, θt)p(zj = 1|θt)

p(dj |θt)

=
γλe−λdj

γλe−λdj + (1−γ)
M2

. (5)

Using the estimated pj , we get the new estimate of the

parameters by maximizing (4), i.e. θ
t+1 = argmax

θ
Q(θ, θt).

From the first order optimality conditions from calculus of

2We adopt notation from [23].

variations, the optimal parameters for maximizing (4) are

obtained as

γ∗ =

Nv
∑

j=1

pj

Nv

, (6)

and

λ∗ =

Nv
∑

j=1

pj

Nv
∑

j=1

pjdj

. (7)

The optimal parameter β∗ that maximizes (4), equivalently

estimated by minimizing the objective function

f(β) =

Nv
∑

j=1

pjdj(β), (8)

with respect to β. This means that the optimal transforma-

tion parameter vector β
∗

should map the detected vehicles’

locations to be in a close proximity with the road network,

and is estimated by minimizing the weighted sum of the

squared Euclidean distances between each vehicle detection

and the corresponding nearest point on the road network,

where the weights corresponds to the posterior probability

that a detection correspond to an on-road vehicle. This metric

corresponds to a probabilistic formulation of the chamfer

distance [24] with the minor modification of that we use

squared distance instead of distance magnitude3, and applies

nicely to our problem as it measures how close the vehicle

detections are to the road network. We discuss in details the

numerical minimization of (8) in Section III-B.

III. ALGORITHM DETAILS

A. Vehicle detection

As discussed previously, the inputs to our algorithm are

vehicle detections in a WAMI frame. Several techniques

have been reported in literature for detection of vehicles in

aerial images [25]–[30]. One commonly used technique is

the compensated frame difference [31], which we adopt here

and describe next. We first estimate the geometric transform

3This modification ensures differentiability which we will exploit in Sec-
tion III-B.
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Fig. 3: Compensated frame difference for successive WAMI

images illustrating the two blobs per vehicle that result from

the low frame rate in WAMI.

that aligns the WAMI frame with its predecessor I0 by

identifying locations of corresponding feature points in these

two images and then estimating a homography [17] that

maps the coordinates of feature points in I0 to corresponding

ones in I . Details of this process are sketched in Section

S.III in the supplementary material. The estimated transform

specifies a corresponding interpolation of I0 that provides an

estimate Ĩ0 of the image that would be captured from the

same viewpoint at I but at the time instant when I0 was

captured. Moving vehicles in the scene (and other moving

objects as well as deviations from the homography model)

cause significant differences between I and I0 at the spatial

locations of these objects (at the time instants for either frame

but specified in the spatial coordinates of the frame I). We

therefore estimate tentative vehicle regions as a binary image

Id(x, y) corresponding to regions of significant deviation,

computed as

Id(x, y) =

{

1, if |I(x, y)− Ĩ0(x, y)| ≥ τ

0, otherwise
, (9)

where τ is a suitably determined vehicle detection threshold

parameter that trades-off the sensitivity vs. precision of the

detections in the presence of inevitable noise and other sources

of variations in the images. Our algorithm is robust to the

choice of τ over a wide range because the EM framework we

use also estimates the fraction γ of detections that correspond

to on-road vehicles (demonstrated in Section IV).

Although other techniques for vehicle detection can be used

with our overall algorithm4, we adopt the compensated frame

difference for two reasons. First, as illustrated in the example

shown in Fig. 3, due to the low frame rate in WAMI, each

moving vehicle results in two blobs in Id at the vehicle’s

locations5 at the time instants when the two frames were

captured. One of these blobs can be eliminated using the

three frame difference [13]. However, in our case, because

both blobs reside on the road network, we use both to our

advantage. In other words, Id contains blobs at locations of

the vehicles’ in the current frame and in the (compensated)

past frame. The number of such blobs approximates two times

the number of vehicles in the scene and using both locations

helps improve the accuracy of the subsequent alignment be-

tween these detections and the road network as required by

4Results for another vehicle detection technique are included in Section
S.VII in the supplementary material.

