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ABSTRACT

For specular regions (SRs), the assumption of brightness (or other)

constancy between images corresponding to multiple views of a

scene breaks down. As a consequence, optical-flow (OF) based

motion-estimation (ME) algorithms that rely on constancy assump-

tions fail for specular regions. At the same time estimation of SRs

in an image is also prone to errors, particularly to false positives

from bright regions in the scene. In this paper, motivated by the

fact that specular regions are typically encountered in image regions

corresponding to portions of relatively smooth 3D surfaces, we pro-

pose an algorithm for improving ME and SRs localization via joint

processing. Initial estimates of OF and of the SRs are obtained by

conventional methods. The estimate of the SRs is updated using

inconsistency of the OF with respect to the neighboring region to

reinforce true positives and to reject false positives. The OF is then

re-computed with a modified energy functional that, in effect, em-

phasizes regularization in a spatially adaptive neighborhood of the

SRs to improve the estimated OF. Experimental results on synthetic

and real image pairs demonstrate that the proposed algorithm offers

a significant improvement in both SRs localization and ME over

recently proposed methods for tackling these problems.

Index Terms— Specular region estimation, optical flow, motion

estimation.

1. INTRODUCTION

An over-whelming majority of algorithms for computer vision (CV)

are formulated under the assumption of Lambertian surfaces that

contribute only diffuse reflection. Therefore, specular reflections,

which are not uncommon in captured imagery, present a challenge

for many computer vision tasks, such as image matching, color seg-

mentation, and object recognition. Typically, the regions within im-

ages that correspond to specular reflections, viz. specular regions

(SRs), are treated as outliers that are identified in a pre-processing

stage and then excluded from downstream analysis by CV algo-

rithms. However, methods for identifying the SRs within an image

are also prone to significant false-positive (FP) errors from bright re-

gions in the image. In this paper, we consider an alternative method-

ological approach in which we integrate the SRs estimation within

the underlying CV algorithm. Specifically, we focus on OF based

ME and demonstrate that by jointly computing estimates of OF and

SRs, both estimates can be improved by leveraging information that

each offers for the other.

Figure 1 demonstrates an image pair with SRs and the effect of

the SRs on ME. Based on brightness or texture constancy assump-

tion, OF estimation algorithms match the SR pixels in one image
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Fig. 1: Effect of specular reflection on optical flow estimation on

Ball image pair: (a), (b) are the input images, (c) is a color coded

optical flow obtained by [1], while (d) is our result.

with SR pixels in the other image regardless of the true motion for

these pixels. For example, the pixel labeled A in the left image

is matched incorrectly with the pixel labeled B in the right image

instead of the correct match A’. Figure 1(c) illustrates the map of

MEs (in standard color encoded format) obtained for this pair with

a state-of-the-art OF estimation method [1], where the error in the

SR is clearly apparent. Figure 1(d) illustrates the result of our pro-

posed method where the accuracy is very significantly improved in

the SRs.

A number of methods have been previously proposed for the de-

tection and removal of SRs. A number of these require specialized

equipment or setup. For instance, different polarization angles [2],

or different light sources (flash) positions [3, 4] have been used to

distinguish between the SRs and diffuse reflecting regions. Under

a constant linear motion constraint, the epipolar constraint has also

been used in [5] to identify SRs. In [6], the illuminant chromatic-

ity, correspondence, and SRs are estimated in a single framework,

which, however, encounters a challenge with saturated pixels com-

monly encountered in SRs. In [7], an iterative method was proposed

for both estimate the illuminant chromaticity and enhance the OF.

The method estimate the illuminant chromaticity from the regions

where OF fails, then projecting the input images to a color space

that is perpendicular to the estimated illuminant chromaticity to en-

hance the OF estimation. However, this color projection will fail for

achromatic surfaces and saturated pixels, and also as shown in Fig.

1, the specular pixel may be assigned to another specular one in the

other view, and that will result in a small difference between them
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which will not be detectable for the illuminant chromaticity estima-

tion process.