5The locations of moving vehicles are presumed to correspond to the
centroids of the blobs in I

d.

our algorithm. Second, the compensated frame difference is

well suited for online real time applications. Some of the

other vehicle detection techniques require learning vehicle

models offline [25]–[28] or require complex modeling of the

background [29], [30] which is estimated from several frames

implying additional delay before the detected vehicle locations

are obtained.

B. Aligning vehicle detections to the road network

Vector road maps typically provide the locations of the

road segments in the spherical geographically-referenced co-

ordinate system of latitude and longitude, where the earth is

approximated as a sphere. We use the azimuthal orthographic

map projection (AOMP) [32] to transform the road network

from the geographical coordinate system to our 2D Cartesian

map coordinate system (χ, ζ), which is shown in the bottom

right corner of Fig. 1. A location on the surface of the earth

sphere is chosen as a central point for the AOMP and the

plane tangential to the sphere at the central point defines the

plane for the map, with (χ, ζ) as orthogonal coordinates for

the plane. The points specified by latitude and longitude on

the earth sphere are projected orthogonally, i.e. along lines

perpendicular to the plane, from the sphere to the tangent

plane to obtain corresponding locations in the (χ, ζ) coordinate

system. We select the map central point to be approximately

the center of the geographical area that is being captured by

our WAMI sensor; this approximately minimizes the distortion

of distances between the points on the sphere and in the planar

representation. The AOMP can be viewed as a virtual affine

camera with the camera center located at infinity and the image

plane coincident with the AOMP tangent plane (shown in Fig

1). The same scene is projected to the WAMI 2D Cartesian

image coordinates (x, y) using the projective camera that is

used to capture the scene. Assuming a planar scene, we can

relate the (χ, ζ), and the (x, y) coordinate systems through a

homography [17]. Thus, the objective function in (8) can be

specifically formulated as

f(β) =

Nv
∑

j=1

pj min
i,k

D
(

pr
i,k,Hβp

v
j

)

, (10)

where Hβ is a homography defined by the parameter6 β =
[β1, . . . , β8]

T , and pv
j = [xj , yj , 1]

T , pr
i,k = [rχk

i ,
rζki , 1]

T are

the homogeneous coordinates of the j th vehicle detection in

the WAMI frame I and the ith location in the kth road in Rg,

respectively. To align the vehicle detection locations with the

road network Rg, we seek the optimal homography parameter

vector β∗ that minimizes the objective function f(β).
For performing the minimization in (10), we adopt the

Levenberg-Marquardt (LM) [33] non-linear least squares it-

erative optimization algorithm. In each iteration, the LM

algorithm estimates the parameter update vector δ ∈ R
8×1

such that the value of the objective function is reduced when

moving from β to β + δ, with the parameters converging

to a minima of the objective function with the progression

6Appendix B gives the detailed expression for the homography transforma-
tion in terms of the parameter vector β
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of iterations. The parameter update vector δ is obtained by

solving the linear system of equations

(A+ ηI)δ = −b, (11)

where η is a non-negative damping parameter automatically

adjusted at each step [33] to determine the step size, I is

the identity matrix, and b ∈ R
8×1 is the gradient of f(β),

computed as

b =
∂f

∂β
= −2

Nv
∑

j=1

pjJ
T
j rj , (12)

with rj =

(

min
i,k

(pr
i,k −Hβp

v
j )

)

defined as the residual

vector; Jj ∈ R
3×8 is the Jacobian matrix computed at the

transformed point Hβp
v
j , computed as

Jj =
∂Hβp

v
j

∂β
=

[

∂Hβp
v
j

∂β1
, . . . ,

∂Hβp
v
j

∂β8

]

; (13)

and A ∈ R
8×8 is the approximation of the Hessian matrix,

obtained as

A =

Nv
∑

j=1

JT
j Jj . (14)

Explicit expressions for the required derivatives for the pro-

ceeding steps are provided in Appendix B. The objective func-

tion in (10) and the required derivatives for the LM algorithm

can be efficiently calculated using a distance transform [6],

[7]. To compute the residual vector rj in (12), we augment

the distance transform computation to additionally provide the

coordinates (rχk
i ,

rζki ) of the location in Rg that achieves the

minimum for the terms in (10).

Because the LM algorithm converges to a local minima, it

is important to initialize the algorithm with a good starting

point. The approximate geographical coordinates of the four

corners of the WAMI frame are included in the meta-data, from

which corresponding locations in the coordinate system (χ, ζ)
for the geo-referenced road map Rg can be calculated. From

the correspondences of the locations of these non-collinear

corner points between the (x, y) and the (χ, ζ) coordinates, we

employ the direct linear transformation algorithm (DLT) [17]

to estimate the initial solution β0. Starting from this initial-

ization, at iteration n, the homography parameter vector is

updated using the LM iteration βn = βn−1 + δ, and the

process is continued until convergence7. The LM optimization

is integrated into the overall EM iterations described in Sec-

tion II. The resulting overall algorithm is shown in Algorithm

1.

As noted in the introduction, our formulation has several

advantageous features. First, by exploiting the vehicle de-

tections in aerial WAMI frames, we implicitly transfer the

WAMI image to a representation that can be efficiently aligned

with the vector road network using the distance transform.

Second, our formulation does not depend on the specific type

of imaging sensor used to capture the WAMI frame and can be

7An animated GIF that shows a visual representative example of the LM
iteration process is provided in the supplementary material included with this
paper.

Algorithm 1: Proposed algorithm for registering a WAMI

frame to a vector road map

Input : Roadmap Rg, WAMI frame I , and immediately

proceeding frame I0
Output: Parameters for registration and detection

reliability θ∗ = {β∗, γ∗, λ∗}
Vehicle detections:

1 Estimate homography that aligns I0 to I , and compute

putative vehicle locations in I using (9);

Initialization:

2 Estimate initial value β0 of registration parameter vector

using meta-data for frame I;

3 t← 0; θt ← {βt, λt, γt};
4 repeat /*EM iterations*/

E step:

5 Compute posterior probabilities of detection

reliability {pj}Nv

j=1 using (5) with θ
t
;

M step:

6 n← 0; β̃
n ← βt ;

7 repeat /*LM iterations*/

8 Estimate LM update δ for registration parameter

vector using (11);

9 n← n+ 1; β̃
n ← β̃

n−1
+ δ;

10 until (‖δ‖2 ≤ ǫ) or (n > max iterations);

11 β∗ ← β̃
n

; Compute γ∗ using (6); Compute λ∗ using

(7);

Update:

12 t← t+ 1; θt def
= {βt, λt, γt} ← {β∗, λ∗, γ∗};

13 until (‖βt − βt−1‖2 ≤ ǫ1) and (|λt − λt−1| ≤ ǫ2) and

(|γt − γt−1| ≤ ǫ3) //Convergence of parameters;

14 Output current parameter estimate θt as θ∗;

readily applied to different image modalities, for example for

night-time infra-red (IR) imagery. Third, the use of a single

homography is more appropriate as a registration transform in

our framework compared with alternatives based on feature

matching, because planar assumption for the road network

is very reasonable, whereas the planar assumption does not

necessarily hold across the entire imagery. Finally, the use

of the EM algorithm and introduction of the latent variables

{zj} in our formulation make the method robust to spurious

detections.