Our key observation in this paper is that, SRs in images typically

occur in image regions corresponding, in the 3D scene, to relatively

smooth surfaces and therefore, the true motion corresponding to the

SR pixels is typically consistent with the neighboring region within

the same object whereas the estimated motion is typically inconsis-

tent with the neighboring region. This inconsistency can therefore be

used to vet estimates of SRs and eliminate false positives improving

the estimates of the SRs. In turn, the improved estimates of SRs, can

improve OF based ME estimates by downplaying the data term that

causes spurious matches in this region. Thus, we obtain better esti-

mates of both the OF and of the SRs via a joint processing strategy

that we detail in the following sections.

This paper is organized as follows. Section 2 outlines the stan-

dard OF estimation formulation and highlights how SRs pose a chal-

lenge. Section 3 explains our proposed algorithm that treats the OF

estimation and SRs localization problems jointly with each bene-

fiting from the other. Results and a comparison against alternative

methods are presented in Section 4. We conclude the paper in Sec-

tion 5.

2. SPECULAR REGIONS INDUCED CHALLENGES FOR

OF ESTIMATION

Given an image pair1 (I1, I2), the OF estimation can be posed as an

energy minimization problem as

d
∗(x) = argmin

d(x)
E(d(x)), (1)

where d(x) is the disparity field defined on sampling grid of I1. The

objective function can be written in a discrete form as

E(d(x)) = ED(d(x)) + λES(d(x))

=
∑

x

ΦD(F1(x)− F2(x+ d(x))) + λ
∑

x

ΦS(d(x)), (2)

where ΦD represent the data penalty function that enforces the con-

stancy assumption, ΦS is the smoothness penalty function that en-

forces the spatial regularity (coherence) of the estimated OF, and F1

& F2 are spatial feature representations corresponding to I1 & I2,

respectively. In their simplest form, F1 & F2 could correspond di-

rectly to the image intensities for I1 & I2; alternatively, they may

be computed as dense feature descriptors, for example SIFT fea-

ture descriptors [8]. The objective function (2) was first proposed

with F1 & F2 as image intensities in [9]. Recently, this formulation

gives very competitive results by using different penalty functions

and different feature descriptors for F1 & F2 [1]. However, using

the formulation of (2) in the presence of SRs yields spurious motion

estimate for these regions as ΦD is typically minimized by matching

SRs pixels in the two images as shown in Fig. 1. The problem can

be partly mitigated by estimating the SRs, however, SRs estimation

methods are prone to errors, in particular to FPs in bright regions of

the image. To address, this challenge we propose a joint algorithm

to enhance the OF estimation and, simultaneously, obtain a better

estimate for the SRs.

Final SRs map

Initial OF

Final OF

Initial SRs map

Update SRs

estimation
flow (OF)

estimation

(SRs) aware (OF)
estimation map

Initial specular

I2

Initial optical

I1 regions (SRs)

Fig. 2: Proposed algorithm for joint estimation of OF and SRs.

3. PROPOSED ALGORITHM

A high level overview of the proposed algorithm is shown in block-

diagram format in Fig. 2 using an illustrative example with the im-

ages I1 & I2 shown in Fig. 1. The proposed method is based on two

ideas. First, because SRs typically occur over smooth surfaces in 3D

space, interpolation of the motion field for the neighboring regions

within the same object can provide a good estimate of the motion

field for SRs. Secondly, the spurious motion estimates for SRs that

arise due to the data term in (2) are typically inconsistent with the

motion estimates obtained by the interpolation process whereas for

bright non-specular regions, this is typically not the case. We use

the inconsistency of the motion field with the motion in surround-

ing regions within the same object as a positive reinforcement for

identifying SRs that allows FPs to be eliminated.

Specifically, we propose a modified energy function

E(d) =
∑

x

γS(x) (ΦD(F1(x)− F2(x+ d(x))))+

λ
∑

x

ΦS(d(x)), (3)

where γS(x) represents a spatially adaptive weighting for the data

term. The impact of the error introduced in the ME by the data term

in SRs can therefore be eliminated if this weighting takes a value

of 1 over diffuse regions and 0 in the SRs with a smooth transition

in intermediate regions. The data weighting factor γS(x) results in

only a minor change to the corresponding Euler-Lagrange equations

that characterize the minimum for (3), and also do not depend on the

specific choice of the ΦD or ΦS penalty functions.