IV. RESULTS

We evaluated our algorithm on three WAMI datasets cap-

tured over different geo-graphical areas, and containing images

that are sensed in either the visible spectral bands (red, green,

blue) or mid-wave infra red-band (single band). Specifically

the datasets are: (1) the CORVUS(V) visible band dataset,

which was recorded using the CorvusEye 1500 Wide-Area

Airborne System [5] for the Rochester, NY region, (2) the

CORVUS(IR) mid-wave infra-red band dataset recorded at

night with the same system for the Lakeland, FL region, (3) the

Wright-Patterson Air Force Base (WPAFB) 2009 visible band

dataset [34], which was recorded over the WPAFB, OH region.
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The WAMI frames provided by the three datasets are stored

in the NITF 2.1 format [35], that contains both the imagery

itself and meta-data information that includes the approximate

geographical coordinates for the four corners associated with

each aerial WAMI frame. Additional details regarding the

specific geo-graphical coordinates for the captured regions and

the encoding format for the WAMI datasets are provided in

the supplementary material in Sections S.I and S.II. For the

vector road map, we used OpenStreetMap (OSM) [36], which

is a collaborative project that uses free data sources, such as

Volunteered Geographic Information (VGI) [37], to create a

free editable map of the world. In our experiments, the EM

algorithm uses the initial parameter values λ0 = 10−5 and

γ0 = 0.5. These values are chosen so that the initial posterior

probabilities pj in (5) fall-off relatively slowly with increasing

values of the distance dj , which models the intuition that the

initial alignment provides little discrimination between on-road

vehicles and other detections. The threshold parameter in (9)

is set empirically as τ = 0.15 (for images on a 0 − 1 scale)

and an initial value of η = 0.01 is used for the LM algorithm

in (11).

We compare our proposed method with three alternative

methods which we will refer to as “Meta-data Based Align-

ment (MBA)”, “SIFT matching with auxiliary geo-referenced

image (SBA)”, and the method in [1], which is a preliminary

version of the method presented here. The MBA method

simply uses the aerial WAMI frame meta-data to estimate

the alignment between that frame and the road network

Rg from the correspondences of the locations of the corner

points in the image and the map coordinates using the DLT

algorithm [17] as discussed previously. The alignment ob-

tained from the MBA method approximately ortho-rectifies the

WAMI frame, since the road network Rg is already defined on

the orthographic coordinate system (χ, ζ). The SBA method

refines the estimated alignment from the MBA method by

matching SIFT features between the approximately ortho-

rectified WAMI frame obtained using the MBA method and

an auxiliary geo-referenced image taken from Google Maps.

To improve SIFT based matching, for each SIFT feature point

in one image, we search for a prospective matched feature

point in the other image only within a circle with radius r
that corresponds to the uncertainty of the estimated alignment

using the MBA method. We set the radius r by determining

the maximum spatial error for the alignment provided by the

MBA method. After obtaining these putative correspondences,

we use RANSAC [16] to filter out the incorrect matches and to

estimate the final transformation between the geo-referenced

image and the aerial WAMI frame.

Results for the proposed method and for the MBA and

SBA8 methods are presented in Fig. 7 in an image format that

facilitates visual evaluation of the methods. In the images,

the estimated alignment of the road network is visualized9

by superimposing the estimated road locations as transparent

8All results of SBA method, are reported using the radius r that gives the
best result.

9We present our visual results in the coordinate system of the WAMI frame
by applying the inverse of the estimated transformation to the vector road
network

highlighted tracks overlaid on the WAMI frame with different

color highlights for the different methods. Additional results in

the same visual format are presented in Fig. S.1, Fig. S.2, and

Fig. S.3 in the supplementary material. From these images,

we can see that the proposed method offers a significant

enhancement over MBA which depends only on the meta-

data to get an aligned road network and over SBA which uses

SIFT and auxiliary geo-referenced Google map image. The

MBA method has significant errors because of the inaccuracy

of the meta-data parameters due to the limited accuracy of on-

board devices for recording location and orientation. The SBA

method does not improve significantly because of spurious

correspondences found by the SIFT matching between the

aerial image and the Google map image. Even though these

images are for the same region and already approximately geo-

registered, they have significant differences due to severe view

point change, different illumination, and different capturing

times. Moreover, when applied to the infra-red frames, the

SBA method yields a less accurate result even compared with

the MBA method because SIFT is not invariant to the different

modalities between the night-time IR WAMI frames and the

visible-bands Google map images. This mismatch in sensing

modalities, causes most matches to be spurious, resulting

in a poor estimated alignment. Our proposed method does

not encounter the challenges associated with aligning images

captured under these different conditions because it aligns

vehicle detections to the road network by minimizing the

distances between them, and thus provides accurate alignments

for both visual and infra-red modalities.

To provide quantitative comparison between the methods,

we label the ground truth road network for few frames for dif-

ferent test areas10 by manually identifying the road segments

within each frame. For each identified road segment, we store

its start, end points, and its road width in meters which are

obtained from measuring the actual road width in Google Map.

Our quantitative analysis uses three metrics: chamfer distance,

relative positional accuracy, and precision-recall.

The chamfer distance is computed in pixel units as the

mean value of the Euclidean distances between each point

in the estimated aligned road network and its closest point in

the ground truth road network. Table I shows the chamfer

distance between the ground truth road network and the

aligned road network generated from our proposed method,

the MBA method, the SBA method, and the preliminary

version of our work presented in [1]. In our chamfer distance

computation, we represent the ground truth roads by the roads’

actual widths, while the roads in the aligned road network

are represented by its center line. Table I highlights three

important points. First, it reinforce the conclusions seen from

the visual images. The proposed method has a much lower

value for the chamfer distance highlighting the fact that the

proposed method offers a significant improvement over both

the MBA and SBA methods for both visual and infra-red

frames. Second, compared to the preliminary version of our

work presented in [1], the more complete framework that we

10We generate the ground truth for few test areas in each dataset because
it is very tedious to manually extract roads in WAMI image.
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present here provides better accuracy than [1], as it takes into

consideration the reliability of the vehicle detector and weights

each detected vehicle appropriately before minimizing the

distance between the detected vehicles and the road network.

Finally, the SBA method provides little enhancement over the

MBA method for visual frames, and performs much worse

than the MBA method in the case of infra-red frames, which

indicates the challenges associated with SIFT as a feature

matching technique when dealing with these different imaging

conditions.

Dataset Test area MBA SBA
method in Proposed

[1] method

CORVUS
(V)

Area 1 28.22 17.1 6.36 3.95

Area 2 122.28 83.09 9.30 2.07
Area 3 36.95 26.49 8.69 3.45

Area 4 87.35 87.29 6.68 5.21

CORVUS
(IR)

Area 5 450.19 462.76 3.15 2.13

Area 6 104.28 387.84 4.25 2.14

Area 7 179.13 266.85 5.12 3.11
Area 8 81.38 116.37 17.94 11.34

WPAFB

Area 9 14.19 11.87 9.04 3.15

Area 10 16.03 14.23 6.15 4.12

Area 11 13.09 10.84 8.28 3.36
Area 12 13.90 10.18 8.86 4.43

TABLE I: Chamfer distance (in pixels) between the ground

truth road network and the road network generated using the

MBA method, the SBA method, the preliminary version of our

work presented in [1], and our proposed method. The test areas

for the datasets are specified in Table S.I in the supplementary

material.

The second metric which is the relative positional accuracy,

measures the fraction of aligned road pixels that are within a

certain threshold distance from the ground truth roads’ center

line. This threshold distance is set as a factor κ of each road’s

width from the ground truth road as shown in Fig. 4 (a) for

κ = 0.5. We vary the factor κ and plot the corresponding

relative positional accuracy for Area 1 and Area 2 in Fig. 5

(a) and (b), respectively, for our proposed method, the MBA

method, the SBA method, and the method in [1]. Our method

provides the largest area under the curve (AUC) for the relative

positional accuracy plot compared to the other methods, which

highlights the improvement of the road alignment accuracy of

our proposed method compared to the other methods.

Finally, we present the precision-recall performance for the

methods compared. Figure 4 (b) defines how we estimate the

true positives (TP), the false positives (FP), and the false

negatives (FN), which are used to compute precision and

recall. For our precision-recall computation, we represent the

ground truth roads using their actual widths and represent

each estimated aligned road by its center line. Then we

progressively increase the width of the estimated aligned roads

using the morphological dilation operation and record both

precision and recall as the dilation amount is varied. Precision-

recall plot for Test Area 1 is shown in Fig. 5 (c). Once again,

the improvement offered by the proposed method over the

other methods is apparent from the plot.