For the energy function in (3) to be effective, the weighting

γS(x) needs to be determined using the locations for SRs in I1,

i.e. the specularity map. We obtain an initial coarse estimate of

the specularity map using a dark-channel prior as in [10] and im-

prove this by eliminating FPs by leveraging information from OF

1Intensity values in the images I1, and I2 are assumed to be normalized
to a [0, 1] range.
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estimation. Based on the observation that diffuse pixels are charac-

terized by a low intensity level in at least one color channel among

RGB channels, we can use the dark channel, defined by, Id(x) =
min

c∈{r,g,b}
Ic1(x), as a coarse estimate for the specular reflections of

an image [10]. Specifically, a coarse SRs binary map, identifying

the regions with significant specularity, is obtained by thresholding

γ
0
S(x) = 1− e

I
d
(x)−1

σs . (4)

To address the FPs typical with this coarse estimate, the SRs binary

map is segmented into a list of connected components (CCs) and the

specularity within each CC validated by testing the consistency of

the motion within the component with that of a small neighborhood

that is adaptively determined to lie within the same object as the CC

in question. It is desirable to have this adaptive region be confined to

the same object over which the putative SR CC lies. To accomplish

this, inspired by active contours [11], we define a temporally evolv-

ing level set function ϕ(x, t) where t indicates the time (iteration

number) variable. The function ϕ(x, 0) is initialized to values of 1
and −1, respectively, inside and outside of the putative SR CC. The

enlarged SR region for the CC at time t is then represented by the

zero level set ϕ(x, t) = 0, where the standard level set equation [11]

∂ϕ

∂t
= V (x) |∇ϕ| (5)

is used to evolve the level set function with the velocity term V (x)
defined as

V (x) =
1

α‖∇σ(x)‖2 + 1
+

1

β‖∆σ(x)‖+ 1
, (6)

where

σ(x) =
I1(x)

Ir1 (x) + I
g
1 (x) + Ib1(x)

(7)

is the normalized rgb or chromaticity of the image I1(x) [12], and

α, β are positive constants. The evolution of the level function cor-

respondingly enlarges the contour whose inside corresponds to the

CC along the normal direction ~N(x) to the contour (at each point

x) with the velocity V (x). The velocity in (6) is motivated by the

fact that adjoining SRs, the chromaticity varies smoothly within the

same object whereas the change is abrupt across object boundaries.

The form of V (x) is designed to stop expansion of the boundary

when an edge is encountered and to allow expansion in other direc-

tions that are constant or smoothly varying. The region between the

original boundary of the CC and the adaptively expanded boundary

is denoted by Bi. The CC is then validated as a true SR if the differ-

ence between the averages of the MEs in the CC and in the boundary

region Bi are smaller than an empirically determined threshold τ2,

otherwise the CC is considered a FP and dropped from the estimate

of the SRs.

The refined estimate of the SRs obtained by the afore-mentioned

procedure is denoted by a binary indicator function λs(x) ∈ {0, 1}
which is incorporated in our adaptive weighting function γS(x) by

first computing

γ̃S(x) = 1− λs(x)e
I
d
(x)−1

σs . (8)

Then by evolving γ̃S(x) using the velocity in (6), we obtain the fi-

nal weighting γS(x) that is implicitly gives more trust to the data

term as we go far from the SR. Algorithm 1 summarizes the entire

algorithm. The parameter τ1 is determined automatically using the

method in [13], and we estimate τ2 empirically.

Algorithm 1: Proposed algorithm for jointly estimating opti-

cal flow and specularity map

Data: Input F1, F2

Result: d(x), λs(x)
1 Optimize (3) with γS(x) = 1 to get initial ME d

(x);
2 Compute γ

S(x) as in (4);

3 Identify potential SRs R = {x : γ
S(x) < τ1};

4 Segment R into a list of connected components G;

5 for Each connected component Ci in G do

6 Ai = avg(d(x)) for x ∈ Ci;

7 Get a small region Bi around Ci by evolve Ci’s boundary

using V (x) with velocity in (6);

8 Ab
i = avg(d(x)) for x ∈ Bi;

9 if ‖Ai − Ab
i‖2 > τ2 then

10 add i to the specularity set S ;

11 end

12 end

13 if S = φ then

14 return;

15 end

16 λs(x) = 1, for x ∈ S and 0 o.w.;

17 Compute γ̃S(x) as in (8);

18 Expand γ̃S(x) using V (x) in (6) to obtain γS(x);
19 Optimize (3) to get final ME d(x);

4. EXPERIMENTS

We demonstrate our results using two of the state of the art meth-

ods for OF estimation [1, 8] using both semi-synthetic data for

which ground truth is available and allows numerical validation and

for captured imagery with SRs. For the semi-synthetic data, we

adopt an approach similar to [14]. We use the Middlebury data set

(www.middlebury.edu/stereo) [15] with the available ground truth

disparity to generate some test images with specularity introduced

using Blender 3D modeling environment [16]. These image pairs

are shown in Fig. 3 (a). This methodology allow us to use the ground

truth disparity map to provide quantitative measure of performance,

and additionally uses diffuse colors from actual scenes making the

scenario close to reality.

Our results is shown in Fig. 3 (b), (c) using the standard color

encoding [17] for the estimated motion vectors obtained from OF2.

Also, Table 1 shows a comparison of both average end-point error

(EPE) and angular error (AAE) of the original methods [1, 8] (w/o

SRs handling) with the method in [7] and our algorithm. In order

to make our accuracy measures unbiased with respect to the image

size and the amount of specularities contained on the input images,

we report both EPE, and AAE over a rectangular window around

the specular reflecting regions that extends 20 pixels beyond pixels

with specular reflection (from known ground truth). The method

in [7] fails when the input images contain many achromatic sur-

faces because upon color projection along the direction orthogonal

to the illuminant chromaticity little energy is retained. As a result,

the methodology of [7] gives a higher EPE and AAE. This validate

our approach of discounting the data term in OF estimation for the

SRs. Also, Fig. 4 shows our results3 on some indoor images that

lit by the sun light enters through a window. It is clear that there is

2A value of τ2 = 0.5 was used in conjuction with the OF method [1] and
τ2 = 0.2 was used with [8].

3The threshold τ2 was set here by trial and error.
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(a) Input : Cones and Sawtooth image pairs

(b) Results for Cones image pair using [8] for OF estimation

(c) Results for Sawtooth image pair using [1] for OF estimation

Fig. 3: Input image pair and our result. In (b)-(c) columns from left to right represent: (1) the initial specularity map, (2) the initial optical

flow, (3) the final specularity map, (4) the final optical flow, (5) ground truth optical flow. Images are best viewed electronically.

w/o SRs Method in Our

OF handling [7] algorithm

AAE EPE AAE EPE AAE EPE

Ball [1] 0.074 0.583 0.448 0.805 0.029 0.120

[8] 0.106 1.799 0.093 1.621 0.095 1.441

Cones [1] 2.568 0.758 4.788 1.238 0.673 0.356

[8] 9.062 3.051 7.718 1.930 0.444 0.587

Sawtooth [1] 5.217 0.649 6.104 0.631 0.825 0.104

[8] 3.613 0.689 6.735 0.574 0.490 0.148

Table 1: Quantitative comparison between our method and the orig-

inal one.

a noticeable enhancement for both the final specularity map and the

estimated OF compared to initial one. Similar results were obtained

for additional image pairs with SRs captured under different sources

of illumination but are not included here due to space constraints.

5. CONCLUSION

We propose a method that jointly improves the estimation of optical

flow (OF) and of specular regions (SRs) from a stereo image pair

with specular reflections. By exploiting information from each of

the two components for the other, we demonstrated that both esti-

mates can be significantly improved. Our estimates of OF offer a

significant improvement over both methods that disregard SRs and

over a recent alternative method that considers the specular reflection

challenges for OF.

Fig. 4: Results on actual captured images using [8] for OF estima-

tion. Left column shows the input images, middle shows the initial

and final OF, and right one shows initial and final specularity map
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