Both the preliminary version of our work presented in [1],

and our proposed method in this paper rely on detected vehi-

cles to obtain the aligned road network, and the accuracy of

FP

TP

(b)(a)

FN

Ground truth road

Estimated road

� = 0:5

Fig. 4: Illustration showing the computation of the relative

positional accuracy and the precision-recall quantitative mea-

sures. (a) shows an example of a threshold distance from the

ground truth roads’ center line with a width κ = 0.5 of the

actual road width. (b) defines the true positive (TP), false

positive (FP), and false negative (FN) regions used to calculate

precision and recall.

the alignment depends on the reliability of the vehicle detector.

As described in Section III-A, we adopt the compensated

frame difference technique with a threshold parameter τ to

detect tentative locations for vehicles. In order to compare

the robustness of our proposed method in this paper with

its preliminary version presented in [1], we vary the vehicle

detection threshold parameter τ and compute the chamfer

distance between the ground truth road network and the road

network obtained from each method. A plot of the computed

chamfer distance against τ is shown in Fig. 6. Compared with

the method in [1], our proposed method provides an accurate

aligned road network across the wide range of different vehicle

detection thresholds compared with the method in [1]. This

robustness of the proposed method arises specifically from

the objective function formulation of (8) where the distance

penalty to be minimized for each detected vehicle is weighted

by the estimated posterior that it is an on-road vehicle,

which minimizes the impact of spuriously detected vehicle

on the estimated alignment. In particular, this highlights the

advantage of the EM framework we introduce in this paper.

As already noted in the introduction, our methodology relies

on having a forked network of roads in the WAMI scene

with an adequate number of moving vehicles. These require-

ments are usually met over the relatively large geographic

areas covered by WAMI imagery, particularly for applications

involving traffic analysis in urban WAMI scenes. To assess

the impact of the number of vehicles on the accuracy of

registration, we also performed a semi-synthetic experiment in

which we compared the registration accuracy as a function of

the number of vehicle detections, where the number of vehicle

detections was reduced by random subsampling of our initial

set of detections used for the results presented in Fig. 7 (a).

The results summarized in the supplementary data indicate

that the accuracy of the registration is maintained even when

the number of detections is a relatively small fraction of the

total detections in our original experiments. The results in Fig.

S.4 show that there is minimal degradation in the accuracy of

the registration as the number of detections is subsampled to

include as few as 20% of the original detections, although
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Fig. 5: The relative positional accuracy and precision-recall quantitative metrics for the road network generated using the MBA

method, the SBA method, the preliminary version of our work presented in [1], and our proposed method here. The relative

positional accuracy for test areas 1 and 2 are shown in (a), (b), respectively, while the precision-recall plot for test area 1 is

shown in (c).

when the number of detections is further reduced to 15%, the

registration error increases rapidly. While further exploration

that also examines the dependence on the distribution of

vehicles is of interest, it requires a significant number of

additional WAMI datasets to meaningfully represent practical

situations and is beyond the scope of the present work.

In some applications, accurate geo-registration is desired

for an entire sequence of WAMI frames and not just for a

single frame. In these situations, it is beneficial to decompose

the alignment task into two subtasks: Alignment of occasional

“key” frames can be obtained using the methodology proposed

in this paper and the alignment of remaining frames can be

obtained by estimating the geometric transforms for registering

sequential frames from one key frame to the next. The latter

task is readily accomplished by using conventional feature

matching based estimation of a global registration homography

between successive frames. SIFT and SURF feature matching

works quite well in this scenario because the difference in

viewpoint and illumination between successive frames is quite

small. Note that the process of estimation of global frame-

to-frame motion as a homography is already a part of the

method we use in this paper for detecting vehicles and in our

recent work [12], a similar decomposition has been effectively

incorporated into the problem formulation for tracking.

V. CONCLUSION

The EM framework proposed in this paper offers a novel

methodology for accurately registering vector road maps to

wide area motion imagery (WAMI) by exploiting the locations

of on-road vehicles detected in the WAMI frame. Compared

with alternative approaches, the framework has the advantages

that it eliminates the need for feature matching, is applica-

ble across different imaging modalities (e.g. visible/IR), is

better matched with the use of a planar homography as the

registration transform, and is robust to spurious detections

through the estimation of a detection reliability parameter

within the EM iterations. Results obtained for test datasets

captured using both visual and infra-red sensors, show the

effectiveness of the proposed methodology. Both visually
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Fig. 6: Chamfer distance between the ground truth road

network and the road network for the method in [1] and for

the proposed method as a function of different values of the

vehicle detection threshold parameter τ .

and in terms of numerical metrics for alignment accuracy,

the proposed method offers a significant improvement over

available alternatives.

APPENDIX A

The complete data likelihood is p(z,d|θ) =
Nv
∏

j=1

p(zj, dj |θ),

where z = [z1, . . . , zNv
]T , and

p(zj , dj |θ) =











γλe−λdj , if zj = 1

(1−γ)
M2 , if zj = 0

The complete data log likelihood is defined as

ln

Nv
∏

j=1

p(zj , dj |θ) =
Nv
∑

j=1

ln (p(zj, dj |θ)) . (15)

The expectation of the complete data log likelihood is evalu-

ated using the posterior probability computed using the current
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estimate of the parameters θt, as

Q(θ, θt) =

Nv
∑

j=1

∑

zj∈{0,1}

p(zj |dj , θt) ln (p(zj , dj |θ))

=

Nv
∑

j=1

pj [ ln(γ) + ln(λ) − λdj ] +

(1− pj) [ ln (1− γ)− 2 ln (M)] (16)

which reduces to (4) after dropping the constant term ln (M).

APPENDIX B

The homography Hβ maps a 2D location (xj , yj) in the

WAMI frame I to the 2D location (χj , ζj) in the Rg coordinate

system, given by

χj =
β1xj + β2yj + β3

β7xj + β8yj + 1
, ζj =

β4xj + β5yj + β6

β7xj + β8yj + 1
.

In homogeneous coordinates [17], these equations are equiv-

alently represented as the matrix multiplication

wj





χj

ζj
1



 = Hβ





xj

yj
1



 =





β1 β2 β3

β4 β5 β6

β7 β8 1









xj

yj
1



 , (17)

where β = [β1, . . . , β8]
T is the transformation parameters and

wj = xjβ7+yjβ8+1 is the scaling factor for the homogeneous

coordinates on the left-hand-side [17]. The derivatives in (13)

are then obtained as

∂Hβp
v
j

∂β1
=

[

xj

wj

, 0, 0

]T

,
∂Hβp

v
j

∂β2
=

[

yj
wj

, 0, 0

]T

,

∂Hβp
v
j

∂β3
=

[

1

wj

, 0, 0

]T

,
∂Hβp

v
j

∂β4
=

[

0,
xj

wj

, 0

]T

,

∂Hβp
v
j

∂β5
=

[

0,
yj
wj

, 0

]T

,
∂Hβp

v
j

∂β6
=

[

0,
1

wj

, 0

]T

,

∂Hβp
v
j

∂β7
=
−xj

wj

[χj, ζj , 0]
T ,

∂Hβp
v
j

∂β8
=
−yj
wj

[χj , ζj , 0]
T
.
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Fig. 7: Road network alignment results using different methods for: (a) CORVUS(V) Area 1, (b) CORVUS(IR) Area 6, (c)

WPAFB Area 9. The initial road network obtained from the WAMI frame meta-data is shown in cyan, while the result of the

SBA method, and our proposed method appear in yellow and red colors, respectively. Left column is the full WAMI frame,

while the right column shows a smaller cropped region that is marked on the corresponding full frame by a white rectangle.
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